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Abstract

The sensitivity of numerical weather forecasts to small changes in initial conditions is

estimated using ensemble samples of analysis and forecast errors. Ensemble sensitivity is

defined here by linear regression of analysis errors onto a given forecast metric. We show

that ensemble sensitivity is proportional to the projection of the analysis-error covariance

onto the adjoint sensitivity field. Furthermore, the ensemble sensitivity approach proposed

here involves a small calculation that is easy to implement.

Ensemble and adjoint-based sensitivity fields are compared for a representative win-

tertime flow pattern near the West Coast of North America for a 90-member ensemble

of independent initial conditions derived from an ensemble Kalman filter. The forecast

metric is taken for simplicity to be the 24-hr forecast of sea-level pressure at a single point

in western Washington state. Results show that adjoint and ensemble sensitivities are

very different in terms of location, scale, and magnitude. Adjoint sensitivity fields reveal

mesoscale lower-tropospheric structures that tilt strongly upshear, whereas ensemble sensi-

tivity fields emphasize synoptic-scale features that tilt modestly throughout the troposphere

and are associated with significant weather features at the initial time.

Optimal locations for targeting can easily be determined from ensemble sensitivity,

and results indicate that the primary targeting locations are located away from regions of

greatest adjoint and ensemble sensitivity. We show that this method of targeting is similar

to previous ensemble-based methods that estimate forecast-error variance reduction, but

easily allows for the application of statistical confidence measures to deal with sampling

error.
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1. Introduction

Sensitivity analysis is a central problem in predictability research that involves deter-

mining how changes to an initial condition affect a later forecast. In general this problem

involves nonlinear systems, although it is common practice to linearize about a reference

state-space forecast trajectory. One linear approach to sensitivity analysis involves solving

for changes in the forecast that result from independently perturbing every degree of

freedom in the initial conditions. This allows one to determine the change in a forecast to

arbitrary changes in the initial conditions through a linear combination of the independent

perturbations. Such an approach is impractical for systems with a large number of degrees

of freedom, such as in numerical weather prediction. Another linear approach is adjoint

sensitivity, where a single integration of the adjoint model achieves the same goal, limited

to a scalar metric of the forecast field. Here we explore an ensemble approach to estimating

forecast sensitivity, compare it to adjoint sensitivity, and explore its potential for targeting

observations.

Ensemble sensitivity was first explored by Hakim and Torn (2006), who examined the

linear relationship between a 24-hr ensemble forecast of the central pressure of an extratropi-

cal cyclone and the initial-condition state variables. They found that the linear relationships

were synoptic-scale, deep, and sensibly related (mainly phase differences) to the primary

synoptic structures. These patterns contrast with typical adjoint sensitivity patterns and

singular vectors for extratropical cyclones, which have been found predominantly in the

lower troposphere, with large vertical tilts (Errico and Vukicevic 1992, Langland et al. 1995,

Rabier et al. 1996, Zou et al. 1998, Hoskins et al. 2000). Here we extend the ensemble

approach and explore it’s relationship to adjoint sensitivity and to other ensemble-based

sensitivity methods.

Sensitivity analysis can be used to improve forecasts through targeting observations.

These observations are meant to supplement the existing observing network in locations

where the forecast is particularly sensitive to new information. Strategies for identifying
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locations for targeting should incorporate analysis error, observation error, dynamical error

growth, and the data assimilation method used to assimilate the targeted observations

(Berliner et al. 1999). Two approaches to the targeting problem have been proposed and

tested in field programs: adjoint-sensitivity or singular vector methods (Buizza and Montani

1999, Gelaro et al. 1999, Langland et al. 1999), and ensemble-based methods (Bishop et al.

2001, Hamill and Snyder 2002). Here we explore an ensemble-based approach that, in the

appropriate norm, is similar to previous ensemble-based methods, but also relates directly

to adjoint sensitivity and is easily understood and calculated in terms of linear regression.

The outline of the paper is as follows. Section 2 reviews adjoint and ensemble sensitivity

theory, including relationships to the ensemble transform Kalman filter (ETKF). This

theory is applied to a case study, with the details of the method given in section 3 and

the results in section 4. Section 5 reviews targeting applications, and section 6 provides a

concluding summary.

2. Adjoint and Ensemble Sensitivity Background

2.a Adjoint Sensitivity Formulation

A detailed description of the adjoint methodology can be found in LeDimet and Talagrand

(1986) and a brief review is provided here. The temporal evolution of a discrete dynamical

system, represented by state vector x, is described by

dx

dt
= F(x), (1)

where F(x) is, in general, a vector-valued, nonlinear function. Linearizing F(x) about a

reference trajectory, the evolution of an initial disturbance can be expressed as a map of

the form

δxt = Rt,t0δx0, (2)

where the initial and final times are denoted by t0 and t, respectively, and Rt,t0 is the
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resolvant matrix, which maps the perturbation column vector at initial time, δx0, into the

perturbation column vector at forecast time, δxt. These perturbation vectors are deviations

from the nonlinear basic-state trajectory, which must first be determined before evaluating

the linear perturbation evolution. Typically the action of the resolvant is estimated by

the integration of a tangent linear model (TLM) over a set of discrete time steps; e.g.

Rt,t0 = Rt,t−δt · · ·Rti+δt,ti · · ·Rt0+δt,t0 .

We introduce a scalar metric, J , referred to as the response function, which is some

arbitrary function of the forecast state at time t. This response function is chosen to

measure a feature and/or location of interest. For small changes to the forecast at time t,

J may be estimated by a truncated Taylor expansion about the control solution

J(xt + δxt) = J(xt) +

[
∂J

∂xt

]T

δxt + · · · , (3)

and the change in J is therefore approximated by

δJ = J(xt + δxt)− J(xt)
.
=

[
∂J

∂xt

]T

δxt. (4)

Using (2), this expression becomes

δJ
.
=

[
∂J

∂xt

]T

R(t, t0)δx(t0), (5)

and, with the algebraic properties of the transpose, this may be written as

δJ
.
=

[
RT

t,t0

∂J

∂xt

]T

δx(t0). (6)

Recall that the resolvant is composed of a product of steps, so that the transpose

operation flips in time the order of this sequence for the adjoint model

RT
t,t0

= RT
t0+δt,t0

· · ·RT
ti+δt,ti

· · ·RT
t,t−δt. (7)

Thus the adjoint works backward in time, mapping the “sensitivity gradient” backward in

time to t0, yielding the sensitivity gradient with respect to x(t0),
∂J
∂x0

:

RT
t,t0

∂J

∂xt

=
∂J

∂x0

. (8)

4



From (6), we see that (8) links the change in the metric at the solution time to the adjoint

sensitivity at the initial time; that is, how changes to the initial condition affect the forecast,

as measured by J

δJ =

[
∂J

∂x0

]T

δx0. (9)

The adjoint sensitivity with respect to the initial state will hereafter be referred to as ∂J
∂x0

.

2.b Ensemble Sensitivity and its Relationship to Adjoint Sensitivity

Ensemble-based sensitivity analysis employs independent samples of the state at the initial

and final time to estimate statistically how changes to the initial condition affect the forecast

metric. Although ensemble sampling is used in practice, we note that the theoretical

arguments given subsequently are more general, and do not in fact depend on ensemble

sampling; nevertheless, we shall refer to the approach generically as “ensemble sensitivity.”

The relationship between ensemble and adjoint sensitivity analysis is derived by starting

with (9), right-multiplying by δxT
0 , and taking the expected value (curly brackets){

δJδxT
o =

[
∂J

∂x0

]T

δx0δx
T
0

}
. (10)

Since
[

∂J
∂x0

]T

is a deterministic quantity applying to the control trajectory, we may rewrite

this equation as {
δJδxT

o

}
=

[
∂J

∂x0

]T

A, (11)

where
{
δJδxT

o

}
is the covariance of the forecast metric with the initial conditions and

A =
{
δx0δx

T
0

}
is the initial-time error covariance matrix. Note that we have assumed

that the initial-time perturbations, δx0, have zero mean. Taking the transpose of (11), and

noting that A is symmetric, reveals that the forecast-metric–initial-condition covariance

represents the projection of the analysis-error covariance field onto the adjoint sensitivity

field.

The covariance alone does not give the linear-regression relationship between the re-

sponse function and the initial state, and we consider two approaches. One approach,
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simultaneous multivariate regression, is obtained by right multiplying (11) by A−1, which

recovers the adjoint sensitivity within sampling error:{
δJδxT

o

}
A−1 =

[
∂J

∂x0

]T

. (12)

In practice, A−1 is a large matrix that is difficult to invert and, if derived from a small

ensemble sample, is not unique. This motivates a second approach, which is univariate

regression. In this case, the response function is regressed onto all initial degrees of freedom

independently by [
∂Je

∂x0

]T

≡ {J, δxo}D−1. (13)

Here D is a diagonal matrix with initial-time error variance (i.e. diagonal entries of A, and

zeros elsewhere), and
[

∂Je

∂x0

]
is the ensemble sensitivity. Using (11), it can be shown that

the relationship to adjoint sensitivity in this case is

∂Je

∂x0

= D−1A
∂J

∂x0

. (14)

This approach, which we will hereafter refer to as ensemble sensitivity, has the advantage

that the inverse of the matrix D is trivial to calculate, and it offers the opportunity to

address sampling issues in the calculation of A, such as through statistical confidence

estimates or “localization” (e.g. Whitaker and Hamill 2002). We note that in the limit of

diagonal A, ensemble and adjoint sensitivities are equivalent.

In practice, the expectation integrals are approximated using ensemble samples of size

M . Denoting the ensemble state matrix by δX, where ensemble member states are column

vectors with the ensemble-mean removed, the ensemble-estimated covariance is given by

A =
1

M − 1
δXδXT. (15)

Typically, M � N so that A is rank-deficient and A−1 is not unique. Appendix A

illustrates how A−1 can be approximated through singular vector decomposition in order

to calculate the adjoint sensitivities from (12). Although non-unique and computationally

intensive, this methodology could provide case-dependent adjoint sensitivity fields utilizing

complex physics for which the tangent linear and adjoint models do not explicitly exist.
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2.c Ensemble Sensitivity Method for Targeting Observations

Here we demonstrate the usefulness of ensemble sensitivities for the targeting observation

problem. We assume that a Kalman filter is used for assimilating new observations, which

is optimal under linear dynamics and unbiased Gaussian error statistics. For an ensemble

of size M , the ensemble estimate of the response function can be represented as a row

vector, J. Similarly, removing the ensemble mean from J gives the row vector of ensemble

perturbations, δJ, the variance of which is defined by

σ =
1

M − 1
δJδJT. (16)

Substituting the expression for δJ from equation (9), with δx0 replaced by δX0, into

equation (16), and using the definition for the ensemble estimate of A, the variance of

the response function becomes

σ =

[
∂J

∂x0

]T

A

[
∂J

∂x0

]
. (17)

When observations are assimilated, the prior error covariance matrix, B, is updated by

A = (I−KH)B. (18)

The Kalman gain matrix is given by

K = BHT
[
HBHT + R

]−1
, (19)

where H is a linearized observation operator that maps the background to the observations,

I is the identity matrix, and R is the observation error covariance matrix. For sufficiently

small analysis increments, the adjoint sensitivity field derived for the ensemble-mean fore-

cast remains valid as the leading-order approximation to the sensitivity of the response

function to changes in the initial conditions.

Consider now the targeting situation where new observations are to be taken. Let

A represent the analysis-error covariance matrix after the assimilation of the routine

observations, and A′ represent the analysis-error covariance matrix after the assimilation of
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the new, hypothetical, targeted observations. The reduction in response function variance

resulting from the assimilation of the new observations is

δσ =

[
∂J

∂x0

]T

(A−A′)

[
∂J

∂x0

]
. (20)

Using (18) and (19), and noting that A is now the prior error covariance matrix gives

δσ =

[
∂J

∂x0

]T

AHTE−1HA

[
∂J

∂x0

]
, (21)

where E is the innovation error covariance matrix, (HAHT + R). Using (14), and the

properties of the transpose, gives

δσ =

(
HD

∂Je

∂x0

)T

E−1

(
HD

∂Je

∂x0

)
. (22)

Note that δσ is positive definite: observations always act to reduce forecast-metric

variance. All that is needed to evaluate (22) is the error covariance matrix of the targeted

observations and the variance-weighted ensemble sensitivities, both of which are known

without taking the actual measurements. Variance-weighted ensemble sensitivity is simply

the covariance between the forecast metric and the model initial-time state variables,

making the calculation of (22) straightforward. In the limit of a single observation, E

becomes scalar and (22) reduces to the square of the covariance between the forecast

metric and the model initial conditions, interpolated to the observation location by H

and normalized by the innovation variance. In order to determine the targeting location

for a new observation, we will consider the special case where the new observations are

evaluated at the n model grid points. In this case, the reduction in variance of the response

function due to a hypothetical observation considered independently with respect to each

model state variable can be calculated without H. This calculation involves n evaluations

of δσ, which is computationally inexpensive. The grid point with the largest value of δσ

is the location assigned the highest targeting priority. We emphasize that the actual value

of the observation is inconsequential in this formulation, only the error variance of the

observation must be known.
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Once the first targeted observation location has been determined, additional targeting

locations may be found by serial assimilation. Using the methodology outlined above, it

is straightforward to determine the change in the response function variance given that

the observation with the largest value from equation (22) was assimilated. In general,

the variance reduction conditioned on the assimilation of i − 1 previous hypothetical

observations is given by

δσi =

[
∂J

∂x0

]T

KiHiAi−1

[
∂J

∂x0

]
. (23)

Note that Ki = Ai−1H
T
i

[
HiAi−1H

T
i + Ri

]−1
is a function of the observation operator and

observation error covariance for the ith set of observations, which are known a priori, and

the analysis error covariance matrix, Ai−1 for all previous sets of observations.

By recursively substituting for Ki and Ai−1, one can show that (23) may always be

reduced to a function of the original analysis error covariance, A0. For example, the

potential impact of a second set of observations, given the reduction in the error variance

from a first set, may be estimated by

δσ2 =

[
D0

∂Je

∂x0

]T [
HT

2 −HT
1 E−1

1 H1A0H
T
2

]
E−1

2

[
H2 −H2A0H

T
1 E−1

1 H1

] [
D0

∂Je

∂x0

]
, (24)

where E1 = H1A0H
T
1 + R1 is the innovation covariance matrix based on the first set of

hypothetical observations and E2 = H2A1H
T
2 + R2 is the innovation covariance matrix

based on the second set. We note that E2 can be expressed in terms of A0 alone,

E2 = H2A0H
T
2 −H2A0H

T
1 E−1

1 H1A0H
T
2 + R2. (25)

For a single observation, Ei is scalar and therefore the inverse is trivial to evaluate. Thus,

it is computationally inexpensive to calculate a relatively small number of hypothetical

observations that reduce the variance the most given the simultaneous assimilation of their

predecessors.

Determining regions for real-time targeting requires sufficient time to deploy adaptive

observing platforms. Thus, the ensemble sensitivities used to determine targeting locations

must be formulated by regressing the forecast response function against a short-range
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forecast, such as 6 hours. Since routine observations may also exist at this forecast time,

their affect on the analysis and forecast metric should be determined prior to calculating

the ensemble sensitivity. This may be accomplished by using an ensemble Kalman filter

to update the ensemble perturbations for the short-term forecast, and for the forecast

response function, prior to determining the ensemble sensitivity. However, this method

is computationally intensive and may pose timing problems for real-time applications. A

much simpler way to consider future routine observations is to treat them in the same

manner that a first set of observations was considered serially with equation (24). This

method would easily be applicable in real-time for a relatively small number of observations,

but may become too computationally intensive for a large number of observations. Since

many observations are likely redundant, the large number of observations may be thinned

in order to produce targeting locations in real time, although this may degrade the accuracy

of the variance reduction values, and such a thinning method has not yet been developed.

These limitations reveal the disadvantages of the ensemble sensitivity method for real-time

observation targeting applications.

In addition to targeting, when an observation value is known, its impact on the value

of the ensemble-mean forecast metric can be estimated by methods similar to those for

variance reduction discussed above. This is useful, for example, when the value of targeted

observations become available, or when selectively sampling from a large set of observations

in order to thin the set to those having the largest impact on the forecast metric. Langland

and Baker (2004) developed observation sensitivity fields with the adjoints of both a

numerical model and a variational data assimilation system with a static background

error covariance matrix in order to assess observational impact of various assimilated

observations. Langland and Baker (2004) show that the transpose of the innovation vector

multiplied by the observation sensitivity vector yields a sum over the contribution from each

observation to the total change in the forecast metric. Thus, the impact of each observation

on the metric for the simultaneous assimilation of a large number of observations can be

assessed.
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For the Kalman filter, the analysis increment for the new observations is given by

δx0 = K [y −H(x0)] . (26)

From (9), the change in the response function for the ensemble mean is

δJ =

[
∂J

∂x0

]T

K [y −H(x0)] . (27)

Using (14), (27) may be re-written as

δJ =

[
HD

∂Je

∂x0

] [
HAHT + R

]−1
[y −H(x0)] . (28)

Equation (28) recovers the same result found in Langland and Baker (2004), except that

ensemble sensitivities are used here instead of the AECM and adjoint sensitivity. Such use

of ensemble sensitivities requires no adjoint model as in Langland and Baker (2004), because

the adjoint sensitivity field is implicit in the ensemble sensitivity values. Evaluating (28)

amounts to interpolating the variance-weighted ensemble sensitivity values to observation

space, or equivalently, calculating the covariances between the metric and the observation

estimates, and then multiplying the results by the normalized observation innovation. As

in Langland and Baker (2004), a scalar term is the result, which is composed of a set of

terms that are associated with each observation assimilated. If there are relatively few

observations compared to the number of degrees of freedom for the model, then (28) allows

for a computationally efficient assessment of observational impact.

2.d Relationship to the ETKF method

Bishop et al. (2001) and Hamill and Snyder (2002) both develop expressions for the change

in the forecast error covariance matrix due to targeted observations, which Bishop et al.

(2001) refer to as the ETKF signal covariance matrix. This reduction in the forecast error

covariance matrix (FECM) is (in our notation)

S = Rt,t0AHT
[
HAHT + R

]−1
HART

t,to . (29)
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Expanding (21) we get

δσ =

[
∂J

∂xt

]T

Rt,t0AHT
[
HAHT + R

]−1
HART

t,to

[
∂J

∂xt

]
, (30)

so that the relationship to the reduction in FECM to the ETKF method is

δσ =

[
∂J

∂xt

]
S

[
∂J

∂xt

]T

. (31)

By choosing a forecast metric a priori, the ensemble sensitivity method essentially localizes

the variance reduction to the chosen metric. The equivalence of the variance reduction in

a single degree of freedom can be realized from (31) by taking the forecast-time adjoint

sensitivity to be one for a single degree of freedom and zero elsewhere. In this case, a

single diagonal element of S is the result, revealing the reduction in variance of the one

degree of freedom. In general, any metric defined by a linear transformation and/or linear

combination of state variables will yield a result that is statistically equivalent to the

ETKF.1 One case where ensemble sensitivity yields results distinct from the ETKF is for

nonlinear forecast metrics; however, we note that the link to adjoint sensitivity is also lost

in this case.

Conceptually, the ensemble sensitivity method involves simple linear regression, whereas

the ETKF requires the determination of a transform matrix. Furthermore, as we have

shown, ensemble sensitivity links naturally to adjoint sensitivity. Finally, we note that the

ensemble method described here also allows straightforward inclusion of statistical confi-

dence measures to address sampling error; application of such a test will be demonstrated

subsequently.

1This is true of all small-ensemble approximations: different ensemble samples yield the same covariance

matrix due to the large null space.
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3. Methodology

3.a Experimental Setup

A 90-member ensemble sample of analyses is taken from a limited-area ensemble Kalman

filter (EnKF) system that runs operationally at the University of Washington. This system

employs the Weather Research and Forecasting (WRF) model on a 6-hour update cycle

using observations from satellite-derived winds, aircraft, radiosonde, buoy, ship, and land-

based surface stations.

Ideally the model used for cycling the data assimilation system would also be used for the

sensitivity analysis, but lacking an adjoint version of the WRF model, we instead adopted

the PSU-NCAR MM5 model. Ensemble initial conditions were linearly interpolated from

the WRF grid to the MM5 grid. Once interpolated to the MM5 grid, all 90 members are

advanced 24 hours with the MM5 nonlinear forward model. Although the EnKF system

from which the initial conditions are derived uses independent boundary conditions for each

ensemble member (Torn et al. 2006), here the lateral boundary conditions are fixed for all

members to the Global Forecast System (GFS) forecasts.

The response function J , defined as the lowest sigma level perturbation pressure at a

single point, is linearly regressed onto the initial conditions to give the ensemble sensitivity

field. Results for ensemble sensitivity derived from the MM5 ensemble and the original

WRF ensemble yielded similar results throughout the model domain (not shown), suggest-

ing that for this case, the use of deterministic boundary conditions instead of time-varying

boundary conditions has little impact on the ensemble sensitivity values.

In order to calculate adjoint sensitivity, the ensemble-mean initial condition is first

integrated with the nonlinear forward model; this trajectory serves as the basic state for

the adjoint sensitivity calculation. The adjoint model is then integrated backward in time

from the gradient of the response function with respect to the model variables at the forecast

time. The adjoint model is based on version 3 of the MM5 model, as described in Ruggiero

et al. (2002).
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All model physics are consistent throughout this set of experiments. The nonlinear

forecasts for the ensemble members, the nonlinear basic state trajectory for the adjoint run,

and the adjoint model all used Anthes-Kuo cumulus parameterization, the Burk-Thompson

planetary boundary layer scheme, the simple-precipitation explicit-moisture scheme, and

the simple cooling radiation scheme. All experiments are performed on the same model

domain at 45-km grid spacing with 33 vertical levels.

3.b. Synoptic Overview

Experiments pertain to the flow situation that occurred during the 24-hr period from 1200

UTC 3 February to 1200 UTC 4 February 2005. Fig. 1 shows the 00, 12, and 24-hr

ensemble-mean forecasts of 500-hPa geopotential heights and absolute vorticity, and Fig. 2

shows the 925-hPa temperature and sea-level pressure (SLP) forecasts at the same times.

For future reference, we note that the grid point defining the response function J (24-hr

SLP forecast) is given by the black dot in Fig. 2.

At 1200 UTC 3 February, a large trough along 150◦ W dominated the 500-hPa field,

while at the surface an occluded cyclone is found in the Gulf of Alaska and high pressure off

the coast of the Pacific Northwest. Two low-level baroclinic zones existed at this time, one

extending southwest from Washington, and another rotating around the occluded cyclone,

extending southwest from southeastern Alaska.

At 0000 UTC 4 February, it appears that the 500 hPa trough began to interact with the

northernmost low-level baroclinic zone, causing a cyclone to subsequently develop near 60◦

N, 140◦ W. At 1200 UTC 4 February, the cyclone was positioned over the Queen Charlotte

Islands off the central British Columbia coast, and the trough aloft was just west of the

North American coastline. Although the most vigorous portion of the 500 hPa trough was

just west of the location of the response function location, no significant surface features

are apparent at this location.
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4 Results

4.a. Structure of Adjoint Sensitivities

The adjoint sensitivity of the response function J with respect to temperature at the

initial time for sigma levels 7 (300 hPa), 12 (500 hPa), and 22 (850 hPa) is given in Fig. 3.

Sensitivity decreases below 850 hPa to near zero near the surface. Regions of sensitivity are

localized, small-scale structures that tilt strongly upshear in the vertical. Specifically, the

dominant pattern is a wave-like structure that first appears at 500 hPa near 37◦ N, 150◦ W

and tilts northeastward with decreasing height along the synoptic-scale flow aloft to become

the sole significant feature at 850 hPa. These regions of significant lower-tropospheric

adjoint sensitivities are not closely located to the significant pressure disturbances at the

initial time, but rather the southern baroclinic zone. The maximum value in the sensitivity

field of about 0.8 Pa/K indicates that a unit temperature perturbation at that point changes

the value of the response function by 0.8 Pa. The adjoint sensitivity of J with respect to

geopotential height exhibits similar structure to temperature, but with opposite sign (Fig.

5). The sensitivity of J with respect to geopotential height is a derived variable, and was

obtained at each model grid point by multiplying the sensitivity with respect to pressure

by the hydrostatic relation. The maximum value of about 0.006 Pa/m, implies that raising

the geopotential height at that point by 10 m would change the response function by 0.06

Pa; therefore, a geopotential height perturbation of about 130 m is required to yield an

equivalent change in the response function as a unit temperature perturbation at the same

location.

A vertical cross-section through the adjoint sensitivity with respect to geopotential

height shows an upshear-tilted pattern that is concentrated mainly in the lower troposphere

(Fig. 7a). The sensitivity structure extends from just above the surface to near 500 hPa.

The level of maximum sensitivity exists at sigma level 0.88, which is approximately 890

hPa.

These results, which show an upshear-tilted, lower-tropospheric structure in adjoint
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sensitivity with respect to temperature and geopotential height are in broad agreement

with previous studies on adjoint sensitivity and singular vectors applied to cyclogenesis

(Errico and Vukicevic 1992, Langland et al. 1995, Rabier et al. 1996, Zou et al. 1998,

Hoskins et al. 2000). The adjoint sensitivities here exhibit smaller horizontal scale than

these previous studies, which may be due to the relatively smaller 45-km grid spacing used

here, compared with approximately 100-km and greater used in most earlier studies.

4.b. Structure of Ensemble Sensitivities

Ensemble sensitivity is very different than the adjoint sensitivity in terms of scale, location,

structure, and magnitude (Fig. 4). The ensemble sensitivities are synoptic scale and located

near prominent weather features at the initial time. For example, a dipole of synoptic-

scale ensemble sensitivity near 850 hPa is located under the area of maximum absolute

vorticity at 500 hPa near 45◦ N, 150◦ W with positive values directly under the 500-hPa

geopotential height trough, and negative values just downstream of the trough. There is also

an elongated dipole of ensemble sensitivity near the surface just off the Pacific Northwest

coast, which appears to be aligned along the low-level baroclinic zone at the initial time.

At 500 hPa and above, large areas of positive ensemble sensitivity exist over the western

North American continent. Furthermore, the ensemble sensitivities are not located solely

in the interior of the lower half of the troposphere as are the adjoint sensitivities, but rather

extend throughout the depth of the troposphere. Maximum ensemble sensitivity values of

about 250 Pa/K imply that a unit temperature perturbation at that point, spread by the

statistics of the initial-time analysis error covariance matrix changes the response function

by 250 Pa.

Fig. 6 shows the ensemble sensitivity with respect to geopotential height at the same

levels as in Fig. 4. The geopotential height field is much smoother than the corresponding

field for the adjoint sensitivity field, and is dominated by a synoptic-scale dipole off the

coast of the Pacific Northwest. This pattern has a maximum at the surface and decays

upward as it tilts westward with height. At sigma level 12 (500 hPa), the synoptic-scale
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region of positive sensitivity exists just downstream of the trough axis at the initial time.

A vertical cross section through the area of greatest ensemble sensitivity also illustrates

the deep structure, and gradual tilt with height (Fig. 7). The upshear tilt throughout

the troposphere spans only about 500 km in the horizontal, compared to about 2000 km

for the adjoint sensitivity field. Maximum sensitivity near the surface of about 15 Pa/m

implies that a 10 m geopotential height perturbation, spread by the initial-time analysis

error covariance matrix, changes the response function by about 150 hPa.

4.c. Accuracy of Adjoint and Ensemble Sensitivities

Here we test the accuracy of the sensitivity results by comparing the nonlinear evolution

of perturbed initial conditions with the projection of the perturbation onto the adjoint

sensitivity field and with the ensemble sensitivity. Perturbation initial conditions are

defined by introducing a unit temperature change at a randomly selected grid point, and

perturbing all other variables by the initial-time analysis-error covariance with this point.

These perturbed fields are then added to the ensemble-mean initial condition, and run

forward with the nonlinear model. This procedure is repeated for 20 different grid points,

yielding the results shown in Fig. 8.

Differences in the response function between nonlinear solutions for the mean and

perturbed fields provide nonlinear estimates of δJ . The predicted change in the forecast

metric based on the ensemble sensitivity is given by the value of that field at the single point

from which the perturbation was spread. The predicted change from the adjoint sensitivity

field is given by the projection of the entire perturbation onto the adjoint sensitivity field.

Differences among these δJ values are due to errors in the tangent-linear approximation,

although sampling error may also exist for other forecast metrics. Results show good

agreement between the ensemble and adjoint predictions, and the nonlinear result for δJ

(Fig. 8). Although the ensemble results show slightly more scatter about the line of perfect

agreement (R2 = 0.9775) compared to the adjoint predictions (R2 = 0.9930), it is clear that

both provide accurate estimates of the changes in the forecast metric for the perturbation
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considered here.

As mentioned previously, ensemble sensitivity analysis allows for straightforward appli-

cation of statistical confidence measures to address sampling error. For example, Student

T-tests may be performed on the ensemble sensitivity values to test whether the value is

different than zero at a chosen confidence level (e.g. Wilkes 1995). Fig. 9 illustrates such

a test by only displaying the ensemble sensitivity results for values that are different from

zero at the 90% confidence level. Comparison with Fig. 4c indicates that most of the

substantial ensemble sensitivity structure is significant with 90% confidence.

5. Discussion

5.a Interpretation of Adjoint and Ensemble Sensitivities

In order to understand the differences between the adjoint and ensemble sensitivity fields,

we return to (14), which defines the fundamental relationship between them. The two

approaches are equal only when the initial degrees of freedom are uncorrelated, in which

case individual points may be considered independently. In reality, there are always non-

zero correlations, which means that any change to one location must also be spread to

other locations. Equivalently, the ensemble sensitivity is the projection of the analysis

error covariance matrix onto the adjoint sensitivity field divided by the variance.

Here we explore the relationship between adjoint and ensemble sensitivity by way of

illustration for the point of maximum ensemble sensitivity with respect to sigma level 22

(850 hPa) temperature, indicated by the black dot in Fig. 10a. Recall that the ensemble

sensitivity at this point of about 250 Pa/K compares with the maximum value of adjoint

sensitivity at this level of 0.8 Pa/K (Figs. 3c, 4c). Linear regression of the temperature

field onto temperature at the point of maximum ensemble sensitivity (Fig. 10b) reveals

significant relationships near the point, and also along the baroclinic zone further to the

east and southeast; other longer-range relationships are likely suspect due to sampling error

(cf. Fig. 9). These linear relationships correspond to a single row of the product of the
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first two terms on the right-hand side of equation (14). Fig. 10d shows the product of

the temperature perturbation (Fig. 10b) with the adjoint sensitivity field shown in Fig.

10c, which reveals the contribution of each point to the change in the forecast metric as

estimated by the ensemble sensitivity value. This sum of projection values corresponds to

a single row of the product of the first two terms on the right-hand side of equation (14)

multiplied by the adjoint sensitivity vector. Since the adjoint sensitivity is small everywhere

but a highly localized region located away from the point of maximum ensemble sensitivity,

the product mainly reflects a weighted adjoint sensitivity field.

Within the easternmost box in Fig. 10d, which encompasses the small significant regions

of adjoint sensitivity, the sum of the positive (negative) values is 12.45 Pa (−8.34 Pa),

whereas for the westernmost box, which encompasses the large synoptic-scale region of

positive ensemble sensitivity, the sum of the positive (negative) projections is 2.22 Pa

(−1.09 Pa). Across the entire domain at this level, the positive (negative) contribution of

the projection field is 20.63 Pa (−15.50 Pa), giving a net sum of 5.13 Pa; 4.11 Pa, or about

80%, comes from the region of significant adjoint sensitivities that occupies about 2% of

the domain at this level. Thus when viewed from an adjoint sensitivity perspective, only

the relatively small subspace of the ensemble sensitivity field that projects onto regions of

significant adjoint sensitivity is important for changing the forecast metric.

5.b Application of Ensemble and Adjoint Sensitivities to Targeted Observations

and Data Thinning

Assume for the moment that a single observation y is to be assimilated, that it is located

at a model grid point with ensemble mean value x, and that it has zero error variance. In

that case (28) reduces to

δJ =
∂Je

∂x
(y − x), (32)

which shows that the change in the forecast metric is directly proportional to the ensemble

sensitivity. Reintroducing the observation error variance simply scales the sensitivity value

by a term involving both the background and observation variance, or more specifically,
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results in the product of the ensemble sensitivity and the background variance at the point,

normalized by the innovation variance. This result shows that the full ensemble sensitivity

value as defined by (14) need not be calculated, and only the covariances between the

metric and the model’s estimate of the observation are necessary for assessing observation

impact and data thinning. Although ensemble sensitivity could have been defined simply

as these covariances, we note that an advantage of the adopted definition for the purposes

of comparison in this paper is that ensemble sensitivity has the same units as adjoint

sensitivity.

For targeting, only the observation error variance is known. For zero observation error

variance, (22) reduces to

δσ = d

(
∂Je

∂x

)2

. (33)

Here, d is the background error variance at the location of the observation. Reintroducing

the observation error variance again scales the square term in (22) by the square of the

background variance normalized by the innovation variance. This term reduces to the

square of the covariance between the metric and the model’s estimate of the observation

normalized by the innovation variance, again showing the necessity of only calculating

covariances and not the full ensemble sensitivity value.

We now apply these ideas to the hypothetical targeting problem of identifying the

location for a single temperature observation at sigma level 22, for an assumed observation

error variance of 0.5 K2. According to (22), the largest value in this field identifies the

leading targeting location, which predicts a reduction in the response function variance of

1.3 hPa2 (the control variance is 4.8 hPa2) (Fig. 11a). The values of variance reduction

plotted in Fig. 11 are only those which satisfy the 90% confidence interval as in Fig. 9,

and observations should only be taken in locations which appear on the plots in Fig. 11

if this confidence level is to be satisfied. The primary targeting site is located at neither

the region of maximum ensemble or adjoint sensitivity, but is somewhat closer to the local

maximum in adjoint sensitivity.

Assuming the assimilation of an observation for the leading targeting location, the
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second targeting priority can then be identified. The second targeting site is located

just to the south of the maximum in ensemble sensitivity, and the predicted reduction

in response function variance is about 0.3 hPa2 (Fig. 11b). Further targeting locations

may be determined conditioned on the first two, although with diminishing returns with

respect to impact on the forecast response function variance.

6. Summary and Conclusions

Ensemble sensitivity is defined here by the linear regression of a forecast response function

onto the initial conditions. We show that this field is proportional to the projection of

the analysis-error covariance matrix onto the adjoint sensitivity field, and that the two

are identical only when the initial degrees of freedom are uncorrelated. Expressions are

derived using ensemble sensitivity to determine the impact of potential new observations

on the response function variance (targeting) and on the response function expected value

(observation impact and thinning).

Adjoint and ensemble sensitivity are compared for a response function defined by the

24-hour forecast of surface pressure at a single point in the Pacific Northwest region of

the United Sates. Adjoint sensitivity patterns are small-scale, localized, lower-tropospheric

structures that tilt strongly upshear, and are found away from major synoptic systems

at the initial time. In contrast, ensemble sensitivity patterns are mostly synoptic scale,

troposphere-deep structures that tilt modestly upshear, and are found close to major

synoptic systems at the initial time. The largest ensemble sensitivity values are about

two orders of magnitude greater than the largest adjoint sensitivity values, which is a

consequence of the correlation between initial-time state variables. For a single point,

adjoint sensitivity values must be summed over all points that covary with the point, in

which case we find that the adjoint and ensemble predicted response function changes

agree closely with each other, and with differences of nonlinear solutions for perturbed

initial conditions. Consequently, for the point of greatest ensemble sensitivity we find that,
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when viewed as a sum over covarying adjoint sensitivity locations, the main contribution

to forecast metric changes come from locations of greatest adjoint sensitivity.

Expressions are derived for determining locations for targeted observations based on

ensemble sensitivity fields. In the appropriate norm, this method is equivalent to the

ensemble transform Kalman filter (ETKF), but does not require the determination of a

transformation matrix, and also allows straightforward inclusion of statistical confidence

measures to address sampling error. For the case considered, we find that the leading target

site is located away from extrema in both the ensemble and adjoint sensitivity patterns,

which is due to the fact that the response function variance is changed by a product of the

ensemble sensitivity field with the analysis error variance. In other words, the targeting

location is determined by the covariance between the response function and the initial

degrees of freedom. A single observation of temperature with an assumed error variance

of 0.5 K2 predicts a reduction in the response function variance by about 25%. A second

targeting site, conditional on having assimilated an observation from the first targeting

site, predicts a further reduction in the response function variance of about 9%, with the

location close to the maximum ensemble sensitivity.

These results suggest that the ensemble technique discussed here offers a straightforward

and inexpensive approach to sensitivity analysis, observation targeting, and observation

thinning. The performance of the ensemble technique for these problems over a larger

sample of real cases will be explored elsewhere.
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Appendix A. Approximation of A−1 to recover adjoint sensitivity

from ensemble sensitivity

An approximation of A−1 is needed to estimate adjoint sensitivity from multivariate ensem-

ble regression (11). Since there are typically many fewer ensemble members than degrees

of freedom, a pseudoinverse is determined by singular value decomposition, which is not

unique (e.g. Press et al. 1993). A singular value decomposition of the analysis ensemble

matrix X gives

X = USVT, (34)

where the dimensions of U,S, and V are NXN , NXM , and MXM , respectively. Substi-

tuting this expression for X into the expression for A, noting that U and V are orthonormal

matrices, and taking the inverse yields

A−1 = US−2UT. (35)

Note that in computing the inverse of the diagonal matrix S, only entries significantly

different than zero are inverted.

A further simplification is available by replacing the calculation of the larger matrix

U for the smaller matrix V as follows. The inner product XTX leads to an eigenvector–

eigenvalue problem for S and V

XTXV = VS2, (36)

and replacing U in favor of V,S and X in (35) yields

A−1 = XVS−4(XV)T. (37)

This result may then be used in (12), yielding an ensemble estimate of the adjoint sensitivity

field.
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Figure Captions

Figure 1. 500-hPa absolute vorticity (dashed lines, contour interval is 4×10−5 s−1,

countours begin at 12×10−5 s−1) and 500-hPa geopotential height (solid lines, contour

interval is 60 m) forecast at a) 00 hr, b) 12 hr, and c) 24 hr initialized from the ensemble

mean initial condition at 1200 UTC 3 February 2005.

Figure 2. Sea-level pressure (solid lines, contour interval is 4 hPa) and 925-hPa

temperature (dashed lines, contour interval is 4◦ C) forecast at a) 00 hr, b) 12 hr, and c)

24 hr initialized from the ensemble mean initial condition at 1200 UTC 3 February 2005.

Figure 3. Adjoint sensitivity of the response function with respect to initial temperature

(thick lines) and basic-state temperature field (thin lines) at 1200 UTC 3 February 2005

at sigma levels a) 7 (300 hPa), contour interval 0.05 Pa/K, b) 12 (500 hPa), contour

interval 0.05 Pa/K, and c) 22 (850 hPa), contour interval is 0.1 Pa/K. Solid lines denote

positive values, dashed lines denote negative values.

Figure 4. Ensemble sensitivity of the response function with respect to initial

temperature (thick lines) and basic-state temperature field (thin lines) at 1200 UTC 3

February 2005 at sigma levels a) 7 (300 hPa), b) 12 (500 hPa), c) 22 (850 hPa), and d) 32

(surface). Solid lines denote positive values, dashed lines denote negative values, contour

interval is 50 Pa/K.

Figure 5. Adjoint sensitivity of the response function with respect to initial geopotential

height (thick lines) and basic-state geopotential height field (thin lines) at 1200 UTC 3

February 2005 at sigma levels a) 7 (300 hPa), contour interval is 0.0005 Pa/m, b) 12 (500

hPa), contour interval is 0.0005 Pa/m, and c) 22 (850 hPa), contour interval is 0.001

Pa/m. Solid lines denote positive values, dashed lines denote negative values.

Figure 6. Ensemble sensitivity of the response function with respect to initial

geopotential height (thick lines) and basic-state geopotential height or sea-level pressure
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field (thin lines) at 1200 UTC 3 February 2005 at sigma levels a) 7 (300 hPa), b) 12 (500

hPa), c) 22 (850 hPa), and d) 32 (surface). Solid lines denote positive values, dashed lines

denote negative values, contour interval is 3 Pa/m.

Figure 7. Cross-section of a) adjoint sensitivity (cross-section location shown in Fig. 5),

contour interval is 0.001 Pa/m, and b) ensemble sensitivity (cross-section location shown

in Fig. 6), contour interval is 3 Pa/m, of the response function with respect to initial

geopotential height at 1200 UTC 3 February 2005. Solid lines denote positive values,

dashed lines denote negative values.

Figure 8. Plot of the change in response function associated with both the statistical

projection onto the adjoint sensitivity field (denoted by the symbol o) and the ensemble

sensitivity (denoted by the symbol x) versus the nonlinear change in response function for

a statistically-spread unit temperature perturbation made at twenty grid points

throughout the model domain.

Figure 9. Ensemble sensitivity of the response function with respect to initial

temperature at 1200 UTC 3 February 2005 at sigma level 22 (850 hPa) calculated at the

90% confidence interval. Solid lines denote positive values, dashed lines denote negative

values, contour interval is 50 Pa/K.

Figure 10. a) Ensemble sensitivity of the response function with respect to initial

temperature, contour interval is 50 Pa/K, b) a unit temperature perturbation made at

the black dot in the ensemble sensitivity field and spread by the initial error covariance

statistics, contour interval is 0.5 K, c) the adjoint sensitivity of the response function with

respect to initial temperature, contour interval is 0.1 Pa/K, and d) the projection of the

statistically-spread perturbation onto the adjoint sensitivity, contour interval is 0.1 Pa at

sigma 22 (850 hPa) at 1200 UTC 3 February 2005. Solid lines denote positive values,

dashed lines denote negative values.
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Figure 11. Reduction in response function variance from the assimilation of a) a single

observation at sigma level 22 (850 hPa), contour interval is 2000 Pa2, and b) a second

single observation at sigma level 22 (850 hPa), contour interval is 800 Pa2, given the

simultaneous assimilation of the observation near 42◦ N, 138◦ W in panel (a) associated

with the largest response function variance reduction at 1200 UTC 3 February 2005. Only

the variance reduction values that are calculated with the ensemble sensitivities which

satisfy the 90% confidence interval in Fig. 9 are shown.
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Figure 1.  500-hPa absolute vorticity (dashed lines, countour interval is 4x10-5 s-1, 
contours begin at 12x10-5 s-1) and 500-hPa geopotential height (solid lines, contour 

interval is 60 m) forecast at a) 00 hr, b) 12 hr, and c) 24 hr initialized from the 
ensemble mean initial condition at 1200 UTC 3 February 2005.  
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Figure 2.  Sea-level pressure (solid lines, contour interval is 4 hPa) and 925-hPa 
temperature (dashed lines, contour interval is 4 oC) forecast at a) 00 hr, b) 12 hr, 
and c) 24 hr initialized from the ensemble mean initial condition at 1200 UTC 3 

February 2005.   
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Figure 3.  Adjoint sensitivity of the response function with respect to initial 
temperature (thick lines) and basic-state temperature field (thin lines) at 1200 UTC 
3 February 2005 at sigma levels a) 7 (300 hPa), contour interval is 0.05 Pa/K, b) 12 
(500 hPa), contour interval is 0.05 Pa/K, and c) 22 (850 hPa), contour interval is 0.1 

Pa/K.  Solid lines denote positive values, dashed lines denote negative values. 
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Figure 4.  Ensemble sensitivity of the response function with respect to initial 
temperature (thick lines) and basic-state temperature field (thin lines) at 1200 UTC 
3 February 2005 at sigma levels a) 7 (300 hPa), b) 12 (500 hPa), c) 22 (850 hPa), and 

d) 32 (surface).  Solid lines denote positive values, dashed lines denote negative 
values, contour interval is 50 Pa/K. 
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Figure 5.  Adjoint sensitivity of the response function with respect to initial 

geopotential height (thick lines) and basic-state geopotential height field (thin lines) 
at 1200 UTC 3 February 2005 at sigma levels a) 7 (300 hPa), contour interval is 

0.0005 Pa/m, b) 12 (500 hPa), contour interval is 0.0005 Pa/m, and c) 22 (850 hPa), 
contour interval is 0.001 Pa/m.  Solid lines denote positive values, dashed lines 

denote negative values. 
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Figure 6.  Ensemble sensitivity of the response function with respect to initial 
geopotential height (thick lines) and basic-state geopotential height or sea-level 

pressure field (thin lines) at 1200 UTC 3 February 2005 at sigma levels a) 7 (300 
hPa), b) 12 (500 hPa), c) 22 (850 hPa), and d) 32 (surface).  Solid lines denote 

positive values, dashed lines denote negative values, contour interval is 3 Pa/m. 
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Figure 7.  Cross-section of a) adjoint sensitivity (cross-section location shown in Fig. 
5), contour interval is 0.001 Pa/m, and b) ensemble sensitivity (cross-section location 
shown in Fig. 6), contour interval is 3 Pa/m, of the response function with respect to 
initial geopotential height at 1200 UTC 3 February 2005.  Solid lines denote positive 

values, dashed lines denote negative values.  
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Figure 8.  Plot of the change in response function associated with both the 
statitistical projection onto the adjoint sensitivity field (denoted by the symbol o) 

and the ensemble sensitivity (denoted by the symbol x) versus the nonlinear change 
in response fucntion for a statistically-spread unit temperature perturbation made 

at twenty grid points throughout the model domain.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Ensemble sensitivity of the response function with respect to initial 
temperature at 1200 UTC 3 February 2005 at sigma level 22 (850 hPa) calculated at 
the 90% confidence interval.  Solid lines denote positive values, dashed lines denote 

negative values, contour interval is 50 Pa/K. 
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Figure 10.  a) Ensemble sensitivity of the response function with respect to initial 
temperature, contour interval is 50 Pa/K, b) a unit temperature perturbation made 

at the black dot in the ensemble sensitivity field and spread by the initial error 
covariance statistics, contour interval is 0.5 K, c) the adjoint sensitivity of the 

response function with respect to initial temperature, contour interval is 0.1 Pa/K, 
and d) the projection of the statistically-spread perturbation onto the adjoint 

sensitivity, contour interval is 0.1 Pa at sigma 22 (850 hPa) at 1200 UTC 3 February 
2005.  Solid lines denote positive values, dashed lines denote negative values. 
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Figure 11.  Reduction in response function variance from the assimlation of a) a 
single observation at sigma level 22 (850 hPa), contour interval is 2000 Pa2, and b) a 

second single observation at sigma level 22 (850 hPa), contour interval is 800 
Pa2,given the simultaneous assimilation of the observation near 42 N, 138 W in 

panel (a) associated with the largest response function variance reduction at 1200 
UTC 3 February 2005.  Only the variance reduction values that are calculated with 

the ensemble sensitivities which satisfy the 90% confidence interval in Fig. 9 
are shown. 
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