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Abstract

Background

Low-density lipoprotein cholesterol (LDL-C) is a target for cardiovascular prevention. Con-

temporary equations for LDL-C estimation have limited accuracy in certain scenarios (high

triglycerides [TG], very low LDL-C).

Objectives

We derived a novel method for LDL-C estimation from the standard lipid profile using a

machine learning (ML) approach utilizing random forests (the Weill Cornell model). We com-

pared its correlation to direct LDL-C with the Friedewald and Martin-Hopkins equations for

LDL-C estimation.

Methods

The study cohort comprised a convenience sample of standard lipid profile measurements

(with the directly measured components of total cholesterol [TC], high-density lipoprotein

cholesterol [HDL-C], and TG) as well as chemical-based direct LDL-C performed on the

same day at the New York-Presbyterian Hospital/Weill Cornell Medicine (NYP-WCM). Sub-

sequently, an ML algorithm was used to construct a model for LDL-C estimation. Results

are reported on the held-out test set, with correlation coefficients and absolute residuals

used to assess model performance.
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Results

Between 2005 and 2019, there were 17,500 lipid profiles performed on 10,936 unique indi-

viduals (4,456 females; 40.8%) aged 1 to 103. Correlation coefficients between estimated

and measured LDL-C values were 0.982 for the Weill Cornell model, compared to 0.950 for

Friedewald and 0.962 for the Martin-Hopkins method. The Weill Cornell model was consis-

tently better across subgroups stratified by LDL-C and TG values, including TG >500 and

LDL-C <70.

Conclusions

An ML model was found to have a better correlation with direct LDL-C than either the Friede-

wald formula or Martin-Hopkins equation, including in the setting of elevated TG and very

low LDL-C.

Introduction

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of worldwide morbidity

and mortality [1]. In the United States, annual mortality from ASCVD exceeds 800,000 deaths,

while greater than 700,000 new cerebrovascular events occur annually, with an estimated cost

of $351 billion [2]. Elevated low-density lipoprotein cholesterol (LDL-C) has been extensively

validated as a major risk factor for the development of ASCVD [1]. Reduction in LDL-C has

been shown to improve outcomes both within primary and secondary prevention cohorts [3,

4]. Multiple national and international clinical practice and societal guidelines, such as the

American Heart Association/American College of Cardiology (AHA/ACC), European Society

of Cardiology (ESC) and the Canadian Cardiovascular Society (CCS) consider LDL-C lower-

ing as a primary target for both primary and secondary prevention [5–7]. In addition, contem-

porary data from novel lipid-lowering drug therapies show improved outcomes with

aggressive LDL-C lowering beyond the traditional thresholds advocated for by current guide-

lines [8–11]. More recently, there has been a growing emphasis on residual cardiovascular risk

in the setting of adequately controlled LDL-C levels, especially in the setting of elevated triglyc-

erides [12]. As such, the clinical implications of LDL-C necessitate aiming for the most accu-

rate estimates.

Traditionally, LDL-C has been estimated using the Friedewald formula, developed in 1972

on a cohort of 448 patients [13]. The equation estimates LDL-C as (total cholesterol [TC]) −
(high-density lipoprotein cholesterol [HDL-C]) − (triglycerides [TG] / 5) in mg/dL [13]. A fac-

tor of 5 for triglycerides: very low-density LDL (TG: VLDL-C) was used for ease of computa-

tion in an era prior to the currently accepted LDL-C thresholds (Grundy, 2004). The Lipid

Research Clinics Prevalence Study provided evidence of significant variance in the TG:

VLDL-C ratio amongst individuals [14]. The Friedewald formula is particularly inaccurate for

patients with low LDL-C levels or high triglycerides [15, 16]. To overcome these inaccuracies,

in 2013, Martin et al. provided the Martin-Hopkins method for LDL-C estimation. The equa-

tion is (TC)–(HDL-C)–(TG/adjustable factor), where the adjustable factor stands for the

strata-specific median TG: VLDL-C ratios [17]. The Martin-Hopkins method has been vali-

dated in multiple national and international trials [18–20]. This novel method has helped re-

categorize patients who were previously undertreated and is currently the method used for

LDL-C estimation at multiple clinical laboratories [21]. However, the Martin-Hopkins equa-

tion was developed based on traditional linear regression analysis, and although it outperforms

the Friedewald formula, there remain inaccuracies, especially at lower LDL-C estimates [22].
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The accepted reference method for lipoprotein fraction measurement is the beta-quantifica-

tion (BQ) method, which is possible in a limited setting but not suitable for mass screening

due to its cost and labor-intensive nature. Machine learning (ML) utilizes sophisticated mathe-

matical representation for the construction of inferential and predictive models. The use of

ML has been shown to improve modeling and outcomes prediction in multiple domains

within cardiovascular medicine [23, 24]. In an effort to further improve LDL-C estimation

in this era of precision medicine, we derived a novel method for LDL-C estimation from

the standard lipid profile using an ML approach based on the random forests algorithm (the

Weill Cornell model). We compared the correlation between the Weill Cornell model to mea-

sured direct LDL-C along with the Friedewald and Martin-Hopkins methods for LDL-C

estimation.

Methods

The study sought to develop and subsequently validate a novel approach for the estimation of

the serum LDL-C using ML-based random forests applied to routine cholesterol measure-

ments, then compare its performance to the Friedewald formula and the more contemporary

Martin-Hopkins equation.

Study population

The study cohort comprised of a convenience sample of consecutive standard lipid profile

samples (with the directly measured components of TC, HDL-C, and TG) as well as corre-

sponding directly measured LDL-C values, performed between August 31st, 2005 and January

31st, 2019 for clinical indications at the New York-Presbyterian Hospital/Weill Cornell Medi-

cine (NYP-WCM) inpatient and outpatient units across New York City and its boroughs.

Inclusion criteria included determination of directly measured components of a standard lipid

profile (TC, TG, HDL-C) as well as directly measured LDL-C on the same day in order to

avoid day-to-day variations in cholesterol particles while comparing the calculated LDL-C

value to the direct LDL-C. Further, we excluded lipid profiles with missing values for TC,

HDL-C or TG. Data were extracted from the electronic health record (EHR) system using the

Architecture for Research Computing in Healthcare (ARCH) program, a suite of tools and ser-

vices offered by the Research Informatics team within NYP-WCM’s department of Informa-

tion Technologies & Services [25]. Since this study did not include personally identifiable

information (PII), it did not constitute human subjects research and was deemed exempt from

Institutional Review Board (IRB) review.

Laboratory testing

Direct serum LDL-C measurement was performed using the Siemens ADVIA Chemistry XPT

systems (Tarrytown, NY) at the NYP-WCM clinical laboratory. The clinical laboratory at

NYP-WCM is regulated under the New York State Department of Health and is accredited by

the College of American Pathologists (CAP). The assay was calibrated every 14 days and qual-

ity control measures followed government regulations or accreditation requirements. The

assay was linear, measuring values from 8.0–1,670.0 mg/dl (0.21–43.25 mmol/L) with intra-

assay coefficients of 0.4–0.5%. The limit of blank (LoB) for the ADVIA Chemistry assay was

0.1 mg/dL while the limit of detection (LoD) was 8.0 mg/dL. Serum total cholesterol, triglycer-

ides and HDL-C were also measured using the Siemens ADVIA Chemistry XPT systems (Tar-

rytown, NY). The reportable range for total cholesterol was 10–1,350 mg/dl (0.55–74.93

mmol/L), and the assay was calibrated every 60 days, with 3 levels of quality control material

that were analyzed twice daily. For triglycerides, similar calibration and quality control
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standards were used. The reportable range for triglycerides was 10–1,100 mg/dl (0.55–61.05

mmol/L). For HDL-C, the assay was calibrated every 30 days, quality control measures were

run twice daily, and the reportable range of HDL-C was 5–230 mg/dL (0.28–12.77 mmol/L).

The ADVIA chemistry system assays for total cholesterol, direct LDL-C, triglyceride, and

HDL-C are traceable to the National Cholesterol Education Programs / Centers for Disease

Control (NCEP/CDC) reference method via patient sample correlation. The Friedewald and

Martin-Hopkins estimated LDL-C values were calculated using the established and published

formulas [13, 17].

Machine Learning (ML)

ML analysis was performed using the application programming interface (API) of Scikit-learn

[26]. A random forest model was constructed in order to predict the LDL-C value based on

the values of the measured TC, TG and HDL-C (available through a standard lipid profile sam-

ple). The directly measured LDL-C served as the ground truth label. Random forest is a com-

monly used form of supervised learning that is employed for both classification and regression

tasks. Random forests utilize tree representation in order to solve a problem wherein each leaf

node corresponds to a class label. This algorithm was employed due to its state-of-the-art accu-

racy; interpretability; and lastly, its high degree of internal optimization compared with a rela-

tively modest computational cost.

Overall, the original dataset was randomly split into a training (80%) and a held-out test set

(20%). The training set was further divided into a derivation cohort (80%) and an interval vali-

dation cohort (20%), with results reported on the test set in order to confirm the validity of the

findings. The model’s hyper-parameters (number of nodes and depth of each tree) were fine-

tuned using a randomized search with 10-fold cross-validation. During cross-validation, the

training data was divided into equally sized subsets with training occurring on all but one of

the subsets while internal validation was performed on the remaining subset. This process was

repeated iteratively; i.e. in the case of 10-fold cross-validation, this step was repeated 10 times.

Finally, the correlation between direct LDL-C and estimated LDL-C using the developed

model (the Weill Cornell model) was evaluated, and subsequently compared to that of the

Friedewald formula and Martin-Hopkins equation.

Statistical analysis

Patient-level baseline clinical characteristics were collected for the study cohort using ICD-10

codes (E78.0–4 for hyperlipidemia, I10- I16 for hypertension, and I25.1 or I25.7 for coronary

artery disease). Frequencies and proportions were calculated for categorical variables and

means with standard deviations were calculated for continuous variables. All clinical data were

analyzed on an aggregate basis, and at no point were individual patient comorbidities extracted

or viewed. Correlation coefficients were used to compare model performance in predicting

LDL-C value for each method. Subgroup analysis was performed with LDL-C and TG levels

stratified according to ranges specified by the 2018 ACC/AHA Cholesterol guideline docu-

ment [27]. Absolute residuals between subgroups across the 3 methods (the Weill Cornell

model, Friedewald formula and the Martin-Hopkins equation) and the directly measured

LDL-C level were compared using a paired Student’s t-test, which provides both a measure of

magnitude difference as well as directionality of the difference between the method and the

ground truth direct LDL-C. Finally, LDL-C subgroup reclassification using the Weill Cornell

model and compared to Friedewald and Martin-Hopkins method was performed using two by

two tables. A one-tailed p-value of less than 0.05 was considered significant. All statistical anal-

ysis was performed using R version 3.5.0.
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Results

Between August 31st, 2005 and January 31st, 2019, there were 17,500 standard lipid profile sam-

ples paired with same-day direct LDL-C measures, performed on 10,936 unique individuals

(4,456 female subjects; 40.8%) ranging in age from 1 to 103 (Table 1). 34.1% percent of patients

from whom samples were drawn had been diagnosed with hypertension, 38% had been diag-

nosed with hyperlipidemia, and 12.8% had been diagnosed with coronary artery disease.

Within the extracted samples, the mean direct LDL-C was 95.5 mg/dL and the mean triglycer-

ide level was 59 mg/dL (Table 1).

Across all LDL-C levels, the Weill Cornell model exhibited a better correlation with direct

LDL-C compared to the Friedewald formula or the Martin-Hopkins equation. Specifically, the

correlation coefficient between the estimated and measured LDL-C value was 0.982 for the

Weill Cornell model, compared to 0.950 for Friedewald formula and 0.962 for the Martin-

Hopkins equation (Fig 1). In subgroup analysis, the Weill Cornell model was consistently

superior across subgroups stratified by LDL-C and TG values, including TG>500 and LDL-C

<70 (Table 2). Importantly, the magnitude of improvement was highest in the LDL-C >190

mg/dL strata (mean difference of -9.18 mg/dL compared to Friedewald formula and -8.81 mg/

dL compared to Martin-Hopkins equation), while the Weill Cornell model was better at very

low LDL-C levels (mean difference of -3.82 mg/dL compared to Friedewald and -1.84 mg/dL

compared to Martin-Hopkins). Further, the Weill Cornell model showed improved perfor-

mance compared to the Friedewald and Martin-Hopkins equations across triglyceride sub-

groups, with the largest magnitude of improvement in the triglyceride range of>500 mg/dL

(mean difference of -27.17 mg/dL compared to Friedewald and -4.44 mg/dL compared to Mar-

tin Hopkins). Fig 2 shows the scatter plot of estimated LDL-C vs. direct LDL-C stratified by

the LDL-C subgroup, while Fig 3 shows the scatter plot stratified by triglyceride values. The

correlation coefficient for the Weill Cornell model was 0.933, compared to 0.882 for Friede-

wald and 0.876 for Martin-Hopkins, in the LDL-C range of>190 mg/dL, while the correlation

coefficient was 0.998 for the Weill Cornell model, compared to 0.942 for Friedewald formula

and 0.901 for Martin-Hopkins equation, in the triglyceride range of>500 mg/dL.

In terms of reclassification, the Weill Cornell model resulted in the improved reclassifica-

tion of LDL-C values across guideline-determined LDL-C thresholds compared to the Friede-

wald formula and Martin-Hopkins equation (S1 Table). For instance, there were 18 instances

in the validation cohort where the Weill Cornell model correctly predicted an LDL-C in the

Table 1. Patient-level baseline characteristics of the study cohort.

Clinical Variable Value

Age in years (mean ± standard deviation) 57.5 ± 16.9

Female (%) 40.8

Mean height (in centimeters) 170.2

Mean weight (in kilograms) 80.2

Hyperlipidemia (%) 38.0

Hypertension (%) 34.1

Coronary artery disease (%) 12.8

Lipid particle Value in mg/dL (mean ± standard deviation)

Total cholesterol 171.0 ± 62.2

High-density lipoprotein cholesterol (HDL-C) 60.5 ± 3.5

Triglyceride 59.0 ± 33.9

Direct low-density lipoprotein cholesterol (LDL-C) 95.5 ± 64.3

https://doi.org/10.1371/journal.pone.0239934.t001
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0–70 mg/dL range, while the Friedewald formula incorrectly predicted all 18 examples to be in

the 70–100 range. Similarly, there were 15 cases where the Weill Cornell model correctly pre-

dicted an LDL-C in the 0–70 mg/dL range, while the Martin-Hopkins equation incorrectly

predicted all 15 examples to be in the 70–100 range.

Fig 1. Scatter plot showing the correlation between estimated and directly measured low-density lipoprotein

cholesterol (LDL-C) for the (a) overall cohort, and (b) for each of the LDL estimation models.

https://doi.org/10.1371/journal.pone.0239934.g001

Table 2. Comparison of the absolute residuals between estimated LDL-C using the Weill Cornell Model with the Friedewald formula and Martin-Hopkins

equation.

Friedewald Formula Martin-Hopkins Equation

Mean Difference (mg/dL) p Value Mean Difference (mg/dL) p Value

Overall -4.39±7.56 <0.001 -2.93±5.78 <2.2e-16

LDL-C 0–70 -3.82±8.15 <0.001 -1.84±6.35 <0.001

70–100 -3.72±6.51 <0.001 -2.22±4.21 <0.001

100–130 -4.12±7.43 <0.001 -2.67±5.30 <0.001

130–160 -5.02±7.86 <0.001 -3.90±6.62 <0.001

160–190 -7.49±9.24 <0.001 -6.19±7.50 <0.001

>190 -9.18±9.77 <0.001 -8.81±9.38 <0.001

TG 0–150 -2.88±5.39 <0.001 -2.67±5.32 <0.001

150–500 -9.79±10.93 <0.001 -3.87±7.12 <0.001

>500 -27.17±10.76 0.007 -4.44±7.68 0.17

https://doi.org/10.1371/journal.pone.0239934.t002
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Discussion

LDL-C lowering has been a central target of primary and secondary prevention efforts. Fur-

thermore, LDL-C lowering, and subsequent monitoring of LDL-C levels has become a key-

stone of clinical practice, given the continuous and graded relationship between LDL-C levels

and cardiovascular risk, as well as LDL-C lowering and subsequent modulation of incident

Fig 2. (A) Scatter plot showing the correlation between the ground truth LDL-C value (direct LDL-C) and estimated

LDL-C value, across LDL-C subgroups, using the Weill Cornell model, Friedewald formula and Martin-Hopkins

equation. (B) Correlation coefficients for each model for LDL-C subgroups.

https://doi.org/10.1371/journal.pone.0239934.g002

Fig 3. Scatter plot showing the correlation between the ground truth LDL-C value (direct LDL) and estimated

LDL-C value, across triglyceride subgroups, using the Cornell model, Friedewald formula and Martin-Hopkins

method. (B) Correlation coefficients for each model for TGL subgroups. Abbreviations: TGL: triglycerides.

https://doi.org/10.1371/journal.pone.0239934.g003
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risk. As a result, LDL-C measurement is ubiquitous within clinical care and accurate assess-

ment is essential for the implementation of individualized treatment plans. In the present

investigation, we used random forests in order to develop an ML-based approach for the esti-

mation of serum LDL-C using standard lipid profile samples. We show that our model (the

Weill Cornell model) had a better correlation with direct LDL-C when compared to the tradi-

tional Friedewald formula and the more contemporary Martin-Hopkins equation. Further-

more, our approach was consistently superior across subgroups stratified by LDL-C and

triglyceride levels and resulted in a significant reclassification of LDL-C values across guide-

line-determined LDL-C thresholds compared to the Friedewald formula and Martin Hopkins

equation. We developed and validated an approach that harnesses the power of ML-based

algorithms for the estimation of serum LDL-C values. Further, estimated LDL-C using our

ML-based model correlated better with direct LDL-C than both the Friedewald formula and

Martin-Hopkins equations with very low LDL-C values (less than 70 mg/dL) or elevated

triglyceride levels (> 500 mg/dL), which is significant in an era where lower LDL-C targets are

sought after in highest-risk individuals using statins and novel non-statin drug therapies.

The BQ method, which combines ultracentrifugation with precipitation, is widely accepted

as the reference method for lipoprotein fraction measurement. Yet, it is useful in limited set-

tings and is not suitable for mass screening due to its cost and labor-intensive nature [28]. The

enzymatic analysis of total cholesterol, triglyceride, and HDL-C is a considerably less costly

procedure, and these measurements have been used to estimate the LDL-C using the Friede-

wald formula, thereby lowering overall costs and improving LDL-C integration within the

clinical practice [13]. However, the Friedewald formula, from its inception, was known to be

inaccurate in instances where triglyceride levels were greater than 400 mg/dL. In addition,

major shortcomings of this approach include the requirement for a fasting specimen. Conse-

quently, if non-fasting samples were used, there would be an overestimation of VLDL-C and

underestimation of LDL-C (as a result of the presence of chylomicrons). In addition, due to its

reliance on three combined measurements, LDL-C calculation is a product of their variabili-

ties, with the largest effect being from total cholesterol measurements [29]. This variability

ranges from 4% in well-standardized lipid laboratories to 12% in routine laboratories accord-

ing to the National Cholesterol Education Program (NCEP) expert panel [30]. For instance,

the LDL-C can often be estimated to be less than 70 mg/dL, despite directly measured levels

being at greater than 70 mg/dL [31]. The Martin-Hopkins equation has largely replaced the

Friedewald formula, using the same standard lipid measurements as the Friedewald formula

but adding a personalized rather than a fixed conversion factor in calculating LDL-C [17]. The

new formula is more reliable and can be used in non-fasting patients as it adjusts for triglycer-

ide levels. The Martin-Hopkins method has been validated in multiple national and interna-

tional trials and has helped re-categorize patients who would be undertreated using previous

methods of LDL estimation [18–21]. The Martin-Hopkins equation is certainly more accurate

than the Friedewald formula. However, even this improved equation is subject to inaccuracy

at lower LDL-C estimates [22].

There has been widespread debate regarding optimal LDL-C targets. Despite the wide-

spread use of statins, ASCVD remains the leading cause of worldwide mortality, while there

remains residual cardiovascular risk despite optimal medical therapy [32]. The Pravastatin or

Atorvastatin Evaluation and Infection Therapy–Thrombolysis in Myocardial Infarction 22

(PROVE IT-TIMI 22) trial noted residual cardiovascular risk despite lowering LDL-C to 62

mg/dL [33]. The hypothesis that more intensive treatment and lower LDL-C targets provide

greater benefit has been further supported by plaque regression data from multiple studies

[34–36]. A meta-analysis by the Cholesterol Treatment Trialists (CTT) showed that a 1 mmol/

L reduction in LDL-C was associated with an approximately 20% reduction in major
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cardiovascular events [8]. More recently, the IMPROVE-IT trial assessed the benefit of adding

ezetimibe to statin therapy within a secondary prevention cohort, demonstrating that the addi-

tion of ezetimibe to statin therapy reduced mean LDL-C by 15.8 mg/dL (53.7 mg/dL in the

combined therapy arm compared to 69.5 mg/dL in the statin monotherapy arm) with an associ-

ated absolute risk difference of 2% at 7 years, further supporting the “lower the better” argument

for lower LDL-C targets [37]. On the other hand, there has been ongoing discussion regarding

the long-term safety of lower LDL-C targets. In recent years, this debate has been further pushed

into the spotlight after the approval for clinical use of monoclonal antibodies to proprotein con-

vertase subtilisin/kexin type 9 (PCSK9), which achieve reductions of up to 60% in LDL-C levels

and at times below 50 mg/dL [38, 39]. A recent meta-analysis of 3,340 patients on background

maximally tolerated statin therapy and receiving a PCSK9 inhibitor showed that the incidence

of treatment-related neurocognitive adverse event was low (� 1.2%) with no significant differ-

ences between PCSK9 vs. control groups up to 104 weeks, with a similar finding in the subgroup

of patients with LDL-C levels at<25 mg/dL [40]. Clinical practice will continue to evolve as evi-

dence continues to accumulate regarding the beneficial effect of lower LDL-C targets. This, in

turn, necessitates precise estimates of LDL-C to enable more accurate and well-informed clini-

cal decision making, adverse event monitoring, and clinical trial design.

Machine learning can better generalize with the availability of larger datasets. In clinical

cardiology, it has shown to be more proficient at predicting 5-year all-cause mortality than

clinical characteristics or coronary computed tomography angiography (coronary CTA) met-

rics when used separately [41]. Machine learning has been used for segmentation tasks as well,

with the goal of establishing the presence of a specific cardiovascular condition as well as a

prognostication of outcomes on echocardiography, myocardial perfusion imaging, electrocar-

diography and coronary CTA [42–45]. It has been also used to answer complex and intricate

clinical questions, such as the prediction of inpatient readmissions in heart failure patients

[46]. In this analysis, we sought to further exploit the power of machine learning algorithms in

order to answer a clinical question that has widespread implications for daily clinical practice.

While typical models created using machine learning algorithms have an increasing number

of variables, our approach was to simply utilize the standard lipid profile and its three mea-

sured components (TC, TG, and HDL-C) in order to estimate the serum LDL-C. Our

approach and results provide further proof for the ability of machine learning algorithms to

solve both common and complex clinical issues, especially when large volumes of data are

available (central illustration).

Central Illustration. Machine learning for the creation of an accurate

model for serum LDL-C estimation

Abbreviations: TC: total cholesterol; TG: triglyceride; LDL: low-density lipoprotein; HDL:

high-density lipoprotein.

This study was subject to some noteworthy limitations. Firstly, the Weill Cornell model was

developed using a convenience sample of lipid profile measurements performed at a single-

center tertiary care center in New York. While our model was internally validated, external val-

idation is required in order to confirm the generalizability of the Weill Cornell model as well

as its accuracy in other patient cohorts. However, the model is extremely portable, and it is rea-

sonable to assume that adoption at other sites could yield similar performance, especially if a

model were to be trained on a comparable data set. Secondly, the study cohort may not fully

represent a general population since it is likely that there is a specific clinical indication for

ordering a direct LDL-C and a standard lipid profile in the same setting. As such, selection

bias cannot be excluded from this analysis. Thirdly, the present analysis focused on developing
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and validating the Weill Cornell model across various LDL-C and TG levels but did not

include patient-level analysis to determine the influence of certain clinical characteristics (such

as ethnicity, presence of kidney disease, use of lipid-lowering drug therapies, etc.) on model

performance. Nevertheless, ML has the ability to continuously update the algorithm as the

model is applied to bigger and more diverse datasets, thereby creating a model that is unique

in its accuracy, generalizability, and validity across all ethnicities and societies. Fourthly, direct

LDL-C was determined using chemical-based methods, and not with the gold standard BQ

method, while analysis was limited to correlation with direct LDL-C while true accuracy was

not established. Nevertheless, the next step will be to validate the Weill Cornell model on

cohorts with LDL-C measured by BQ. Finally, the model developed is not a simple score that

can be calculated by a physician on the spot but requires computational processing. However,

the existent paradigm involves the calculation of the estimated LDL-C when a standard lipid

profile result is obtained after laboratory analysis, while the widespread digitization of health-

care should obviate any obstacle to the implementation of our model. Integration of the Weill

Cornell model into EHRs, many of which are already capable of implementing complex

computational models for risk prediction and other tasks, could avert this limitation.

In summary, we developed the Weill Cornell model for LDL-C estimation using a random

forest ML approach trained on measured components of a standard lipid profile (TC, HDL-C,

and TG). Further, we observed that the Weill Cornell model correlates better with direct

LDL-C than both the Friedewald formula and the Martin-Hopkins equation, with consistently

better results across all subgroups, especially LDL-C <70 mg/dL and TG >500 mg/dL. Future

research is required in order to validate the Weill Cornell model against LDL-C measured

using the reference standard BQ method, with subsequent determination of model accuracy,

beyond measures of correlation as shown in the present analysis. Such an approach is of criti-

cal importance in an era where accurate LDL-C is required as a result of more aggressive

LDL-C lowering using novel and potent lipid-lowering drug therapies.
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