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A B ST R A C T
W ithin the context of automatic speech recognition (ASR) 
applications for telephony, we investigate the acoustic pre
processing issues tha t are at stake in going from the fixed 
line to the cellular network. Because the spectral represen
tation used in enhanced full rate GSM is linear prediction, 
we investigate the relative advantages and drawbacks of 
conventional mel-frequency cepstral coefficient (MFCC) pa
rameters derived from a non-parametric fast Fourier trans
form (FFT) and MFCC parameters derived from a linear 
predictive coding (LPC) spectral estimate. Robust Formant 
parameters, also derived from an LPC description of the 
spectrum, are studied as an alternative to MFCCs. Within 
the framework of connected digit recognition based on hid
den Markov models, ASR performance was measured for 
clean conditions, as well as for three different additive noise 
conditions. In addition, the performance of a conventional 
recognition procedure was compared with the performance 
of an ASR system based on our Acoustic Backing-off imple
mentation of Missing Feature Theory (MFT).

1. IN T R O D U C T IO N
Over the last years much effort has been spent to improve 
the robustness of ASR against adverse acoustic conditions. 
Most of the work has been done in the context of telephone 
systems. Although it has long been known th a t acoustic 
background noise levels in cellular calls are generally higher 
than in calls on the fixed network, few studies have explic
itly addressed the issues tha t set cellular networks apart 
from fixed networks. An important difference between fixed 
and cellular is the signal processing in the cellular networks. 
GSM coding implies an LPC analysis at the source, com
bined with parameter quantization. In the Enhanced Full 
Rate (EFR) coder the LPC parameters are coded in the 
form of Line Spectral Frequencies (LSFs) [6].
The current paper reports on the first steps towards tak
ing our previous work in robust ASR from the fixed to the 
cellular environment. Our approach to increasing noise ro
bustness in ASR is closely related to MFT, implemented 
in the form of Robust Statistical Pattern Recognition. In 
previous papers the implementation was named Acoustic 
Backing-off., to indicate the mathematical basis for dealing 
with outliers in the feature value distributions due to distor
tions in the speech signal [2]. MFT provides a framework 
for analyzing and interpreting the properties of different

acoustic feature representations with respect to their ro
bustness to adverse conditions. In prior reports we have 
provided arguments in support of the hypothesis th a t fea
ture representations which guarantee tha t distortions which 
are local in the time-frequency space remain local, should 
have an advantage over representations which disperse lo
cal distortions over the entire feature vector [4, 3]. In our 
previous investigations on the properties of feature repre
sentations all features were derived from spectral estimates 
obtained with an FFT analysis. FFT-based spectral esti
mates exhibit the “locality” property th a t should keep local 
distortions local. However, EFR GSM coders entail spectral 
estimates obtained by means of LPC analysis. LPC spec
tral estimates are based on a parametric model of the speech 
signal. Since LPC spectral estimates are limited to a fixed 
number of parameters in an all-pole model, local distortions 
which cause narrow peaks or steep slope changes due to ex
tra  noise energy in a part of the spectrum may affect the 
estimate of the envelope in remote frequency regions. Thus, 
otherwise similar feature representations derived from LPC 
spectral estimates might exhibit other “locality” properties 
than their counterparts based on FFT analysis.

The EFR GSM codec represents the spectral envelope 
in the form of LSFs. One reason to select LSFs for cod
ing is their “locality” property: if one LSF is damaged (for 
instance, due to radio transmission problems), the effects 
of the distortion will not propagate to other frequency re
gions. The same reasoning suggests to use LSF parameters 
in ASR on speech from an EFR GSM source. Unfortu
nately, despite early promising results [7], it appeared tha t 
LSFs have other properties which make them less suitable 
for ASR. For instance, the spectral interpretation of indi
vidual LSF parameters depends strongly on the presence or 
absence of close neighbors. Therefore, the interest in LSFs 
for application in ASR has subsided [8].

The fact tha t the EFR GSM codec is based on LSFs 
inspired us to investigate potential transformations of LSF 
parameters tha t would be suitable for ASR. One such trans
form that has been successfully applied in speech synthesis, 
is known as Robust Formants (RF) [9]. Since the RF rep
resentation is directly related to LSFs, it should retain the 
desirable “locality” property which is important for robust
ness against radio transmission errors. Furthermore, RFs 
have a consistent spectral interpretation, which means that 
they might overcome the problems tha t plagued previous 
attem pts to use LSFs in ASR. On the other hand, the po



tential advantage of RFs may be annihilated if the under
lying LPC spectral estimate yields parameters th a t are all 
biased because of a narrow band of additive noise.

In this paper we investigate the relative advantages 
and drawbacks of MFCC parameters derived from a non
par am etric FFT, MFCC parameters derived from an LPC- 
based spectral estimate and RF parameters. This three-way 
comparison is carried out under clean conditions, as well as 
under three different additive noise conditions. These com
parisons should allow us to clarify the inherent properties of 
the different parameter representations. As an additional 
factor in the research we compare the performance of a 
conventional recognition procedure with the performance 
of a decoder based on our Acoustic Backing-off implemen
tation of Missing Feature Theory [2]. The latter comparison 
should shed light on the degree to which different noises and 
different feature representations combine to yield distorted 
features for which the marginalization approach to MFT 
shows an advantage.

2. E X PE R IM E N T A L  SE T -U P
2.1. Speech M aterial
The speech material for the experiments was taken from 
the Dutch POLYPHONE corpus [5]. Speech was recorded 
over the public switched telephone network in the Nether
lands, using a primary rate ISDN interface. Among other 
things, the speakers were asked to read several connected 
digit strings. The number of digits in each string varied 
between 3 and 16. A set of 1997 strings (16582 digits) was 
used for training. Care was taken to balance the training 
material with respect to gender, region (an equal number of 
speakers from each of the 12 provinces in the Netherlands) 
and the number of tokens per digit. 504 digit string u t
terances (4300 digits) were used for cross-validation during 
training. For evaluation an independent test set of 1008 ut
terances (8300 digits) was used. The cross-validation and 
independent test sets were balanced according to the same 
criteria as the training material. None of the utterances 
used for training or cross-validation testing had a high back
ground noise level.

2.2. Sim ulating A dverse A coustic Conditions
Recognition performance was evaluated under three differ
ent simulations of adverse acoustic conditions. In each case 
noise signals were added to the speech such th a t the re
sulting SNR was 10 dBA1. The first type of noise th a t we 
studied was band limited white noise. The band limited sig
nal was obtained by filtering a white noise signal with a fifth 
order elliptical filter. The cut-off frequencies of the band
pass filter (Fiow =  833 Hz, Fhigh =  1446 Hz) were chosen 
such th a t approximately one quarter of the mel-frequency 
range would be affected by the noise. Babble and factory 
noise were chosen as examples of broad band noise. These 
noise signals were obtained from the Noisex CD.

1Both the speech and noise energy levels were weighted ac
cording to the A-scale.

2.3. A coustic Features
In order to make a fair comparison between the FFT and 
the LPC descriptions of the spectrum, all acoustic features 
were derived directly from speech signals and not from EFR 
encoded speech. A 25 ms Hamming window shifted with 
10 ms steps and a pre-emphasis factor of 0.98 was applied. 
After windowing and pre-emphasis, the data was processed 
as described in the following paragraphs.

To obtain the FFT-MFCCs, the data were converted 
to the frequency domain by applying the FFT. In the fre
quency domain 16 filter band log energy values were cal
culated. The filter bands were triangularly shaped, half 
overlapping and uniformly distributed on a mel-frequency 
scale (covering 0-2143.6 mel; this corresponds to the linear 
range of 0-4000 Hz). 12 mel cepstra were computed from 
the filter bank outputs using the Discrete Cosine Transform 
(DCT). Cepstral mean subtraction (CMS) was applied as 
a channel normalization (CN) technique. The time deriva
tives of the FFT-MFCCs were also computed and added 
to the vector of 12 channel normalized feature values. The 
log-energy and delta log-energy values of each frame were 
also included in the 26-dimensional acoustic feature vectors.

In determining the LPC-MFCCs, the frequency domain 
description of the signals was based on the spectral envelope 
of an AR filter resulting from a 10<fc order LPC analysis (in 
correspondence with EFR GSM encoding standards [6]). 
The rest of the calculation procedure was exactly the same 
as for the FFT-MFCCs, i.e. log mel-frequency filter banks, 
DCT, etc. The LPC-MFCC system was therefore also based 
on 26-dimensional acoustic feature vectors.

The Robust Formant algorithm that we used was devel
oped within the framework of speech synthesis. The algo
rithm  always finds a specified number of spectral maxima, 
called “Formants” for historical reasons, in such a way that 
the resulting formant tracks are continuous from frame to 
frame [9]. The algorithm was used to extract 5 formant (Fj), 
bandwidth(Bj) pairs for each speech frame, also based on 
a 10th order LPC analysis. During experimentation we 
did not use the bandwidth values directly, but transformed 
them to their corresponding Q-values, where the Q-values 
were determined as:

Qi = §i ( l )
The 5 {formant,Q-value} pairs were combined with their 
first time derivatives and their corresponding log-energy 
and delta log-energy values to obtain 22-dimensional acous
tic feature vectors. No additional normalization was applied 
to the RF parameters.

2.4. H idden M arkov M odeling
Continuous density hidden Markov models (HMMs) were 
used to describe the statistics of the speech sounds. A 
phone-based system was used, i.e., the basic speech sounds 
tha t were to be recognized were phones. The ten Dutch 
digit words were described with 18 phone models. Three ad
ditional models were used to capture the statistical proper
ties of the silence, background noise and out-of-vocabulary 
speech in the recordings of the POLYPHONE database. 
Each phone unit was represented as a left-to-right HMM 
consisting of three states. Only self-loops and transitions



to the next, s ta te  were allowed. The total num ber of dif
ferent states was 63 (54 for the phones plus 9 for the noise 
models); 16 Gaussians per sta te  were trained. HTK2.1 was 
used for training and testing the HMMs [10]. Training was 
done according to the cross-validation scheme described in 
[1]. All HMMs were implemented using diagonal covariance 
m atrices“ and each model set was trained only once, us
ing clean speech data, i.e.. with undisturbed features. The 
recognition syntax used during cross-validation and testing 
allowed for digit strings varying in length from 3 to 16 digits 
to be recognized, w ithout prior knowledge of the length of 
a particular string.

2.5. R eco g n itio n  p ro ced u re
Conventionally, the contribution of each Gaussian distri
bution to the local distance function used during dynamic 
programming is calculated as a quadratic function over the 
entire feature value range. In [2] it was proposed to make 
the outer ends of this quadratic function constant. This was 
shown to be equivalent to modeling the feature value obser
vations by means of two distributions: one obtained from 
the training data  and another, uniform distribution which 
represents all feature values not seen during training. The 
weight assigned to either distribution can be varied so as 
to increase or decrease the contribution of the unseen val
ues. This strategy was called Acoustic Backing-off. In the 
current investigation we performed recognition experiments 
both  with and without the application of Acoustic Backing-
off

3. R E SU LTS
All results are given in term s of W ord Error R ate (W ER) 
defined as:

W E R  = S  + ® + I  x  100%. (2)

N is the total number of words in the test set, S denotes the 
total number of substitution errors, D the total number of 
deletion errors and I the total number of insertion errors.
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Figure 2: W ER results for a recognition procedure with 
Acoustic Backing-off.

The baseline recognition performance for the three dif
ferent feature sets in the clean condition is shown in column 
1 of Figure 1. The WERs for the FFT-MFCC and LPC- 
MFCC systems are virtually the same, i.e. 3.2% and 3.3%. 
The RF system performs significantly worse, achieving a 
W ER of 8.0%. However, it should be kept in mind th a t the 
system has fewer parameters than  the two other systems 
(22 components as opposed to the 26 of the MFCC vectors) 
and no explicit channel normalization.

Figure 1 also gives an overview of the recognition per
formance of the three different ASR systems under adverse 
acoustic conditions using a conventional recognition proce
dure. Comparing the FFT-MFCC results with those ob
tained for the LPC-MFCCs shows th a t the FFT-based sys
tem achieves a lower W ER in the band limited noise condi
tion than the LPC-based parameters. On the other hand, 
the LPC-MFCCs outperform the FFT-MFCC system in the 
broad band noise conditions, i.e., babble and factory noise. 
The LPC-MFCC system performs consistently better than 
the RF system in all noise conditions. However, in the pres
ence of broad band noise, the RF system appears to  be more 
robust than the FFT-MFCC system.

Figure 2 summarizes the WERs achieved by the same 
ASR systems under the same adverse acoustic conditions 
using a recognition procedure with Acoustic Backing-off. 
The application of Acoustic Backing-off in noisy conditions 
leads to lower WERs in all cases, but two. These exception 
are the W ERs obtained for the RF system in babble and 
factory noise. The corresponding loss of recognition perfor
mance in the clean condition was kept within the range of 
1.0% absolute. Despite the general improvement in system 
performance, the observations made for the “conventional’ 
recognizer still hold true: FFT-based features do better in 
band limited noise while LPC-based features yield better 
results in broad band noise conditions. The LPC-MFCC 
system also keeps its advantage over the RF system.

Figure 1: W ER results for a conventional recognition pro
cedure.

2The correlation between the RF features was small enough 
to justify the use of a diagonal covariance matrix.

D IS C U S S IO N  & C O N C L U S IO N S
Since there is almost no difference between the performance 
of the FFT-MFCC and the LPC-MFCC systems in the 
clean condition, our results indicate th a t the ability of the 
FFT to  properly represent spectral valleys is of very little



consequence for ASR in clean conditions. In broad-band 
noise conditions, however, the LPC-MFCCs yield lower 
WERs than their FFT counterparts. This result suggests 
that, in broad-band noise conditions, features based on 
smoothed spectra, LPC-MFCCs in this instance, are more 
robust than those based on spectral representations with 
a higher resolution such as FFT-MFCCs. This observation 
can be explained by the fact th a t LPC spectral estimates are 
mainly determined by the peaks in the spectrum. There
fore, filling the valleys with broad band noise should have 
only a small effect on the estimates of the envelope. Fea
tures derived from an FFT, on the other hand, should suffer 
from relatively large differences in the depth of the valleys.

The opposite holds true for band limited noise, where 
the FFT-MFCCs perform better than the LPC-MFCCs. 
This is probably due to the fact tha t the addition of band 
limited noise at 10 dBA has a substantial influence on the 
frequency positions where strong spectral slope changes are 
observed. LPC parameters are known to be extremely sensi
tive to such abrupt changes in the spectrum. Due to the fact 
tha t the spectral envelope must be described with a fixed 
number of parameters, all parameters will suffer from this 
type of distortion. The “misleading” spectral peak/plateau 
will therefore lead to an incorrect parametric description 
of the speech information. In FFT analysis, on the other 
hand, the spectral description of the signal information in 
the unaffected frequency regions will remain intact in the 
presence of band limited noise.

The different behavior of LPC and FFT derived fea
tures under narrow and broad band noise conditions holds 
irrespective of the application of Acoustic Backing-off. This 
result suggests tha t the choice between the two spectral esti
mators is not arbitrary. Unless one must anticipate narrow 
band distortions, LPC based spectral estimates may exhibit 
advantages tha t are supported by solid theoretical consider
ations. For the same theoretical reasons FFT based spectral 
estimates are more robust against narrow band noise.

Even though the acoustic features of both the LPC- 
MFCC and the RF systems are derived from a 10<fc order 
LPC analysis, the LPC-MFCC system outperforms the RF 
system in all the experimental conditions th a t we investi
gated. The inferior performance of the RF system might 
be due to the fact tha t it has fewer parameters than the 
LPC-MFCC system. However, it is more likely th a t the RF 
parameters do not provide a representation of the spectral 
envelope tha t is suitable for HMM-based ASR. A partial 
explanation may be found in the intrinsic quantization of 
the bandwidths in the algorithm proposed in [9], For use in 
ASR the fact th a t the algorithm always finds the same num
ber of spectral maxima may also constitute a disadvantage: 
if the spectral envelope contains fewer clear peaks than the 
predefined number, it is difficult to predict the effect on 
the “superfluous” features. If anything, the bandwidths 
would tend to attain  maximum values. This might result 
in distributions which are difficult to model with a Gaussian 
mixture. Given th a t RF features are not really suited to de
scribe all the speech sounds in the system equally well, they 
do remarkably well in comparison with e.g. the FFT-MFCC 
system in broad band noise conditions. In future research, 
we will investigate whether the information contained in the 
MFCCs and the RF parameters is complementary and may

therefore be combined to improve recognition performance.
Application of Acoustic Backing-off in the clean condi

tion consistently leads to a slight loss of recognition perfor
mance. This is the price one has to pay for the difference 
between the distributions obtained during the training and 
the distributions used in the decoder [2]. Contrary to our 
previous findings, however, the gain from Acoustic Backing- 
o ff under adverse conditions is marginal at best; for the RF 
features it even causes a small degradation, compared to 
conventional decoding. For the time being we can only ex
plain the failure of Acoustic Backing-off by assuming tha t 
the combinations of noise and feature representations used 
in this study results in a small proportion of outliers -  the 
only type of distortion which can be handled effectively by 
MFT -  and a much larger proportion of feature values tha t 
are distorted, but only to a degree tha t does not allow them 
to be discarded by our implementation of MFT.
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