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Abstract

Background: Efforts to improve animal health, and understand genetic bases for production, may benefit from a

comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in

humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown.

Here, we present the largest collection of cattle DNA methylation epigenomic data to date.

Results: Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47

corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation

calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly

improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global

CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We

detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle

PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-

range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on

their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed

strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS

located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak,

pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect

50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T

mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were

hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites.
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Conclusions: This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries

about DNA methylation and its role in complex traits.

Keywords: Cattle, Somatic tissues, DNA methylation, Partially methylated domains, Hypomethylated region, WGBS (whole

genome bisulfite sequencing)

Background
DNA methylation plays important roles in tissue differ-

entiation and normal developmental processes like gene

expression, genomic imprinting, repression of transpos-

able elements, and gametogenesis [1–5]. Many tissue-

specific differentially methylated regions (DMRs) were

identified and proposed to mediate tissue-specific gene

regulatory mechanisms in humans [6]. Earlier studies

profiling DNA methylomes in humans and rodents have

also shown low methylation near promoters and high

methylation in the bodies of active genes [7, 8]. But the

relationship between methylation and expression is

context-dependent. For example, Varley et al. reported

that CpG-rich enhancers in the bodies of expressed

genes are actually unmethylated [9].

Partially methylated domains (PMDs) were first dis-

covered in human cell lines and cancers [10]. PMDs

were later detected in most mammalian placentas and

mouse germline cells [11–14], covering up to 75% of the

genomes. As one of the prominent signatures of long-

range epigenomic organization, PMDs are large domains

of DNA (often greater than 100 kb) which have lower

levels of DNA methylation and are associated with gene

repression. Early human and mouse analysis identified

PMDs as important general, lineage-, and cell type-

specific topological features [15]. As Salhab et al. [15]

pointed out, changes in PMDs are hallmarks of cell dif-

ferentiation, with decreased methylation levels and in-

creased heterochromatic histone marks, which are

linked to domains of early, middle, and late DNA repli-

cation and cell proliferation. However, the patterns and

the function impacts of PMDs in cattle are still not

known.

CpG sites occur with high frequency in genomic re-

gions called CpG islands (CGIs), which are one of the

most widely studied regulatory features. Commonly used

cattle CGIs are usually predicted from DNA sequence

using computer programs, such as the one downloaded

from the University of California Santa Cruz (UCSC)

Genome Browser [16]. Although CGIs have critical roles

in development and disease, recent studies have shown

that such computational annotations are not totally ac-

curate [17]. On the other hand, hypomethylated regions

(HMRs, hundreds bp in length) often are located in

CGIs and linked to the activation of gene expression;

however, they also occur outside of CGIs and function

as cell type-specific enhancers [9]. As has been reported

[18–20], the formation of HMRs can be due to two pos-

sible mechanisms: (1) active transcription and accom-

panying histone marks such as H3K4me3 prevent the

access of DNA methyltransferases and (2) specific pro-

tein/DNA complexes, such as CTCF and Sp1, inhibit the

methylation machinery in the absence of transcription.

Compared to somatic cells, sperm cells undergo nearly

complete reprogramming of DNA methylation and ex-

change histones by protamine [21–23]. We previously

profiled the DNA methylome of cattle sperm through

comparison with somatic cells from three bovine tissues

(mammary gland, brain, and blood) [24]. Large differ-

ences between cattle sperm and somatic cells were ob-

served in the methylation patterns of global CpGs,

pericentromeric satellites, and common repeats. Al-

though most of common repeats were heavily methyl-

ated in both sperm and somatic cells, we did find some

hypomethylated repeats were enriched in gene pro-

moters of sperm cells. Common repeats or transposable

elements constitute roughly half of most mammalian ge-

nomes [25]. Repression of these common repeats relies

on DNA methylation via the piRNA pathway and is es-

sential for the maintenance of genomic stability in the

long term and for germ cell function in the short term

[26, 27]. In humans, common repeats were found to be

heavily methylated—with the notable exclusion of young

AluY and AluYa5 elements in human sperm cells [28]. If

methylation is lost on certain repressed repeats, germ

cell development is arrested in meiosis [29].

Our knowledge of DNA methylation patterns in live-

stock is still limited when compared to humans and

other model species. Some DNA methylation studies

were reported with limited tissue types and/or low reso-

lution in cattle, pigs, sheep, and horses [24, 30–46]. For

example, we performed comparative analyses of sperm

DNA methylomes among human, mouse, and cattle and

provided insights into epigenomic evolution and com-

plex traits [47]. To understand the variability of DNA

methylation across cattle tissues and its regulation of

gene expression, we profiled the cattle DNA methylomes

in 16 major tissues using the whole genome bisulfite se-

quencing (WGBS) method. We investigated the land-

scapes of the DNA methylome across tissues. We

studied differential methylation by comparing them in

multiple contexts, including global CpG sites, PMDs,
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HMRs, CGIs, and common repeats. In line with the

Functional Annotation of Animal Genome (FAANG)

project [48], this study provides a comprehensive re-

source for bovine epigenomic research and enables new

discoveries about DNA methylation and its role in com-

plex traits.

Results
Data generation and quality assessment

We generated 29 WGBS datasets for 16 tissues from 2

Holstein cows and their relatives, including biological

replicates whenever possible. These also included 47

corresponding transcriptome datasets for 14 of the 16

tissues and 2 whole genome sequencing datasets (Add-

itional file 2: Table S1A and S1B). Besides 10 published

datasets (4 sperm, 2 brain prefrontal cortex, 2 mammary

gland, 2 whole blood samples from GSE106538, 24), the

other 19 WGBS datasets were newly generated from

samples of 2 rumen, 2 lung, 2 Latissimus dorsi muscle, 2

adipose, 1 heart, 1 ileum, 1 liver, 1 kidney, 1 spleen, 1

ovary, and 1 uterus collected from the two cows, as well

as 2 white blood cell and 2 placental samples from their

4 female relatives. We obtained vast amounts of data,

and for each of them, the average unique mapped read

count was approximately 150 million (Additional file 2:

Table S1). We then uniformly applied Bismark [49] for

read mapping and DNA methylation calling, based on

two cattle assemblies, i.e., short-read-based UMD3.1.1

[50] versus long-read-based ARS-UCD1.2 [51]. Although

the differences of mapping rates and global methylation

levels were small between two different assemblies (Add-

itional file 2: Table S2), many DNA methylation-level

peaks and valleys did change their locations and magni-

tudes, especially when they were near chromosome ends

(i.e., pericentromeres or telomeres) or sudden drops of

the DNA methylation level (Additional file 1: Figure S1

and S2). Considering the high quality of the long-read

assembly, such as the better context identification and

future applicability, we focused all following analyses

using the long-read-based assembly ARS-UCD1.2. We

used Bismark [49] to identify genome-wide methylated

cytosines, which gave a median coverage of 16 × (cover-

age) per sample (range from 11.84 to 24.47×) (Add-

itional file 2: Table S1). To remove the SNP artifacts

from the subsequent analyses, we filtered away all SNPs

detected in the whole genome sequence of the same in-

dividual (Additional file 2: Table S1C).

Dynamic DNA methylation for tissue-specific

development in cattle

In terms of the global CpG methylation level of the cat-

tle genome DNA, we obtained consistent results as com-

pared to human [52], mouse [53], and other species.

Most somatic tissue DNA samples in cattle had average

methylation levels of 70~80%, while the placental gen-

omic DNA was 48% (the least) methylated, as compared

to the sperm DNA which was ~ 78% (the most) methyl-

ated (Additional file 2: Table S1A). Bisulfite conversion

rates estimated by unmethylated lambda DNA controls

supported that we faithfully captured patterns of gen-

omic DNA methylation in these samples (Additional file

2: Table S1A). Moreover, we detected low non-CG

methylation in the non-brain somatic tissues and sperm

cells (0.2–0.8%), in contrast to a higher non-CG methy-

lation level in the brain samples (1.2–1.3%). The latter

was consistent with previous studies in human and other

species [54].

We performed a hierarchical clustering of these tissues

based on weighted methylation levels of 500-bp windows

(Fig. 1a). As expected, they were organized into three

main clusters: sperm cells (cluster 1), placenta (cluster

2), and somatic tissues (cluster 3). These results con-

firmed the consistent results between the biological rep-

licates and reinforced potential methylation differences

among different somatic tissues, placentas, and sperm

cells (Fig. 1a). Additionally, independent principal com-

ponent analysis (PCA) also confirmed this clustering

(Additional file 1: Figure S3a). PC1 successfully sepa-

rated samples into 3 clusters (sperm, placentas, and

somatic tissues), which explained most (44.90%) of the

variances, while PC2 separated sperm and placentas

from somatic tissues. PC3 separated the blood/white

blood cell/spleen from the rest and PC4 separated the

rumen from all other samples.

We compared the methylation profiles between pairs

of samples at a global CpG level. As expected, the corre-

lations between samples within the same tissue type or

clusters were high (r > 0.5) (Additional file 1: Figure S4).

The correlations between methylation of different tissue

types or clusters were lower, especially those between

sperm cells and somatic tissues were the lowest (r = 0.22

to 0.24) (Additional file 1: Figure S4).

Focusing on cluster 3 of Fig. 1a, we saw much more

conserved methylation patterns when they were com-

pared to the sperm cells and placenta in all 3 analyses

(clustering, PCA, and correlation in Fig. 1a, S3, and S4,

respectively). The somatic tissues in cluster 3 can be fur-

ther divided into 3 branches with stronger correlations

among their DNA methylome levels (Fig. 1a). It is noted

that samples from the same germ layers and/or the same

biological systems were clustered together (e.g., heart

and muscle, spleen and blood, and adipose tissue and

mammary gland). This was in agreement with the com-

mon notion about the importance of methylation in

tissue-specific development. Moreover, several tissues

showed specific methylation patterns in cattle. For ex-

ample, the blood cluster (cluster b) and the rumen were

separately divided by PC3 (6.54%) and PC4 (4.39%) from
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other tissues (Additional file 1: Figure S3b). Interestingly,

we also found increased correlation coefficients of

methylation levels toward the sperm cells and placenta

especially for the cortex and rumen, respectively (Add-

itional file 1: Figure S5). Using 10-kb, non-overlapping

windows, we analyzed the conserved and variable methy-

lation regions on the cattle genome across all samples,

based on the standard deviations of DNA methylation

levels. We defined the lowest 1% tails as methylation

conserved regions, while the highest 1% tails as methyla-

tion variable regions (Additional file 1: Figure S6). We

first divided methylation conserved regions into 2 parts:

hypermethylation conserved regions and hypomethyla-

tion conserved regions. We found that genic regions

were most enriched in hypermethylation conserved re-

gions (Additional file 1: Figure S7). The genes located in

the hypermethylation conserved regions were highly

enriched in the DNA damage and repair biological pro-

cesses (Additional file 1: Figure S8a). In the hypomethy-

lation conserved regions, some of important functional

genomic features including promoters, eCpG islands,

and tRNA genes were highly enriched (Additional file 1:

Figure S9). But no significant enriched GO term was

found. On the other hand, we found that methylation

variable regions were enriched in the promoters and

eCGIs (Additional file 1: Figure S10). No significantly

enriched GO term was found when we did the GO ana-

lysis using all the genes overlapped with the methylation

variable regions (Additional file 1: Figure S11). We then

separated methylation variable regions into 2 parts

according to the sperm methylation level: sperm hyper-

methylation variable regions and sperm hypomethylation

variable regions. We found that the genes located in the

sperm hypomethylation variable regions (the methyla-

tion variable regions that showed hypomethylation in

sperm) showed high enrichment in the meiotic cell cycle

process, cell division, and spermatogenesis (Additional

file 1: Figure S8b). The genes located in the sperm

hypermethylation variable regions (the methylation vari-

able regions that showed hypermethylation in sperm)

showed high enrichment in the response to hormone,

multi-multicellular organism process (Additional file 1:

Figure S8c). Additionally, methylation variable regions in

our heatmap analysis (Additional file 1: Figure S12) suc-

cessfully separated the samples into three similar groups

(placenta, sperm, and other somatic tissues), as we ob-

served in our hierarchical clustering based on weighted

methylation levels (top 500-bp tails) (Fig. 1a). Therefore,

as described above, our results showed that the methyla-

tion conserved regions played important roles for the

basic, key bioprocesses, while the methylation variable

regions were associated with tissue-specific activities.

We identified 5.85 million differentially methylated cy-

tosines (DMCs, methylation differences > 0.3, FDR <

0.05, with 10× in depth) that distributed in 215,984 dif-

ferentially methylated regions (DMRs, methylation dif-

ferences > 0.3, FDR < 0.05, supported by at least 5 DMCs

in the same direction) between any one tissue sample

against tissues in all other groups throughout the cattle

genome (Additional file 2: Table S3). As the placenta

Fig. 1 Analyses of DNA methylation for the tissue-specific development in cattle. a Cluster analysis of the samples using the average methylation

level of 500-bp windows. b Gene ontology analysis for the genes overlapped with tissue-specific DMRs
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was lowly methylated, we detected the largest number of

DMCs and DMRs covering half of the genome. Among

somatic tissues and sperm cells, we identified the tissue-

specific DMRs and found the hypomethylated genes

overlapped with the tissue-specific DMRs were enriched

in the tissue-specific development GO terms, for ex-

ample, fertilization for the sperm, positive regulation of

the nuclear division for the ovary, and vasculature devel-

opment for the heart (Fig. 1b). These results indicated

large differences between tissue methylomes were likely

related to tissue-specific development and function.

PMD

As described before [24], we applied an HMM model to

detect partially methylated domains (PMDs) using 10-kb

windows (Additional file 2: Table S4), whose lengths are

usually over hundreds of kilobases. Previous studies have

recognized that the placenta has a similar epigenetic

landscape as cancer cells have, which are characterized

by a widespread hypomethylation in human and mice

[13]. Here, we found that the cattle placenta contributed

80% (~ 1.2 Gb) of all PMDs in length and covered most

of the PMDs detected in the other tissues. Cattle pla-

centa PMDs covered 40.83 and 43.74% of the cattle ge-

nomes, respectively. On the other hand, PMD only

occupied 30.29% of the human placenta genome, agree-

ing with previous estimates [13]. We further determined

genes located in the shared and lineage-specific placenta

PMDs between cattle and human (Additional file 2:

Table S5). GO terms with significant enrichment for

genes shared in PMDs included chemical synaptic trans-

mission, adhesion junction organization, ion transmem-

brane transport, and nervous system development.

Genes for human-specific PMDs showed one marginally

significant enrichment for anterior/posterior pattern spe-

cification, while cattle-specific PMDs showed one signifi-

cant enrichment for steroid hormone-mediated signaling

pathway (Additional file 2: Table S6).

After merging all cattle tissue PMDs, we found that

over half (~ 1.45 Gb) of the whole cattle genome were

covered by PMDs in at least one sample. However, PMD

mostly existed in the gene desert (gene poor region) with

low CG density and often lack of the actively histone

modifications, including H3K27Ac and H3K4me3

(Fig. 2a, Additional file 2: Table S4). Overlapping with

the Hi-C contact maps revealed that TADs were often

associated with PMDs on the cattle genome (Fig. 2b).

We did find several PMDs that overlapped with parts of

the genes or gene cluster regions. But most of PMDs

often showed a genome-wide inhibition of gene expres-

sion in all samples (Additional file 1: Figure S13). More-

over, we identified highly methylation domains (HMDs)

using the HMM strategy in the placenta. Placenta HMDs

covered 27.58% of the cattle genome and were enriched

for the gene-related features, including genic regions,

promoters, experimentally supported CGIs (eCGIs, pre-

sented in the later part of the “Results” section) (Add-

itional file 1: Figure S14), and 7057 (54.80%) RefGenes.

In PMDs, the methylation patterns of the genes and the

CGI were almost indistinguishable from the background

because of their low methylation (Additional file 1: Fig-

ure S15). But the genes in HMDs were significantly

enriched in the basic biological processes, including

intracellular protein transport, DNA repair, apoptotic

process, endocytosis, and cell division (Additional file 2:

Table S7). This may help to explain how the placenta

functions normally even with a large percentage of

PMDs. Genes in placenta PMDs were significantly

enriched in the following GO terms: homophilic cell ad-

hesion via plasma membrane adhesion molecules,

gamma-aminobutyric acid signaling pathway, pituitary

gland development, chemical synaptic transmission, and

anterior/posterior pattern specification (Additional file 2:

Table S8).

We further examined whether the cattle PMDs could

be used as markers for different tissues. We found the

replicates for the same tissues were successfully clus-

tered together using the PMDs (Fig. 2c). Most of the

samples, except the placenta, had small proportions of

PMDs. Within them, we found the rumen, heart, liver,

and ovary had more PMDs than others. It is of note that

the blood and its related sample (spleen) showed the

least numbers and shortest lengths of PMDs (Additional

file 2: Table S4). Through a visual examination, we de-

tected multiple methylation-level drops that commonly

appeared in the non-blood samples at the chromosome

level (Fig. 2a labeled with narrow squares, and Add-

itional file 2: Table S9). We then identified those DNA

methylation-level drop regions on the chromosome

using a PMD-cluster strategy. Finally, we identified 16

non-blood DNA methylation-level drops ranging from

0.3~1.8Mb in length, which were distributed on 13 dif-

ferent chromosomes (Additional file 2: Table S9). Five of

them overlapped with gene cluster regions with gene

family loci related to immunity, histone, olfactory recep-

tor, pregnancy-associated glycoprotein, and protocad-

herin. The others were enriched in satellite. Since all

bovine autosomes are acrocentric and pericentromeres

are not well defined in the cattle genome, the first 3Mb

of them could be considered as potential pericentro-

meres. Based on this criterion, 9/16 of them were lo-

cated in pericentromeres (Additional file 2: Table S9).

TSS-HMR as an important indicator for gene expression

We also applied an HMM module to detect the hypo-

methylated regions (HMRs) for each sample, as de-

scribed previously [24]. In total, we found that the HMR

covered 847Mb of the cattle genome. However, the
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HMRs showed large differences in both location and size

among the different clusters (Fig. 2a and Additional file

1: Figure S16). In somatic tissues and sperm, HMRs

were highly enriched in the promoters, eCGIs, tRNAs,

and satellites, while the placenta samples showed the op-

posite trend (Additional file 1: Figure S17). We divided

the HMRs into two types according to their overlapping

with TSS or not: TSS-HMR and non-TSS-HMR. The

peak size of non-TSS-HMR for the placenta was around

5000 bp and those for sperm and normal tissues were

much smaller in size (around 500 bp) (Fig. 3a). However,

interestingly, the peak sizes of TSS-HMR were highly

consistent, centering around 2000 bp among all samples

(Fig. 3a). This might indicate the importance of the TSS-

HMR throughout tissue development.

We calculated and plotted the distances from the

two HMR boundaries to the nearest TSS. Of note, we

found that the center of the HMR was usually located

in the downstream of the TSS (Fig. 3b). We examined

the relationship between methylation and transcrip-

tion, using a correlation analysis between the methy-

lation levels of intragenic DMRs and the expression

of the closest genes based on 20 methylome and tran-

scriptome data derived from the same samples in

cluster 3. As expected, high methylation in DMRs

had a negative correlation with gene expression, and

this negative correlation grew stronger around the

transcription start site (Fig. 3c). The strong negative

correlation was not only in the gene promoters, but

also extended downstream of the promoter up to 8 kb

away (Fig. 3c). This analysis shows that transcription

is strongly associated with intragenic DMRs in the tis-

sues we examined, in line with the similar observa-

tions in human methylomes [52]. Additionally, as

expected, we found the TSS-HMR with high CG

density showed a stronger negative correlation with

gene expression than TSS-HMR with low CG density

did (Fig. 3c).

Fig. 2 DNA methylation landscapes of PMDs in various cattle tissues. a Distribution analysis of the PMD using chr7 as an example with different

genome tracks, including from the top to bottom: CG methylation level; CG density; gene number; placenta gene expression (in log2 scale); HMR

numbers in the placenta, sperm, blood, lung, and liver; H3K27Ac (liver) and H3K4me3 (liver). Three DNA methylation-level drops are labeled out

with rectangles. b Comparison of the location between PMDs and TADs. c Cluster analysis of cattle samples by the PMD. The PMDs were merged

into PMD regions for all the samples. We calculated the ratio of the PMD of each sample to the merged PMD regions, which was then used for

the cluster analysis
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We then counted commonly and differentially meth-

ylated TSS-HMR for the homologous genes between

cattle and human for either the liver or the kidney, as

we did previously for sperm [47]. Over 90% genes with

TSS-HMR were conserved (i.e., commonly methylated,

either highly or lowly methylated) between cattle and

human: 91.70% for the liver or 94.03% for the kidney.

These liver and kidney genes with conserved methyl-

ated TSS-HMR were involved in basic biological pro-

cesses, like RNA processing, protein folding, and cell

cycle (Additional file 1: Figure S18). On the other hand,

we did find 69 homologous genes with differentially

methylated TSS-HMR (Additional file 2: Table S10).

They included some lipid-related genes (e.g., CYP11A1,

PLD6, MGLL, CYP39A1, RAB7A), which were hypo-

methylated in human. Human liver and kidney also

shared 8 genes with hypomethylated TSS-HMR. How-

ever, their mechanisms are not well understood and re-

quire future investigations.

Classification of the TSS-HMR: tissue-specific TSS-HMR for

cattle gene expression

To better understand the TSS-HMR, we classified genes

into 5 groups according to their promoter location relative

to the TSS-HMR by integrating the WGBS data of 27 di-

verse samples (except placentas as their methylation levels

were lower) and their corresponding RNA-seq data. The 5

gene groups were as follows: (1) no-TSS-HMR: the gene

with its TSS not located in the HMR in all samples; (2)

total in HMR: the gene totally located in the HMR in at

least one sample; (3) TSS-HMR T1: only one gene with its

TSS located in the HMR in at least one sample; (4) TSS-

HMR T2: two opposite strand genes with their TSS lo-

cated in the same HMR; and (5) TSS-HMR T3: two or

multiple transcripts of one gene with TSSs located in dif-

ferent HMRs (Fig. 4a). According to this classification, we

identified 20.46% of the annotated coding genes (NCBI)

without TSS in all the samples. To avoid the possible in-

complete gene annotation, we fine-mapped TSS for 1.84%

Fig. 3 TSS-HMR as an important indicator for gene expression. a Comparison of the size distributions of different kinds of HMR between the

samples in three clusters. b Analysis of the flanking boundaries of the TSS-HMR. c Correlation analysis of the DMRs with gene expression across

the gene body region
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of genes using our RNA-seq data. Most (81.4%) of anno-

tated coding genes were classified as TSS-HMR genes, in-

cluding TSS-HMR T1 (61.63%), TSS-HMR T2 (7.59%),

and TSS-HMR T3 (4.57%). The genes (7.60%) totally

within HMR were short in length (average length = 2551

bp; medium length = 1726 bp) and enriched in G-protein-

coupled receptor signaling pathway, sensory perception of

smell, and nucleosome assembly (FDR < 0.01) (Additional

file 2: Table S11).

As HMR boundaries varied among different tissues,

we then investigated its core and flanking regions. Com-

pared to the two upstream and downstream regions of

the HMR, the core regions (shared by the TSS-HMR in

all samples) had much higher CG density and were more

conserved in terms of the methylation level among dif-

ferent tissues (Additional file 1: Figure S19). The correl-

ation efficient values between the methylation levels of

adjacent CGs were kept stably high (> 0.8) even for long

Fig. 4 Classifications of TSS-HMR and their tissue specificity. a Classification of the 5 types of the TSS-HMR: (1) no-TSS-HMR; (2) total in HMR; (3)

TSS-HMR T1; (4) TSS-HMR T2; (5) TSS-HMR T3. Please refer to the main text for details. b Comparison of the methylation-level correlation of the CG

with different distances between the TSS-HMR core region and two flank regions. c Boxplots of the gene expression for the genes with TSS-HMR

or not. d Correlation analysis of the expression of the gene pairs with TSS located in the same HMR. Random: same number of genes pairs

randomly chosen from all genes; control: same number of gene pairs randomly chosen from all genes with the same distance of the two TSS;

Same_HMR: the gene pairs with TSS located in the same HMR. e The consistent ratio of gene pairs with TSS located in the same HMR of cattle in

the other species, we defined the nearest two different strands genes as gene pairs. f The example of TP63: its tissue-specific expression of

different transcripts from the two different TSS were regulated by the two tissue-specific TSS-HMRs. g Heatmap of the methylation level of tissue-

specific TSS-HMR. h Heatmap of the expression levels of the genes showing tissue-specific high expression and tissue-specific TSS-HMR. i

Transcription factor binding motif enrichment analyses of the tissue-specific TSS-HMR using the liver as an example
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distance in the HMR core region while those of the

HMR flank regions decreased more rapidly (Fig. 4b).

Thus, to study the relationship between methylation and

gene expression, we focused on the core region. As ex-

pected, the expression of the genes that classified as

non-TSS-HMR were mostly suppressed (Fig. 4c).

By performing correlation analyses between the paired

genes’ expressions, we found the paired genes (twin-

genes) within TSS-HMR T2 would have greater chances

of being co-expressed (Fig. 4d). Moreover, we examined

the existence of those paired genes in other species. The

paired genes were more consistently co-expressed

among different mammals and chicken but showed

lower consistent ratios in other species, including tor-

toise, zebrafish, and Drosophila (Fig. 4e). For example,

we performed similar TSS and HMR analyses using hu-

man liver and kidney WGBS datasets. We found 783

such gene pairs in human and 514 (65.65% = 514/738,

Additional file 2: Table S12) of them with their TSS

overlapped with human HMRs. Hence, this cross-species

comparison between cattle and other species revealed

the important roles of epigenome evolution in mammals

and chicken.

As for genes within the TSS-HMR T3, they have a

possibility to be regulated by tissue-specific methylation

of TSS-HMR. For an example, the TP63 gene could be

expressed from two different TSSs and their expressions

were tissue-specifically regulated by the methylation

levels of these two TSS in LD muscle and rumen, re-

spectively (Fig. 4f). We recovered 122,867 cases, involv-

ing 4123 genes with different TSS-HMRs in at least two

samples and 171 tissue-specific TSS-HMRs (Fig. 4g). We

also identified 3207 genes contained by 12 modules that

specifically highly expressed in 12 different tissues by

performing a weighted gene co-expression network ana-

lysis (WGCNA) (Additional file 1: Figure S20). Those

genes were enriched highly in GO terms related to the

special tissue functions (Additional file 2: Table S13).

Combining with the gene expression using the RNA-seq

data, we found tissue-specific HMRs for 32 genes were

highly correlated with their expression (Fig. 4h). For

example, our results showed that liver-specific TSS-

HMR for the following genes: CPN2, SLC2A2, CRP,

LOC511240, MGC137211, ADH4, C4BPB, F13B,

SLC17A2, MBL2, FETUB, C8A, DIO1, LOC518526,

CPB2, CYP7A1, SERPINC1, SERPINA3-8, LOC786706,

and LOC511498. After filtering out 4 predicted LOC

genes, we queried the left 16 genes against human

GTEx portal [55] and cattle gene atlas [56]. Except

for 3 genes, all other 13 genes were uniquely express

in liver tissues of both human and cattle.

MGC137211 and SERPINA3-8 were still uniquely

expressed in the cattle liver, but they were not found

in the human genome. On the contrary, DIO1 was

not found in the cattle genome, and its expression in

human thymus was higher than that in human liver.

In summary, these cross-species comparisons revealed

conserved tissue-specific gene expression were associ-

ated with conserved tissue-specific TSS-HMRs. This

observation generally agreed with a recent report that

conserved tissue-specific transcriptions across species

could be more often explained by conserved tissue-

specific DMRs [57]. Finally, we found that the tissue-

specific TSS-HMRs were strongly enriched for puta-

tive binding sites of transcription factors which are

known to have tissue-specific function (Fig. 4i). For

example, we detected HNF6, PPARA, and Foxa2,

which are liver-specific transcription factors and fur-

ther confirm our above speculations.

eCGI as a guard to avoid C/T mutation for the TSS-HMR

core region

Previous human studies have shown that the computa-

tional annotations of CGI (cCGI) suffer from inaccur-

acies [17]. Here, we totally identified 50,023

experimentally supported CGIs (eCGIs) at a single-base

resolution using 27 whole genome bisulfite sequencing

data (not including the two placentas) in cattle (Add-

itional file 1: Figure S21, Additional file 1: Figure S22a,

and Additional file 2: Table S14). The neCGI (cCGI not

overlapped with eCGI) almost lost and even showed an

opposite methylation patterns as compared to those of

the eCGI (Additional file 1: Figure S22b). More import-

antly, we found that the genomic distributions of these

eCGIs across chromosomes correlated more strongly

with gene contents than with chromosome lengths

(Additional file 1: Figure S23). This suggested that these

hypomethylated regions might contain regulatory ele-

ments for gene expression. Furthermore, eCGI was

highly enriched around the TSS as compared to the

neCGI, which was actually highly enriched in the telo-

mere of the chromosome (Fig. 5a, Additional file 1: Fig-

ure S24). We found eCGI overlapped with 10,503

(62.51%) the TSS-HMR core region, which is consistent

with the previous notion of the importance of CGI in

the regulation of gene expression [58]. Earlier results

also showed that the high methylation of the cytosine

within CGI usually leads to C/T mutations more easily

[59]. We found that the eCGI was not only kept low in

methylation but also its methylation level was more con-

served among different tissues (samples) (Fig. 5b). We

checked the distribution of the C/T heterozygote (in-

cluding C/T, G/A) for the eCGI in the two individuals

using their genome sequencing data. The C/T heterozy-

gote rate was lower for all eCGI or the eCGI in the TSS-

HMR core region (Additional file 1: Figure S25). We

searched for motifs enriched in the neCGI as compared

to eCGI. As expected, we found more motifs of TG or
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GA, which were possibly the results of the mutation

from CG to TG (Fig. 5c). This provided more reasons

for the low methylation level in the eCGI, which might

actually protect sequence from C/T mutation in the

TSS-HMR.

Common repeats may regulate gene expression via

differential DNA methylation of the newly introduced

transcription factor binding sites (TFBS)

Most of the common repeats, especially retrotranspo-

sons, showed high methylation levels, which repress

their transcriptions (Additional file 1: Figure S27). But

there are still some repeat elements hypomethylated (≤

3.3%), which are highly enriched in the regions around

the TSS (2000 bp) (Fig. 6a). We plotted their observed/

expected ratios for each repeat subclass (Fig. 6b). We

checked whether common repeats would bring special

sequences such as transcription factor binding sites

(TFBS) to the TSS-HMR. Because repeat elements could

be broken into short pieces because of multiple rounds

of insertions, we focused on the full-length elements (in-

tegrity > 80%) located in the TSS-HMR. In total, we

found 4389 elements that dispersed in the TSS-HMR

(Additional file 1: Figure S27). We searched for the spe-

cific sequences or motifs enriched in the different ele-

ments as compared to all TSS-HMR sequences. We

observed that only Bov-A2 elements are enriched for

multiple known Zinc-finger-related transcription factor

binding motifs (Fig. 6c). As an example, we showed the

results for a subset of young Bov-A2, which recently

inserted into and split ancient common repeats (Fig. 6c).

But we did not find any significant GO term for the

genes containing Bov-A2 in the TSS-HMR. Interestingly,

we detected several hypomethylated Bov-A2 around the

TSS-HMR in sperm cells. For example, NME8, one

known gene related to sperm function, containing one

Bov-A2 element insertion with 4 AZF1 binding motifs in

its TSS-HMR, was especially hypomethylated in the

sperm samples (Fig. 6d). We also found one young Bov-

A2 element embedded in an old Bov-tA2 in the pro-

moter region of the PBX4 (pre-B cell leukemia homeo-

box 4) gene, which encodes a member of the pre-B cell

leukemia transcription factor family. Again, we detected

low methylation of this TSS-HMR only in the sperm

samples (Fig. 6d).

Discussion
Using WGBS, we generated one of the first large-

scale, single-nucleotide resolution cattle somatic tis-

sue methylomes. Cattle-unique tissue-like rumen was

also reported for the first time. The global CG

methylation levels detected ranged from 72.8 to

78.1% among our cattle samples, which were similar

to those in other mammalian species like humans (~

70%) [21] and what we reported previously [24]. Our

genome-wide cattle methylomes confirmed existing

knowledge that DNA methylation is important for

gene expression and plays a critical role in tissue-

specific processes [5, 60]. In promoter regions, DNA

methylation is associated with transcriptional repres-

sion whereas in gene bodies, DNA methylation is

generally enriched in the body of highly transcribed

genes [61–64]. We tested the impacts of genome as-

sembly quality on read mapping and DNA methyla-

tion calling, revealing DNA methylation peaks and

valleys did change their locations and magnitudes,

especially when they are near chromosome ends and

sudden drops.

PMDs

In this study, we reported large-scale PMDs in multiple

cattle tissues. We then cross-referenced them on the

Fig. 5 Comparison between the eCGI and neCGI. a eCGI was enriched around the TSS. b The eCGI was lowly methylated and conserved among

different tissues (samples), shown as the standard division of methylation levels among the different samples diminished as their distances to the

TSS decreased. c Motif enrichment analyses of the neCGI as compared to the eCGI

Zhou et al. BMC Biology           (2020) 18:85 Page 10 of 17



chromosome level with CpG, genes, transcriptions,

HMRs, histone codes, satellites, and TADs. We found

that cattle PMDs share features with those identified in

other species, especially those identified in human tis-

sues: localization in genomic regions with low GC con-

tents, low CGI density, low gene density, and lack of

active histone marks. Although PMDs have been associ-

ated with gene repression and inactive chromatin marks,

genes within tissue-specific PMDs did display tissue-

specific functions. Previous human results show that

PMDs are established within preformed TAD B com-

partments after cell lineage decision in cardiac myocytes

[65]. The higher order chromatin conformation is pro-

posed to be a regulatory mechanism guiding cell type-

specific establishment of CpG methylation and non-CpG

methylation signatures, like PMDs in TAD B compart-

ments and HMR in TAD A compartments, respectively.

Similarly, the endogenous bovine Hi-C contact maps un-

covered that TAD B compartments were often associ-

ated with PMDs in the cattle genome. Thus, we

hypothesize that a similar silencing mechanism may op-

erate in cattle PMDs during cattle tissue specification

and development.

HMRs

We detected large differences between cattle somatic tis-

sues in terms of HMRs. For example, the peak size of

non-TSS-HMR for the placenta was significantly larger

than those in sperm and normal tissues, while the peak

sizes of TSS-HMR were highly consistent, (~ 2000 bp)

among all tissue (Fig. 3a). This might indicate the dra-

matic difference of the placenta as compared to the

sperm and other somatic tissues and the importance of

the TSS-HMR throughout all tissues. We also classified

Fig. 6 Analysis of hypomethylated repeats. a Hypomethylated repeats were enriched around the TSS for different samples. b Analyses of the

repeats located in the TSS-HMR; observed/expected ratio of the repeats (y-axis) plotted for each repeat subclass; the size: the number of the

repeats located in the TSS-HMR. c Analysis of young Bov-A2 element insertions; SE_up: the upstream part of ancient repeats, SE_down: the

downstream part of ancient repeats. IE, the young Bov-A2 elements, which inserted more recently, thus split ancient repeats. The y-axis

represents the sequence divergences, thus age of repeats. BOV-A2Bov-A2. d NME8 and PBX4 as two examples for the Bov-A2 insertion in the

tissues with different TSS-HMRs
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genes into 5 groups according to their promoter location

relative to the TSS-HMR and studied their potential im-

pacts on gene regulation and genome evolution. By per-

forming correlation analyses between the paired genes’

expressions, we found the paired genes (twin-genes)

within TSS-HMR T2 would have more chances to be

co-expressed (Fig. 4d). Moreover, our results showed

that those paired genes were more consistent across

mammalian species. As for genes within the TSS-HMR

T3, i.e., with variable TSS or promoters, we found that

they had a high possibility of being regulated by tissue-

specific methylation of TSS-HMR. We used WGCNA to

study gene networks based on pairwise correlations be-

tween their expressions and identified tissue-specific

genes related to tissue functions. Combining with the

gene expression using the RNA-seq data, we found 32

genes’ tissue-specific HMRs were highly correlated with

their expression. The tissue-specific TSS-HMRs were

greatly enriched for putative binding sites of transcrip-

tion factors, which are known to have tissue-specific

function (Fig. 4i). Combined with gene expression using

the RNA-seq data, we identified tissue-specific gene ex-

pression correlated with tissue-specific HMR. Addition-

ally, using our WGBS data, we totally identified 50,023

eCGIs at a single-base resolution and validated 42.24%

of the total cCGI.

Common repeats

In germ cells like sperm, common repeats are normally

highly methylated. The conserved piRNA pathway has

been proposed to be important for recognizing and si-

lencing repeats in germ cells [66]. However, we still

found more than expected HMRs that overlapped com-

mon repeats, suggesting some individual elements can

evade piRNA-based silencing. Examining patterns of

HMR-associated repeats is very informative. One possi-

bility is that just like genes, young repeats contain pro-

moters or regulatory regions and/or their TF binding

and transcription activation can facilitate their evading

default methylation. Although most of Bov-A2 elements

follow the normal expectation, showing a negative cor-

relation between methylation level and age (represented

by their divergence from its consensus sequence), we de-

tected that some Bov-A2 elements were hypomethylated

in cattle sperm cells. Similar to the young Alu subfam-

ilies, which introduce binding sites for transcription fac-

tor SABP in human sperm [67, 68], we found some Bov-

A2 elements inserted into genes like NME8 and PHX4

that function in spermatogenesis or transcription regula-

tion. Through examining these Bov-A2 insertions, we

found the binding sites for multiple AZF1 (azoospermia

factor 1), which have an essential meiotic function in fly

and human spermatogenesis [69]. Diseases associated

with AZF1 include azoospermia and varicocele [70]. As

the introduction of TFBS by active Bov-A2 insertions

could change the promoter structure, we hypothesize

that Bov-A2 insertions in sperm cells may be involved in

specific regulation of functional genes.

Future directions and limitations

Genome editing technologies, CRISPR/Cas9, can directly

target and edit individual methylation sites and therefore

determine the exact function of DNA methylation at a

specific site, as reviewed recently [71]. It is noted that

because our data were produced from bulk cells, we

were unable to determine the impact of cell composition

on our results. Based on 64 human reference cell types,

the human GTEx Consortium recently used the xCell

method [72] to characterize the effect of cell type het-

erogeneity on analyses from bulk tissue [55]. Estimated

cell type abundances from bulk RNA-seq across tissues

reveal the cellular specificity of genetic regulation of

gene expression across human tissues [73]. Due to lim-

ited resources, such as cattle reference cell types, future

studies will be warranted to test these hypotheses and

estimate their effects.

Conclusions

In summary, using conventional WGBS and RNA-seq,

we provided baseline methylation and transcription pro-

files for cattle somatic cells at a single-base resolution.

We characterized the DNA methylome and assessed

DNA methylation patterns. We reported rich data sets

of PMDs and HMRs across different tissues and detected

that some of them were correlated with tissue develop-

ment. Our study contributes to the understanding of

cattle DNA methylation patterns and provides founda-

tional information for further investigations.

Methods
Sample collection, DNA and total RNA isolation, and

sequencing

In this study, we collected 16 tissue types under the ap-

proval of the US Department of Agriculture, Agricultural

Research Service, Beltsville Agricultural Research Cen-

ter’s Institutional Animal Care and Use Committee

(Protocol 16-016). Tissues were collected, snap frozen in

liquid N2 immediately after excision, and kept at − 80 °C

until use. Ten published samples were described before

[24], including parenchymal tissue from the mammary

glands, whole blood cells, and prefrontal cortex of the

brain collected from two healthy adult Holstein cows

(3–4 years old; one lactating and one non-lactating).

Semen straws were collected twice from two fertile Hol-

stein bulls. Among the newly generated data, we col-

lected additional samples from the same two Holstein

cows and their similar relatives based on a similar list as

described before (Harhay et al., 2010). Genomic DNA
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for lung tissue was isolated according to the QIAamp

DNA Mini Kit protocol (QIAGEN, Valencia, CA, USA).

The quality of DNA samples was evaluated using the

2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA) including degradation, potential RNA con-

tamination, purity (OD260/OD280), and concentration

using a spectrophotometer (NanoDrop Technologies,

Rockland, DE) to meet the requirements for library con-

struction. We extracted the total RNA from snap-frozen

tissues using TRIzol (Invitrogen, Carlsbad, CA, USA) ac-

cording to the manufacturer’s instructions. We mea-

sured the quantity and purity of RNA using a NanoDrop

8000 Spectrophotometer (NanoDrop Technologies, Wil-

mington, DE) and Agilent 2100 Bioanalyzer System (Agi-

lent Technologies). We contracted Novogene USA

(Sacramento, CA, USA) to sequence these RNA samples

using the Illumina HiSeq 2000 platform (Illumina, San

Diego, CA) with paired-end (100 to150 bp) reads (Add-

itional file 2: Table S1).

WGBS library construction, sequencing, and identification

of methylcytosine

The qualified genomic DNA from all samples were used

to construct libraries. Briefly, 3 μg of genomic DNA

spiked with unmethylated lambda DNA was fragmented

into 200–300 bp using a Covaris S220 (Covaris, Inc.,

Woburn, MA, USA), followed by terminal repairing and

A ligation. Different cytosine methylated barcodes were

ligated to sonicated DNA for different samples. The

DNA bisulfite conversion was performed using the EZ

DNA Methylation Gold Kit (Zymo Research, Irvine, CA,

USA). Then, single-stranded DNA fragments were amp-

lified using the KAPA HiFi HotStart Uracil + ReadyMix

(2 X) (Kapa Biosystems, Wilmington, MA, USA). The li-

brary concentration was quantified using a Qubit 2.0

fluorometer (Life Technologies, Carlsbad, CA, USA) and

qPCR (iCycler, BioRad Laboratories, Hercules, CA,

USA), and the insert size was checked using the Agilent

2100. To decrease the batch effect, the libraries for one

sample were balanced, mixed with other libraries with

different barcodes, and sequenced on different lanes of a

HiSeq X Ten platform to generate 150-bp paired-end

reads by Novogene (Novogene, Beijing, China).

Programs FastQC v 0.11.2 (FastQC) and Trim Galore

v 0.4.0 (Trim Galore) were used to generate sequence

quality reports and to trim/filter the sequences, respect-

ively. For each sample, high-quality reads were obtained

after trimming low-quality bases and the adapter se-

quences. The cleaned data for each sample were merged

and aligned to the reference genome (ARS-UCD1.2)

using bowtie2 under the Bismark software (0.14.5) with

the parameters -p 3 -N 1 -D 20. The methylcytosine in-

formation was extracted using the bismark_methylation_

extractor after deduplicating the duplication reads. The

first 6 bp were ignored for the paired-end reads to de-

crease the potential effects of severe bias toward non-

methylation in the end-of-reads caused by end repairing.

Genome sequencing library construction, sequencing, and

identification of SNP

The lung DNA samples of the two Holstein cows were se-

quenced using the Illumina NextSeq550 platform, with the

Nextera library preparation and sequence generation ac-

cording to the manufacturer’s protocols. NGSQCToolkit

v2.3.3 was used to trimmed adapter sequences and low-

quality reads. All the clean reads were mapped on the refer-

ence genome (ARS-UCD1.2) using BWA v0.7.12 software.

We only used the reliable mapped reads for SNP calling.

The SNP positions within the aligned reads compared to

the reference genome were detected using the pileup func-

tion in SAMtools v.1.7 utilities. SNPs were predicted with a

minimum mapping quality (−Q) of 20 and with the mini-

mum and maximum read depths of 3 and 100, respectively.

RNA sequencing read alignment and assembly

The total RNA was first treated with DNase I to remove

residual DNA. Then, poly(A) mRNA was isolated using

beads with oligo(dT). The purified mRNA was first frag-

mented using the RNA fragmentation kit. First-strand

cDNA synthesis was performed using random hexamer

primers and reverse transcriptase. After the first strand

was synthesized, a custom second-strand primer and

strand synthesis buffer (Illumina) were both added,

followed by dNTPs, RNase H, and DNA polymerase I to

start the second-strand synthesis. Second, after a series

of terminal repair, A ligation, and sequencing adaptor

ligation, the double-stranded cDNA library is completed

through size selection and PCR enrichment. Then, the

cDNA libraries were prepared according to Illumina’s

protocols and sequenced on the Illumina platform in

Novogene USA, Sacramento, CA.

NGSQCToolkit v2.3.3 was used to trimmed adapter se-

quences and low-quality reads. The clean reads were

aligned on the reference genome (ARS-UCD1.2) [51]

along with annotated genes in the NCBI (ftp://ftp.ncbi.

nlm.nih.gov/genomes/all/GCF/002/263/795/GCF_002263

795.1_ARS-UCD1.2) using the HISAT2 v2.1.0 with the

default parameters. The spliced reads were initially assem-

bled to transcripts using the StringTie v1.3.3 software for

each sample. Transcripts from all samples were merged to

create a consensus reference transcriptome. The transcript

per million mapped reads (TPM) and raw counts that

mapped to the corresponding transcripts were estimated

using the StringTie program.

CpG island identification and validation

We used a distance-based algorithm to identify single-

base resolution for CpG island on the cattle genome,
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following the CpGcluster software as described [17]. We

calculated the methylation level of each computer-

predicted CpG island (cCGI) for each sample. Only the

CpG island with at least 5 CG detected with more than

5 × coverage for each sample was used for further ex-

perimental validation. The eCGI was defined as methyla-

tion level less than 30% in at least one sample.

Histone mortification localization analysis for the cattle

liver

ChIP-seq data for the cattle liver was downloaded from

the Gene Expression Omnibus database with the acces-

sion number PRJEB6906. The sample preparation pro-

cedure can be found in [74]. NGSQCToolkit (version

2.3.3) software was used to filter the adapters and low-

quality reads. Then, the qualified reads were aligned to

the reference genome (ARS-UCD1.2) using bowtie2 (ver-

sion 2.3.3; -N 0 -L 22 -i S,1,1.15 –dpad 15 -gbar 4), and

peaks were called using MACS (version 1.4.2; –keep-dup

1 –wig –single-profile –space = 10 –diag) with default

parameters.

Identification of TAD using Hi-C data

The Hi-C data was retrieved from NCBI Sequence Read

Archive under the accessions: SRR5753600, SRR5753603,

and SRR5753606. These Hi-C libraries were prepared from

the sequenced Hereford cow (Dominette) lung tissue and

sequenced on an Illumina HiSeq 4000. NGSQCToolkit

v2.3.3 was used to trimmed adapter sequences and low-

quality reads. The clean reads were mapped on the refer-

ence genome (ARS-UCD1.2) using BWA software with pa-

rameters of mem -A1 -B4 -E50 -L0 -t 16. Hi-C matrices

were imported to HiCExplorer v3.4.1 with the applications

hicFindTADs and hicPlotTADs. Interaction frequency

matrices at 50-kb resolution were transformed into z-score

matrices based on the distribution of contacts at given gen-

omic distances. The false discovery rate (FDR) was used to

correct P values with threshold of 0.01. hicPlotTADs was

used to plot specific regions for the interaction frequency

matrices in combination with TAD boundary start and stop

positions.

PMD and HMR identification

We utilized the methpipe software (http://smithlabre-

search.org/downloads/methpipe-manual.pdf) to identify

PMD by applying an HMM model to each sample. To

detect the large PMDs accurately, we used different win-

dow sizes (5 kb, 10 kb, 20 kb, 50 kb) to generate the

PMD localizations and examined the result by randomly

selected visualization as recommended by the manual of

the methpipe software. Finally, we chose 10-kb window

size for all the samples. The HMR was identified follow-

ing the manual of the methpipe software with the default

parameters.

Global comparison between methylomes of different

samples

The common CGs with depth greater than 10 × among

all samples were used for global comparison between

each of the two sample pairs. Detections of DMC and

DMR were applied using an R package (methykit, R ver-

sion 3.3.3). The DMCs were defined as the methylation

difference greater than 30% and q value < 0.05. The

DMRs were defined as the average methylation differ-

ence greater than 30% and q value < 0.05 using a 500-bp

window size. To receive more accurate DMRs, we only

selected the DMRs that supported by at least 5 DMCs in

the same direction for analyses (Additional file 2: Table

S3 Column D). To call the tissue-specific DMRs, we

ranked all DMRs by their frequencies derived from all

pairwise comparisons. We then chose the top 0.01~0.3%

of the DMRs (by considering the GO enrichment re-

sults) and merge them into the final nonredundant

tissue-specific DMRs, which showed significant differ-

ences between the tissue to all other samples.

The genome structure annotation files for genes and

repeats were downloaded from the NCBI database (ftp://

ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/263/795/

GCF_002263795.1_ARS-UCD1.2) [51]. The promoter re-

gions were defined as ± 1000 bp around the transcript

start sites. The methylation levels for each element in

different genomic features were calculated as the average

methylation level of the CGs with at least 5 × coverage.

Only the elements that met the following criteria were

used for further analysis: at least 10% CG detection rate

for elements with more than 50 CGs and at least five

CGs detected for elements with fewer than 50 CGs. R

packages were used to plot the comparison results.

Gene function analysis

Gene functional annotation analyses were applied using

the online DAVID software. The Fisher exact test was

used to measure gene enrichment in annotation terms. P

values were corrected by FDR to search for significantly

enriched terms. We used Homer software to detect

enriched motifs within the tissue-specific TSS-HMR of

genes. The MEME online software (http://meme-suite.

org/) [75] was used to enrich the significant different

motif between the neCGI and eCGI.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12915-020-00793-5.

Additional file 1: Figure S1. Comparison of methylation distribution

between two different cattle genome reference assemblies using a

sperm sample as an example. Blue line: UMD3.1.1; Green line: ARS-

UCD1.2, from top left to down right: chr1-chr29. Figure S2. Comparison

of methylation distribution between two different cattle genome refer-

ence assemblies using chr28 as an example for all samples. Blue line:
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UMD3.1.1; Green line: ARS-UCD1.2. Figure S3. Principal component ana-

lysis (PCA) for all samples using DNA methylation levels of 500 bp win-

dows: a, PC1 vs. PC2; b, PC1 vs. PC3; and c, PC1 vs. PC4. Figure S4.

Correlation analyses for all samples using DNA methylation. Figure S5.

Correlation analyses of DNA methylation using different window size. 20

K, 100 K, 500 K and 1 M refer to window sizes of 20 kb, 100 kb, 500 kb and

1 Mb, respectively. Figure S6. Standard division of methylation level

across all samples. We defined methylation conserved and variable re-

gions as the bottom and top tails, respectively. Figure S7. Genome fea-

tures enrichment in hypermethylation conserved regions, including genic

region and neCpG island. Figure S8. Gene ontology analyses for the

genes located in the methylation level conserved and variable regions.

(a) Genes located in the hypermethylation conserved regions; (b) Genes

located in the sperm hypomethylation variable regions; (c) Genes located

in the sperm hypermethylation variable regions. Figure S9. Genome fea-

tures enrichment in hypomethylation conserved regions, including pro-

moters, eCpG islands, and tRNA genes. Figure S10. Genome features

enrichment in methylation variable regions, including promoter and

eCpG island. Note: the enrichment of the cCpG island is mainly caused

by eCpG island. Figure S11. GO analysis for the genes overlapped with

methylation variable regions. Figure S12. Heatmap analysis using the

methylation variable regions. Figure S13. Comparison of gene expres-

sions between genes located in the PMD and non-PMD. Figure S14. Pla-

centa HMDs, as compared to placenta PMDs, were enriched for the

gene-related features including genic regions, promoters, eCGI and

RefGenes. Figure S15. Comparison of methylation patterns for the gene

and the CGI regions between HMD and PMD. Placenta HMDs showed

significantly lower methylation patterns around the gene TSS and the

CGI, while placenta PMDs were almost indistinguishable from the flanking

backgrounds because of their low methylations. Figure S16. Comparison

of HMR in terms of location and size among the different clusters. Figure

S17. Genome feature enrichment in the HMRs of different clusters. Fig-

ure S18. Liver (a) and kidney (b) genes with conserved methylated TSS-

HMR between cattle and human were involved in basic biological pro-

cesses, like RNA processing, protein folding and cell cycle. Figure S19.

Comparison of the TSS-HMR core region and the TSS-HMR two flank re-

gions in terms of (a) the CG density; (b) standard deviations of the

methylation level; (c) DMC distribution; and (d) methylation level. Figure

S20. WGCNA analysis for the RNA sequencing data. (a) cluster dendro-

gram of the gene expression; (b) heatmap plot for the expression of tis-

sue specific high expression genes. Figure S21. Genome distribution of

the eCpG island. (a) Distribution of the eCpG island on the 29 cattle chro-

mosomes. (b) Genomic features enrichment in eCpG island, including

promoter (1000 bp around the TSS) and the first exon. Figure S22. The

methylation pattern between the eCGI and the neCGI. (a) heatmap of the

cCGI methylation level for all samples; the blue bar: eCGI; the green bar:

neCGI; (b) comparison of the methylation patterns between the eCGI and

the neCGI. Figure S23. Correlation analysis for eCGIs with (a) gene con-

tents and (b) chromosome lengths. Figure S24. Comparison of the dis-

tribution on chromosomes between eCGI and the neCGI; red line: eCGI;

green line: neCGI. Figure S25. CT heterozygote rate for the two animals

in different CGIs; CT heterozygote represent CT and GA heterozygote

when consider the two strands of DNA. Figure S26. Methylation level

distributions for different genome features and samples. Figure S27. Dis-

tributions of 4389 common repeats located in the TSS-HMR.

Additional file 2: Table S1A. Sample information for the WGBS; Table

S1B. Sample information for the RNA sequencing; Table S1C. Sample

information for the whole genome sequencing; Table S2. Comparison

of methylation statistics between two different cattle reference

assemblies. Table S3. DMC and DMR number for each comparison pairs.

Please note that the numbers, which may be affected by different

common data amount for each tissue. Table S4. PMD information for

different samples. Table S5. Placenta PMD percentages and genes

located in the shared and lineage-specific placenta PMDs between cattle

and human. Table S6. GO analyses for genes shared or specific in PMDs

between human placenta and cattle placenta. Table S7. Gene ontology

analysis for genes overlapping with cattle placenta HMD. Table S8. GO

analysis for the genes overlapped with cattle placenta PMDs. Table S9.

Information of 16 non-blood DNA methylation level drops. Table S10.

Differentially methylated TSS-HMR between human and cattle. Table

S11. Gene ontology analysis for genes totally located in the HMR. Table

S12. common twin genes in one HMR core region between cattle and

human. Table S13. Gene ontology analyses for genes specifically high

expressed in different tissues. Table S14. Information for experimentally

supported CpG Islands.
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