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Abstract Introduction

The success of unattended manufacturing depends largely on
control mechanisms that monitor the machining state and
take actions to rectify unsatisfactory performance. Direct
sensing methods like quality inspection lack on-line
capability, whereas indirect methods using sensors can be
thwarted by noise and changes in operating conditions.
While knowledge about these changes exists, it does not
generally correspond with an available sensor. Two
different techniques are applied to the problem of
integrating data from multiple sensors in the manufacturing
environment: one featuring the integration of fuzzy logic
and neural networks, and one using a probabilistic neural
network. These techniques are applied to monitor and
diagnose tool wear in unattended milling machines - an
application with implications toward extension to other
manufacturing machines.

Data from spindle motor current, acoustic emission, and
vibration gathered in experiments on a Matsuura machining
center are used as input to the two systems. In the case of
the fuzzy-neural system, clusters for tool wear are
established using the dendrogram method, then membership
functions for these clusters are learned by a neural network.
These clusters can be interpreted as fuzzy rules which are
then applied to tool wear diagnosis using other principles
of fuzzy logic. For the probabilistic neural network
system, a network with fixed size is used for clustering of
data and estimating the probability density function using a
self-organizing probabilistic neural network (SOPNN).

Both systems show promising results with regard to tool
wear. The advantage of the fuzzy neural-fuzzy system is
that its classification seems to exhibit high reliability due
to its redundant structure and efficiency of the preclustering.
The advantage of the probabilistic network, on the other
hand, is that it allows the use of rigorous probabilistic
analysis, supports Bayesian network models and provides a
means for the continuous updating of the density functions.
The neural-probabilistic system has been tested
successfully on data from an industrial power generation
plant for application to sensor validation.

The need of manufacturers to produce inexpensive, quality
products has resulted in increasing demand for unattended
and/or automated manufacturing systems. One problem in
automating machining is how to deal with common
malfunctions and disturbances such as tool wear, chatter,
and tool breakage. Tool wear is a process which is very
difficult to deal with for a variety of reasons. It is not a
linear process: a tool wears fast initially, then at a moderate
rate for a longer period of time, and finally at an accelerated
rate until total failure. To complicate things, tool life is
not constant under the seemingly same operating
conditions. Many factors affect the operating life up to the
wear limit: slight variations in the material of the
workpiece, the degree of inclusions in the workpiece and
slight temperature changes are but a few. To avoid costly
damage due to tool wear or breakage, manufacturers use
conservative operating procedures to prevent these
malfunctions (Rangwala and Dornfeld, 1989). However,
these result in less efficient and more costly production
because of premature tool replacement and excessive
machine downtime.

To increase operating efficiency, manufacturers can consider
the use of sensors to diagnose tool status and control the
system on-line. Since each sensor alone cannot reliably
render the state of a tool in changing cutting conditions,
integrating the information of various sensors becomes the
major challenge. By using partly redundant information this
sensor fusion can provide data for decision making about
the process that will yield accurate diagnostic predictions
and early warning of incipient failures. Early research
focused on extracting relevant features from sensor data and
inferring the tool status; others (Agogino, 1988, 1990)
proposed the use of expert systems and sensor fusion using
probabilistic influence diagrams. However, these
approaches suffer from a high sensitivity to changing
cutting conditions and varying sensor integrity and
precision.

This paper summarizes two approaches to the problems
outlined above: (1) a hybrid fuzzy-neural system and (2) 
system using a probabilistic neural network which can be
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integrated into a Bayesian network or Influence Diagram.
Preliminary results are compared and key questions that
will drive future research discussed.

Neural-Fuzzy Reasoning

A neural-fuzzy approach is considered because it combines
the advantages of both fuzzy logic and neural networks.
Fuzzy logic can be useful in describing systems which are
difficult to model and measure precisely, such as
manufacturing processes. Reasoning in fuzzy logic is
performed with IF-THEN relations and fuzzy membership
functions. Initial intuition or experience and later tuning is
necessary in most cases to achieve reasonable results. This
becomes increasingly difficult with more sensors because
higher dimensional membership functions are not easy to
identify. Neural networks are used to learn the fuzzy
relations by a simple mapping from clustered input to
membership value, requiring no knowledge about the fuzzy
function itself.

The procedure is divided in several steps (Takagi, 1991).
First, the number of rules is determined by dividing the
training data into different groups using a standard
clustering method. The repeated use of a dendrogram finds
classification-distinct clusters utilizing the centroid method,
thus determining the number of rules. Next, the system is
trained with a perfect fit membership value (~t = 1) for the
cluster it belongs to and no fit (it = 0) otherwise. This part
resembles the IF portion of the fuzzy rule and can be
expressed as:

NNmem(Xl, x2, x3, ... Xk) is i i s 12i
where:

NNmem(Xl, 2, x3 . ... Xk) is the neural net into which

Xl - xkare fed

Ai is a fuzzy number relating to the cluster i that x 1 - Xk

belong to

~i is the membership value that is learned by this step
Xl - Xk are the k different data gathered from the sensors at

one time instance

Note that Ai is a fuzzy number with an unknown meaning.
It can be thought of as a combination of quantities of the
inputs, for example: acoustic emission at the table LARGE
and vibration at the spindle SMALL and spindle motor
current MEDIUM ...

Lastly, the THEN part of the rules is determined and the
amount of diagnosing value for each rule trained. This is

done by introducing as many additional neural nets as there
are rules. Hereby, partly redundant information is combined
it into a single justified value which has the effect of
smoothing the output. Spikes which appear in a pure
neural network are avoided. The categorization is therefore
also much more consistent. The inputs to these nets are the
sensor data; the output is the diagnosis for a rule. This
relation can then be expressed as:

Yi = NNi(Xl, x2, x3 .... Xk)
where:

Yi is the diagnosis value for a rule

NNi(xl, x2, 3 . ... x k) i s t he neural net f or rule i

The overall diagnostic output is obtained by taking the
weighted average of membership values with the diagnostic
value of each rule. The relation for the defuzzification for
the diagnosis can be expressed as follows:

B* - ~Yi[’ti

~i

where:

I]* = overall control value, in this case for tool wear
Ixi = membership value of rule i

This architecture is expressed in Figure 1.

dl~gn~

x I x 2 X3 "" Xk

Figure 1: Architecture or the neural-
fuzzy system
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SOPNN (Self-Organizing Probabilistic Neural Network)

For comparison, a probability-based approach has been
applied to the same data set using an algorithm designed by
Tseng [1991]. The particular algorithm used is a Self-
Organizing Probabilistic Neural Network, or SOPNN. This
is based in the work of Specht [1988], but differs in that K-
means clustering method is used to create a finite set of
distribution centroids producing a fixed size network. The
probability density function (pdf) of the system is then
modeled by a weighted sum of non-covariant multivariate
Gaussian probability distributions about the cluster
centroids with a common variance used to smooth the
distribution between dusters:

where:
n is the number of training points
k is the number of dusters
mk is the centroid of cluster k

nk is the number of points in cluster k

d is the dimension of the data space
is the smoothing variance

This method produces a joint distribution which can be
decomposed into conditional distributions used for detection
of both process failure and sensor failure. Kim et al. [1992]
have described a methodology for validation of sensor input
data useful in industrial power generation applications.
This method requires some preprocessing of data to
generate features which are then modeled with a joint pdf.
Knowledge of sensor failure modes is coupled to
conditional pdfs generated from this joint pdf to separate
data deviations generated by process faults from those
caused by sensor error. Explicitly reasoning about the
sensor is an essential part of applying knowledge based
techniques to on-line systems and one which has been aided
through the use of Ixlfs for process modeling. The SOPNN
method should prove valuable for the integration of
reasoning about sensor integrity in the manufacturing
environment.

Figure 2 is the neural representation of the SOPNN
system. Each set of four circled network subnodes
represents a cluster of data. The subnodes are used to
separate the input and output spaces to create the proper
conditional pdf’s used in diagnosis. Node inputs are derived
from the quadratic term in the above definition of the

ln(f(YIX))

X1 * ° ° XN IlXll2 y y2

~ Threshold 0i ~ Input joint

O Net input:]EjWjcXj O Input and output joint

Figure 2: SOPNN probabilistic-neural system
architecture

multivariate Gaussian pdf. The input data vector, X, is
compared to each cluster centroid. Two thresholds are
applied to this comparison: 0i, the norms of the data

clusters; and the norm of the input vector, IIXII 2. To form
the joint distribution, these data sets are augmented by the
one dimensional output variable, Y, and its appropriate
thresholds. The output of the network is properly scaled as
a post process to produce P(YIX).

Experimental Set-up

A Matsuura machining center was instrumented with five
sensors measuring spindle motor current and vibration and
acoustic emission at both the spindle and the table, sampled
at 250 Hz. Two features were extracted from each data
stream - the mean value and standard deviation within a
window of fifty sample points. With this instrumentation,
a series of machining operations was performed to establish
training data to diagnose tool wear. From each of these
operations, training sample sets of one hundred data points
were taken at five stages of tool wear. Duplicate test runs
using different tool inserts and workpieces were used to
create data for testing the results of training.
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Results

Fuzzy-Neural. The clustering algorithm of the neural-fuzzy
system identified 7 different clusters according to their
corresponding diagnosis values. The neural net for the
membership function (NNmem) was trained, using a 10-10-

7 net. NN1 - NN7 used a 10-10-5 net each for 10,000

epochs. 100 data points is only a fraction of the data
available (< 1%). Testing was done on a different set 
data also from 5 different time periods in the tool life. The
categorization of the diagnosis of the test run is displayed
in Figure 3, the respective membership values are shown
in Figure 4.

The system architecture divides the data properly into the
different diagnosis categories fresh tool, slightly worn tool,
half worn tool, considerably worn tool and tool at wear
limit. Snapshots of the tool wear are shown after 3 min.,
12 rain., 42 rain., 49 min., and 67 rain., respectively. The
degree of membership that is associated with the categories
is shown in the diagrams right below the diagrams for the
categories. The output node with the maximum
membership value was selected for categorization of the
tool wear class The membership is particularly crisp for a

tea a~

% ". A, It.
3.4 I~ 12.4 4~ ~.t 49 49.4 67 6L4

Figure 3: Categorization of the neural-
fuzzy system
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Figure 4: Membership values associated
with the categories

fresh and a worn tool. In between categorization is adequate.
For some of the values the system alternates between the
categories half worn tool and strong tool wear because this
time period is at an in between stage. The trend can be read
off correctly.

Based on the test data obtained so far the hybrid fuzzy-
neural system performs very well. It categorizes the
diagnosis properly and delivers higher membership values
for the categories that yield maximum membership values.
It renders low membership values for the other categories.

Probabilistlc-Neural: Clustering within the SOPNN was
done using two slightly different algorithms. The first used
random data presentation to seed the K-mean clusters with
the first k samples after which data is parsed into the
appropriate cluster by a simple distance measuring metric.
A second clustering method was used in an attempt to
reduce the number of clusters needed to provide adequate
diagnostic performance. Because the data had been divided
into five approximately discrete classification sample sets,
each diagnostic class was clustered independently. This is
similar in philosophy to the dendrogram method used in the
Fuzzy-Neural scheme which also separates clusters by
discrete classification; the original SOPNN algorithm was
designed for continuous data only and so was somewhat
handicapped in comparison.

Diagnosis within this probabilistic framework can be done
using one of several methods. For example, typical pattern
recognition methods can be used for discrete classification:
the conditional pdf for each class cluster set can be
integrated to get a class probability. For simplicity in a
multimodal environment, selecting the diagnosis with
maximum probability might be most appropriate. For this
application, an expected value method captures more of the
flavor of the system operation - tool wear is not by nature
discrete, so its diagnosis need not be discrete.

Training the system according to the original SOPNN
clustering algorithm (treating decision class as a continuous
variable) resulted in performance that varies strongly with
the number of clusters. Figure 5 shows the results of
testing the SOPNN system on data gathered from instances
of machine operation nominally the same as the training
data but removed two weeks from component calibration
and using different workpiece. In Case 1,250 clusters were
used to generate the probability distribution; performance is
reasonable given the different operating conditions. Case 2
is the result of reducing the number of clusters to 100;
Case 3, 50. Diagnostic performance shows an increase in
error resulting from the lower number of clusters used,
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Figure 5: Diagnosis of tool wear using
continuous classification clusters.

especially at the extremes of the diagnosis range. The effect
is that of averaging training instances, projecting all
clusters toward the overall centroid. Case 4 is the
performance of the system when tested on data taken from
the same operating conditions as the training data -
performance here is quite good.

The second clustering method, forcing diagnosis clusters to
be centered on discrete classifications, performed flawlessly
on data taken from similar operation to the training set,
shown as Case 1 of Figure 6. Generalizing the diagnosis to
the same tested conditions of Cases 1 - 3 of Figure 5, the
system performs poorly. The number of clusters for this
training method is generally a factor of ten fewer than that
used in the continuous case: Case 2 uses 10 clusters; Case
3, 50. Performance near the extremes of the range is greatly
improved since cluster centroids are constrained to be there,
but premature diagnosis of a worn tool largely obscures

Case l
¯ Case 2
¯ Case 3

¯ I ’ I " I " l " I "

0 100 200 300 400 500 600
Figure 6: Diagnosis of tool wear using

discretized classification clusters.

any gains made.

In both of the above tests, diagnostic error is unacceptably
high, rendering the performance differences due to network
size relatively insignificant. The SOPNN system using
discrete classification was applied to separate training and
testing data sets made by combining samples from the two
operating conditions. In this case, diagnostic performance
was again perfect, showing that the methodology is
extensible to more difficult classification tasks if adequately
trained.

Discussion

Perhaps the most highly touted aspect of neural systems is
their ability to generalize from training instances to
instances outside of their ’experience’. In our comparison,
neither method significantly outperforms the other when
confronted with data taken from operating conditions
outside of direct experience. For the SOPNN system
without discrete wear clustering, some generalization is
already being done in the sense that cluster centroids exist
where no samples have been taken; this seems to improve
performance when the system is applied to new instances,
but does not perform flawlessly on its own training data.
Using discrete classification clustering produces flawless
performance over the training data and like circumstances,
but seems somewhat brittle when applied in new
situations. Further investigation into incorporating fuzzy
membership function into continuous wear values should
be done. The SOPNN system is already capable of acting
on continuous values.

One fundamental issue in both systems is the selection of
features. Here, we chose mean and standard deviation of the
sensor readings as features. Others might be more efficient.
A related issue is the level of appropriate preprocessing of
the data. Data that are not preprocessed (and that were stored
for that purpose) should be used to check whether satisfying
results can be obtained. Different signal conditioning
techniques should also be pursued to see whether they
might render satisfactory results. The Fast-Fourier
Transform gives relevant features that might improve the
diagnostic capabilities, as indicated by past work
(Rangwala, 1988; Agogino, 1988). In the same spirit,
other techniques from speech recognition, such as
Cepstrum, could be used to identify and expand the feature
set.

Future work in the Neural-Fuzzy system is to investigate
the role of overlearning and overfitting as well as the size
of the neural net to determine to which extent they
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influence the result (Takagi, 1991). Alternate neural net
types should be tried. Recurrent nets are one possibility
which might recognize the trend of sensor readings with
regard to tool wear. One interesting application beyond tool
wear is predicting the spontaneous occurrence of chatter
which occurs when the geometry of the piece is not
straight and the feed rate cannot easily be determined. This
event might be more easily recognized by this type of
neural net than the standard type. Also interesting might be
the use of radial basis functions as activation functions.
They have an inherent fuzzy behavior which might make
them in particular useful for this type of problem.

Further investigations should look at the problem of noise
in learning. A backward elimination can be used that
considers only four out of five sensor readings and checks
the error after a given number of epochs. This can be done
in turn for all sensors and the error compared. Sensor
inputs that just contribute noise to the results can thus be
eliminated. Multisensor systems are highly sensitive to
the reliability of the sensor values upon which they are
based. Thus the integrity of the sensors defines the ability
of these systems to monitor operations and diagnose
failure. We see this as a motivation to extend this research
into on-line sensor validation building on previous work in
Bayesian influence diagrams [Tseng, 1991] and fuzzy
influence diagrams [Jain, 1990].

Algorithm efficiency is a prominent aspect of any
discussion of real-time or near real-time methodologies. In
our comparison, there really is no contest. The fuzzy-neural
scheme is perhaps an order of magnitude faster for
diagnosis. This efficiency may come at the expense of fault
tolerance for the probabilistic system can be easily extended
to diagnose and correct for sensor faults, something which
is a key research direction to pursue toward applying the
fuzzy-neural methodology. Overall, both methods provide
good results when applied in situations close to their
’experience’. Training and testing over a wider array of
operating situations is a crucial step in the assessment of
the ultimate usefulness of either scheme for manufacturing
applications.
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