
 

 

Abstract— The various existing measures to quantify 
upper limb use from wrist-worn inertial measurement units 
(IMU) can be grouped into three categories: (a) 
Thresholded activity counting, (b) Gross movement score 
and (c) machine learning. While machine learning 
algorithms are a promising approach to detect upper limb 
use, there is currently no knowledge of the information 
used by these methods, and the data-related factors that 
influence their performance. A comparison of existing 
methods was carried out using data from a previous study 
which was collected from 10 unimpaired and 5 hemiparetic 
subjects, with annotation to identify periods of functional 
and non-functional upper limb use. Intra-subject random 
forest machine learning measures were found to classify 
upper limb use more accurately than other measures. The 
random forest measure uses information about the 
orientation and the amount of movement of the forearm to 
detect upper limb use. The types of movements and the 
proportion of functional data included in training/testing 
set influences the performance of machine learning 
measures. This study presents the first step towards 
understanding and optimizing machine learning methods 
for upper limb use assessment using wearable sensors.  

Index Terms— hemiparesis, machine learning, 
sensorimotor assessment, upper-limb rehabilitation, upper-
limb use, wearable sensors. 

I. INTRODUCTION 

Accurate evaluation of the real-world impact of a 

neurorehabilitation intervention is crucial to gauge its true 

value. Thus, there is a growing interest in quantifying how 

much and how well patients use their affected upper limb(s) 

outside of therapy. The shortcomings of current questionnaire-

based assessments of upper limb use in daily life [1] have led 

to a surge in the use of wearable sensors for this purpose. 

Several research groups have explored different sensing 

modalities [2]–[9] and data analysis techniques [6], [8], [10]–

[13] for assessing the amount and quality of upper limb use 

outside the clinic. 

Among the various constructs associated with upper limb 

functioning in daily life, the most fundamental one is the 
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upper limb use – a binary construct indicating the presence or 

absence of a voluntary, meaningful movement or posture [13]; 

it is required for deriving other constructs in upper limb 

functioning [13]. Upper limb use assessment focuses only on 

measuring willed movements or postures of functional 

significance. Identifying such movements is a relatively trivial 

task for a human observing a subject performing various 

movements. A human's ability to relate to the movements 

being observed allows him/her to make judgements about the 

nature of a subject's movements. However, doing this in an 

autonomous manner using technology can be challenging. 

The information gathered from measurement systems 

during everyday life from community-dwelling patients is 

limited due to constraints on the sensors’ size, wearability, 

ergonomics, and cosmetics. The most popular sensing 

modality is inertial measurement units (IMUs) in the form of a 

wristband [6], [7], [14], which measure linear acceleration and 

angular velocities of the forearm. To quantify upper limb use 

from wrist-worn IMU data, various measures have been 

developed [6], [8], [10]–[12]. These can be grouped into three 

types: (a) Thresholded activity counting [6], [10], [11], (b) 

Gross movement score [12], and (c) machine learning [8]. 

Currently, the threshold activity counting measures are the 

most popular approach used for quantifying upper-limb use 

[6], [10], [11]. These measures use quantized linear 

acceleration (often gravity-subtracted) to compute 'activity 

counts', which is then thresholded to quantify the presence or 

absence of a functional movement at any given time instant. 

The gross movement (GM) measure proposed by Leuenberger 

et al. [12] uses estimates of forearm orientation to decide on 

the functional nature of upper limb movements. Bochniewicz 

et al. [15] and Lum et al. [8] used accelerometer data and 

tested different machine learning methods as measure of upper 

limb use. 

A comparison of the performance of these different upper 

limb use measures has also recently appeared in the literature 

[8], [16]. Lum et al. compared the performance of thresholded 

activity counting to the different machine learning measures 

[8] on data collected from 10 unimpaired and 10 stroke 

survivors. They found that the random forest classification 

algorithm had an overall accuracy of greater than 90%, 

compared to about 72% for the activity counting methods. 

They observed that activity counting overestimated upper limb 

use by indiscriminately picking up both functional and non-

functional movements. In our recent study, we made a similar 

observation comparing the activity counting with the GM 

measure [16] using data from 10 unimpaired subjects [7]. 

Activity counting had good sensitivity but poor specificity, 
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compared to GM, which had a lower sensitivity but good 

specificity for functional movements. A direct comparison of 

all the existing measures (thresholded counts, GM, and 

machine learning) of upper limb use is currently missing in the 

literature. Such a comparison on the same dataset can help 

delineate the pros and cons of these different measures. This 

comparison will also help to verify the claims made by Lum et 

al. [8], and thus, evaluate the generalizability of their results. 

Machine learning methods are data-driven approaches. The 

nature of the training data will impact the performance and 

generalizability of their result. However, this influence of 

training data on upper limb use detection has not been 

investigated in the current literature. Factors such as the 

relative amount of functional versus non-functional 

movements and the types of tasks in a dataset can significantly 

impact a model's training and testing accuracy. Furthermore, 

there has also been little work on the interpretability of 

machine learning methods used for upper limb use assessment. 

The current methods are black boxes that use a set of 

handcrafted features to measure upper limb use. 

Understanding the relative importance of the features could 

improve the interpretability of these methods. To this end, we 

also investigated the effect of data-related factors and the 

importance of different features on the performance of 

machine learning measures to detect upper limb use. 

This study uses an annotated dataset collected from our 

previous study [17]. This dataset consists of data from 10 

unimpaired and 5 stroke survivors performing a set of 

activities involving arm and hand movements. The current 

study makes the following contributions to the field, 

• Provides a direct comparison of the existing measures of 

assessing upper limb use and verifies the results 

presented by Lum et al. [8]. 

• Compares the performance of common machine learning 

methods and a classical neural network method. 

• Analyses the importance of the features used by current 

machine learning methods and shows that the essential 

features have a simple physical interpretation. 

• Demonstrates the influence of different data-related 

factors on the performance of machine learning methods. 

II. METHODS 

A. Data Collection 

1) Device 

Data from a previous study [17] (approved by the 

institutional review board of Christian Medical College 

(CMC) Vellore, IRB Min. No. 12321 dated 30.10.2019) on the 

in-clinic validation of a wrist-worn sensor band, dubbed 'IMU-

Watch', was used for this analysis. The IMU-Watches log 

triaxial accelerometer, gyroscope, and magnetometer data at 

50 Hz in synchrony. 

2) Participants 

As part of the study [17], 10 unimpaired individuals and 5 

stroke survivors with hemiparesis were recruited. The 

inclusion criteria for the patients with hemiparesis were:  (i) 

no severe cognitive deficits (Mini-Mental State Examination 

score (MMSE) higher than 25); (ii) Manual Muscle Test 

(MMT) grade higher than 2; (iii) age between 25 - 70 years; 

can actively achieve (iv) at least 30° elevation of the arm 

against gravity in the shoulder joint with the elbow extended,  

(v) 20° wrist extension against gravity, and (vi) 10° finger 

extension (proximal metacarpophalangeal and 

interphalangeal) of at least one finger against gravity; (vii) 

ability to open the hand in any position to accommodate a 

small ball (diameter of 1.8cm) in the palm; and (viii) 

willingness to give informed consent. Patients were recruited 

through the inpatient Occupational Therapy unit of CMC 

Vellore. 

The inclusion criteria for unimpaired controls were: (i) no 

prior history of upper limb movement problems due to 

neurological conditions; (ii) no current difficulty in upper-limb 

movements; (iii) age between 25 and 70 years; and (iv) 

willingness to give informed consent. Subjects who had pain 

while moving the upper limb and/or allergy to the plastic 

material used for the IMU-watch casing and straps were 

excluded from the study. 

3) Tasks 

Participants performed functional tasks (listed in Table 1) 

while wearing an IMU-Watch on each arm. The recordings for 

the tabletop and non-tabletop tasks were taken in two separate 

sessions, each lasting no more than 15 minutes. Control 

subjects performed all the tasks, but stroke survivors only 

completed a subset of these tasks because of difficulty in 

performing some tasks. Subjects mimicked movements 3-4 

times for tasks such as eating or drinking. 
TABLE I 

TASKS PERFORMED WHILE WEARING THE IMU WATCHES. 

Tabletop Tasks 

Write using a pen Type on a keyboard 

Make a call using a mobile phone Button a shirt 
Drink from a glass Drink from a teacup with handles 

Open a bottle Comb your hair 

Wipe a table Fold a towel 
Eat from a plate using your hands Eat from a bowl using a spoon 

Non-Tabletop Tasks 
Walk 25 meters Open a door 
Hit a light switch  

4) Ground truth Labelling 

The entire experiment was videotaped using a webcam 

connected to a PC time-synchronized with the IMU-Watches. 

Two therapists annotated the videos twice with one week gap 

between each annotation. The annotators were instructed to 

Fig.  1. IMU watches with the axes of the accelerometers 
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comply with FAABOS [18], which classifies movements into 

four classes, based on the functional nature and task-

relatedness of the movements, namely, task-related functional, 

non-task-related functional, non-functional, and no activity or 

movement. For this analysis, the annotators were asked to 

reduce the four classes to a binary classification indicating 

functional and non-functional movements. In addition to the 

FAABOS annotations, the data was also marked to identify 

periods of predominantly 'Hand' movements, predominantly 

'Arm' movements, and 'Non-Functional' movements to reflect 

the type of functional movements carried out by the 

participants during the experiment. The epochs corresponding 

to the different tasks were also annotated in the data. 

5) Dataset Preparation 

The final dataset used for the analysis was prepared in the 

form of a table with the columns and rows corresponding to 

different features and time stamps, respectively. The different 

columns of this dataset include the following for each arm. 

Re-sampled sensor data: Triaxial accelerometer, gyroscope, 

and magnetometer was recorded approximately at 50 Hz. The 

raw data from the watches were re-sampled to 50 Hz using 

zero-order hold interpolation to account for any missing data. 

Yaw and pitch angles of the IMUs: Yaw and pitch angles of 

the forearm are estimated from the raw 50 Hz data with 

respect to an earth-fixed reference frame using the Madgwick 

algorithm [19]. Offset correction was done on the raw 

gyroscope data before using the Madgwick algorithm by first 

identifying "rest" and "move" periods. A rest period is at least 

10s long where the signal variance is less than 0.15 deg/s on 

each gyroscope axis. The mean angular velocity in each axis 

during a rest period was computed as a gyroscope offset value. 

This offset value is subtracted from the raw gyroscope data, 

starting from the current rest period until the next rest period 

to reduce gyroscopic drift. A fifth-order median filter was 

applied to the accelerometer data to remove sharp jumps and 

outliers.  

Annotations: Four columns that correspond to functional use 

annotation marked twice by two annotators, were included. 

Two other columns indicate the tasks and arm/hand use. All 

annotations were saved at the video frequency of 30 Hz. The 

annotations were included in the dataset after up-sampling 

them to 50 Hz using zero-order hold interpolation.  

Each row in the dataset is time-stamped. The dataset also 

includes a column with subject identifiers to differentiate data 

between different subjects.  

B. Comparison of Measures 

The current study compared different measures (shown in 

Table 2) reported in the literature, along with two new 

measures (GMAC and MLP). The data processing pipeline for 

these algorithms was implemented with an interest to remain 

true to the original work. Where the source material lacked 

sufficient detail, the processing steps and their associated 

parameters were chosen empirically as detailed below. The 

outputs of the different measures were compared with the 

manual annotations which served as ground truth. 

The performance of the different measures across different 

subjects (and different iterations for intra-subject models) are 

presented as the 'sensitivity' vs. '1-specificity' plots. The 

measures were also compared using the Youden index [20], a 

measure of the distance between the top-left corner and the 

position of the model in the plot, which is given by, 

 
The Youden index for the ideal classifier is 1 and is 0 for a 

random classifier. 
TABLE II 

UPPER LIMB USE MEASURES THAT WERE COMPARED 

Measure Proposed by 

Thresholded Activity Counting Bailey et al. (Vector Magnitude) [6], De 

Lucena et al. (Activity Counts) [11] 

Gross Movement Leuenberger at el. [12] 

Hybrid GM and TAC In the current study 

Machine Learning Lum et al. (Random Forests) [8], 
Support Vector Machine (SVM) [8], 

Multi-Layer Perceptron (MLP) 

1) Thresholded Activity Counting (TAC) 

The amount of acceleration is thresholded using a measure-

specific threshold to estimate upper limb use. The 

computational simplicity of this measure makes it a quick and 

popular approach [6], [10], [11]. However, while an increased 

amount of acceleration most likely correlates with increased 

upper-limb use, the feature is not unique to functional 

movements, and thus overestimates upper limb use. 

a) Activity Counts 

This measure was proposed by de Lucena et al. [11]. The 

effects of gravity are removed from the accelerometer data 

using the 9DOF IMU data with the Mahony algorithm [21]. 

The magnitude of the gravity-subtracted acceleration data is 

then bandpass filtered between 0.25 Hz and 2.5 Hz using a 4th 

order Butterworth filter. The magnitudes are down-sampled to 

1 Hz by taking its mean using non-overlapping 1 s bins. The 

counts are computed by quantizing the magnitudes by 0.017g. 

A laterality index is calculated using the counts from both 

arms and thresholded to produce binary signals that indicate 

use and non-use of both arms. Laterality greater than -0.95 

denotes dominant or non-affected arm use, and an index lesser 

than 0.95 denotes non-dominant or affected arm use. 

b) Vector Magnitude 

This measure proposed by Bailey et al. generates counts at 

30 Hz using the Actigraph Activity Monitor [6]. In the current 

study, the counts were generated from raw acceleration data 

re-sampled to 30 Hz to match Actigraph sampling rate. This 

enabled direct application of the methods presented by Brønd 

et al. [22]. The proprietary actigraph filter was substituted for 

the Madgwick filter used with 6DOF IMU data. The gravity 

corrected acceleration data were bandpass filtered between 

0.25 Hz and 2.5 Hz using a 4th order Butterworth filter and re-

sampled to 10 Hz. The data was then dead-band filtered using 

the thresholds ±0.068g and summed for every 1s bin. The 2-

norm of the acceleration vectors were then computed. A 

moving average filter with a window size of 5s with a 4s 

overlap was applied, resulting in the counts at 1 Hz. The 
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counts were filtered using a zero threshold to obtain the binary 

signal corresponding to upper-limb use. 

2) Gross Movement (GM) measure 

GM measure [12] is computed for moving windows of 2s 

with a 75% overlap, resulting in upper limb use estimates at 2 

Hz. The yaw and pitch angles were computed using the 

Madgwick algorithm from the raw acceleration and gyroscope 

data. If in a 2s window, the overall absolute change in yaw 

and pitch angles is higher than 30° and the absolute pitch of 

the forearm is within , GM is defined as 1, else it is 0. 

The GM measure exploits the nature of most functional 

movements to occur in this 'functional space'. 

3) Hybrid GM and TAC (GMAC) 

The TAC measures are known to be highly sensitive while 

having very low specificity, and GM is highly specific but not 

sensitive [16]. The proposed hybrid measure combines the 

essential elements of TAC and GM measures as a compromise 

between them. It combines the counts using the vector 

magnitude measure with a modified GM; the counts were used 

instead of the absolute change in yaw and pitch angles. Counts 

were generated at 1 Hz, and the mean pitch is computed for 

every 1s bin. Upper limb use is defined as 1 when mean pitch 

is within  and counts is more than 0, else it is 0.  

4) Machine Learning 

The TAC and the GM measures are designed to exploit the 

differences in functional and non-functional movements as 

measured by an IMU and intuited by a human observer. In 

contrast, supervised machine learning methods are data-driven 

and use an annotated dataset to learn the statistical differences 

between functional and non-functional movements. There is 

currently limited work using machine learning methods for 

detecting upper-limb use. Lum et al. presented a comparative 

analysis of supervised machine learning methods and settled 

on a random forest method [8]. 

The machine learning methods train models using the 

ground truth data, i.e., the 'functional use' annotations by the 

human therapists. At each time instant, a single ground truth 

label was derived as the majority of the four ground truth 

labels corresponding to two markings by two annotators. In 

the case of a tie, the instant was labeled as non-functional. We 

trained and tested two types of models, inter-subject and intra-

subject models, with different machine learning methods. 

a) Features 

Eleven features proposed by Lum et al. [8] were computed 

from the 50 Hz triaxial accelerometer data [8], namely mean 

and variance for acceleration along each axis, and mean, 

variance, minimum, maximum, and Shannon entropy of the 2-

norm of the accelerometer data. A non-overlapping time 

window of 0.25s was chosen for computing the features by 

iterating through different window sizes between 0.25s and 8s 

and choosing the best-performing window size. The ground 

truth label for the window was taken from the center, i.e., the 

label corresponding to time instant 0.125s from the start of the 

window. A Gaussian kernel with a bandwidth 0.2 was used to 

compute entropy. 

b) Machine Learning Methods 

A Random Forest (RF), a weighted Support Vector 

Machine (SVM) with a Radial Basis Function kernel, and a 

three-layer Multi-Layer Perceptron (MLP) were trained on the 

features and ground truth. The model parameters for random 

forest and SVM (number of estimators for random forest, C 

and gamma for SVM) were chosen by performing a grid 

Fig.  2. A) Sensitivity vs ‘1-Specificity’ plots depicting the performance of the different measures. The closer a measure is to the top-left corner, the 

better its performance. The diagonal dashed gray line depicts the performance of a random classifier.  B) Boxplot showing the Youden indices for the 

measures. C) Statistically significant difference between traditional, inter-subject machine learning and intra-subject machine learning measures. 

*Significant difference (p < 0. 05). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481756
http://creativecommons.org/licenses/by-nd/4.0/


Tanya Subash et al.: Comparing algorithms for assessing upper limb use with inertial measurement units         5 
 

search in a nested cross-validation approach. In nested cross-

validation, the hyperparameters were optimized using every 

fold in the training set as the validation set. The 

hyperparameters with the best performance were chosen and 

tested on the testing set. 

Intra-subject:  Stratified 5-fold cross-validation was used to 

implement the intra-subject model. To account for the 

variability in performance due to the different random splits, 

the intra-subject models were generated by iterating through 

the train-validate-test process 10 times.  

Inter-subject: Leave-one-out cross-validation was used to 

implement the inter-subject model. 

All classifiers were implemented using the Scikit-Learn 

package [23].  

C. Interpretation of the Random Forest classifier 

To get a handle on the features used by the random forest 

method, the Gini importance index was computed for the 11 

features. The index represents the importance of a feature 

relative to the other features used in training the model. This 

analysis was carried out only for the random forest because of 

the availability of the Gini importance score, and because the 

random forest performed the best among all methods. To 

further verify feature importance, three reduced models were 

trained and validated on the dataset again: (i) mean of  (1 

feature), (ii) mean of ,  and  (3 features), and (iii) mean 

and variance of , , and  (6 features). 

The Spearman correlation of the mean and variance features 

with the variables used by TAC and GM methods (e.g., Euler 

angles of the forearm and activity counts) was also computed. 

This was done to understand the physical significance of the 

features.  

D. Effect of data-specific factors on machine learning 
method performance 

The nature of the dataset used for developing a machine 

learning method is a crucial factor in determining 

performance, arguably as important as choosing a classifier 

itself. The training dataset used must be a representative 

sample of the activities and tasks typically performed by a 

subject in daily life; failing this can drastically affect 

performance. A training dataset must include all the 

significant tasks usually expected from a human subject 

during everyday life; movement patterns drastically different 

from that in the training dataset are likely to result in poor 

classifier performance. The current study investigated the four 

combinations of the presence/absence of selected tasks in 

training and testing datasets. The tasks chosen for this analysis 

were opening a bottle, drinking from a cup, and walking 

(including walking for 25m, hitting a switch, and opening a 

door); walking tasks were excluded from the patient data since 

only two patients had performed them. Additionally, the data 

segments in between tasks marked as unknown tasks were 

excluded from this analysis.  

E. Statistical analysis 

The results from the different analyses were compared 

using a one-way ANOVA, and t-tests with Bonferroni 

correction were performed to examine pairwise differences. 

The following tests were performed: 

• Comparison of the Youden indices of different types of 

measures were done by grouping them into three 

categories: traditional (AC, VM, GM and GMAC), inter-

subject machine learning, and intra-subject machine 

learning measures.  

• Comparisons of the Youden indices of reduced and full 

models using only the random forest inter- and intra-

subject models. 

• Comparison of the sensitivities and specificities of all 

combinations of presence/absence of a task using only 

the random forest intra-subject models. 

The full dataset used in this study and the code for the 

analysis are available at https://github.com/biorehab/upper-

limb-use-assessment.   

III. RESULTS 

A. Which is the best measure for assessing upper limb 
use? 

The performance of the different measures computed across 

different subjects (and different iterations for intra-subject 

models) are presented as the 'sensitivity' vs. '1-specificity' 

plots shown in Figure 2A. Figure 2B shows the Youden 

indices for the different measures. A significant difference was 

observed between the different types of measures (Fig. 2C) (F 

= 342.5, p < 0.0001).  

The thresholded activity counting measures had high 

sensitivity but low specificity with a median Youden index 

around 0.07. The GM measure had low sensitivity but high 

Fig.  3. A) Boxplot depicting the Youden indices for the reduced models, *Significant difference (p < 0.05), B) Correlation coefficients between 

features of the random forest classifier and parameters of GM and TAC 
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specificity and a median Youden index of 0.16. Thus, 

confirming that thresholded activity counting measures 

overestimate, while GM underestimates upper limb use. 

GMAC was found to be a reasonable compromise between 

thresholded activity counting and GM, resulting in a median 

Youden index of 0.3. 

The machine learning-based upper limb use measures 

perform better than the traditional measures; intra-subject 

measures have the best performance (Figure 2C). The random 

forest intra-subject methods had the highest median Youden 

index of 0.74 among the machine learning measures. Similar 

to the findings by Lum et al. [8], the random forest models 

seem slightly better suited for this application than the SVM 

or the MLP models. In general, intra-subject models perform 

better than inter-subject models, which is likely due to inter-

subject variability; the inter-subject models for patients are 

worse than healthy controls (Figure 2A). 

B. What does the random forest classifier do? 

The Gini importance index for the mean and variance of , 

, and  was higher than the other features, with the mean 

of  being the most important feature. The Youden indices 

for the reduced models are depicted in Figure 4A. The intra-

subject models and the inter-subject models for controls using 

just mean of  was the only model worse than the rest (p < 

0.05), i.e., using only the mean accelerations achieved similar 

performance to the full intra-subject model (using all 11 

features). However, the acceleration variances were required 

to achieve similar performance in the inter-subject models for 

patients; models using just mean of  and mean of all 

accelerations showed statistically significant difference when 

compared to the full model (p < 0.05). The SVM and MLP 

methods showed similar trends.  

What do the mean and variance features convey? The 

Spearman correlation coefficient (shown in Figure 4B) 

between the forearm pitch angle and mean of  was 0.91. 

The coefficient between activity counts and change in forearm 

yaw angle was around 0.7 with the variance of , , and . 

Forearm pitch angle indicates forearm's orientation with 

respect to ground, while counts and change in yaw indicate the 

amount of movement in a time window. Therefore, it can be 

concluded that the random forest method uses a mix of 

information used by the traditional TAC and GM measures to 

detect upper limb use. The high performance achieved by only 

using mean  suggests the forearm pitch plays a significant 

role in determining upper limb use, at least in the current 

dataset.  

C. Does a gyroscope improve classifier performance? 

Features from the IMU's gyroscope (e.g., mean and 

variance of ,  and ) were computed like the other 

accelerometer features. However, adding gyroscope features 

did not show statistically significant improvements (p > 0.1) in 

detection performance. 

D. How does the nature of the dataset affect a machine 
learning method's performance? 

There are two data-related aspects that can impact 

performance. The first is the effect of the proportion of the 

two classes of movements (functional versus non-functional), 

and the second is the effect of the tasks present in the dataset. 

1) Proportion of functional and non-functional data   

The performance variance of the machine learning methods 

was high for the affected arm of patients due to differences in 

the amount of functional use in the data for the different 

patients. The sensitivity and specificity of the intra-subject 

machine learning models for a patient were proportional to the 

amount of functional and non-functional movements in the 

dataset, respectively. This is depicted in Figure 4A for the 

patient data. Thus, training on a large dataset with an equal 

Fig.  4. A) Sensitivity and specificity obtained from intra-subject RF classifiers, B) Sensitivity and specificity obtained when certain tasks were 

removed from the train and test sets. Changes in sensitivity were found to be statistically insignificant in all tasks except in intra-subject models for 

opening bottle task for the left hand (F = 6.05, p = 0.0005). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481756
http://creativecommons.org/licenses/by-nd/4.0/


Tanya Subash et al.: Comparing algorithms for assessing upper limb use with inertial measurement units         7 
 

amount of functional and non-functional movement data can 

significantly improve performance. 

2) Presence/absence of tasks in testing/training datasets  

Figure 5B shows the sensitivity and specificity of the 

random forest method (with all 11 features) employing 

different train and test datasets. The presence of a particular 

task in the train set is denoted by  and its presence in the test 

set is denoted by ; their absence is denoted by  and , 

respectively. The following observations were made from the 

results obtained (Figure 5B). 

i. There aren't significant changes in the sensitivity under 

the different conditions for any of the tasks. 

ii. Specificities for the functional tasks opening a bottle and 

drinking from a cup do not change much under the 

different conditions. However, there is a drop in 

specificity under  for drinking from a cup for the 

intra-subject model for the left-hand data (F = 19.1, p < 

0.0001). This could be because almost all control 

participants used only their right hand for this task, 

resulting in mostly non-functional data in the left-hand 

data. 

iii. There is a significant drop in the specificity for walking 

tasks under ,  and , particularly for  when 

compared to the baseline ( ) (p < 0.0001). 

iv. The results obtained for the patient data at the individual 

level were varied. Each patient performed different and 

fewer tasks, and so, meaningful conclusions about the 

tasks in the dataset could not be made. 

IV. DISCUSSION 

The current study compared the sensitivity and specificity 

of existing measures for quantifying upper limb use – a 

fundamental construct in assessing upper limb functioning 

[13]. The results from the comparative analysis show that the 

machine learning-based measures are better than the other 

measures presented here and are a promising approach for 

upper limb use assessment using IMUs. Our analysis, using an 

independent dataset, confirms the results reported by Lum et 

al. [8]: (a) the random forest method is slightly better than 

SVM in detecting upper limb use; we also found that it is also 

slightly better than an MLP neural network. (b) intra-subject 

machine learning models are better than inter-subject models, 

which is due to the inter-subject differences in the movement 

patterns. Another possible reason for the reduced performance 

of the inter-subject models could be the small number of 

subjects included for training. However, it is unclear why 

random forests perform slightly better than the other machine 

learning methods. Similar observations about random forests 

are seen in other applications [24]. 

Although the improved performance in upper limb use 

assessment through machine learning methods is valuable in 

practice, the black-box nature of these methods obscures their 

mechanism of operation. Traditional measures (TAC and 

GM), despite their poor performance, offer an intuitive 

explanation of their classification since they employ 

interpretable quantities such as counts, forearm pitch, and 

yaw. Previous work by Lum et al. employed models using 11 

accelerometer features and did not attempt to understand the 

roles of these different features and their physical significance. 

Understanding the most relevant and important movement 

features can guide the optimal selection of sensors for 

measurements and further improve measure performance. The 

current study shows that the random forest method employs a 

combination of arm orientation (mean acceleration features) 

and the amount of movement (variance of acceleration) to 

estimate upper limb use. Either GM or TAC does not measure 

up to the random forest method as they do not use all the 

relevant information and have relatively simple decision rules. 

However, an advantage of these traditional methods is that 

they do not require any training, unlike the machine learning 

methods. The hybrid GMAC measure performed very closely 

to the inter-subject machine learning models, indicating that it 

might still be useful in the absence of training datasets 

required for employing machine learning methods. However, 

the detection ability of the intra-subject models is unmatched 

owing to the differences between subjects, especially in those 

with hemiparesis. 

Most functional movements were performed on top of a 

table in the current dataset, while walking formed a significant 

portion of the non-functional movements class. Therefore, it is 

no surprise that the pitch of the arm (mean acceleration) was 

an important feature in classifying movements. In another 

dataset where only tabletop tasks are included, the pitch may 

not play as significant a role, and activity counts could be the 

determinant in distinguishing between functional movements 

and rest. 

 The observations made in this study about the nature of a 

dataset are preliminary, largely because of the limited number 

and variety of tasks included in the experiment. The observed 

results on the impact of the presence/absence of a particular 

task on a measure’s performance can be explained by two 

factors: (a) how well represented the movements of this 

particular task are in that of the other tasks in the dataset, and 

(b) how much the proportion of the functional class is affected 

by the presence or absence of a particular task in the dataset. 

Tasks that have similar movement patterns and similar 

proportions of functional movements to other tasks can be 

removed from the dataset without losing performance. But 

tasks with unique movement patterns and different proportions 

of functional movements must be included in the training 

dataset to ensure good performance for a machine learning 

method. It can be safely concluded that the choice of tasks for 

the training dataset has an integral part in determining the 

performance of machine learning-based upper limb use 

measures. Machine learning methods should ideally be trained 

on a sample representative of daily life behavior, consisting of 

similar tasks and proportions of functional and non-functional 

movements. The variability across subjects in everyday tasks 

and the amount of functional activity compels the use of intra-

subject models for classifying upper limb movements. 

However, training and deploying these intra-subject models in 

practice is cumbersome, primarily because of the arduous 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.481756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481756
http://creativecommons.org/licenses/by-nd/4.0/


8                                                                                              Tanya Subash et al.: Comparing algorithms for assessing upper limb use with inertial measurement units 

 

process of manual ground truth labeling. With a much larger 

dataset with more participants, it is possible that inter-subject 

model performance may improve. In which case, pre-trained, 

generalized models can be deployed without tuning for 

individual subjects. 

The relatively small dataset size used in this current study is 

its main shortcoming. The dataset contained 10 unimpaired 

and 5 stroke survivors with hemiparesis carrying out a set of 

daily activities; stroke survivors did not perform some of the 

tasks due to difficulty in performing them. There were also 

variations in the percentages of functional and non-functional 

movements within the dataset. Nevertheless, the agreement of 

the results with that of Lum et al. [8] restores confidence in the 

results, despite the small dataset used. 

The use of machine learning-based measures for 

quantifying upper limb use seems to be the way forward. 

Future work in this space must focus on improving the 

performance of machine learning methods to deploy them in 

clinical practice efficiently. We propose the following two 

activities that are worth pursuing: 

1. Developing a large, open, annotated dataset with 

unimpaired and people with impaired movement abilities, 

performing a wide range of daily activities wearing 

different types of sensors (at least wrist worn IMUs). This 

can stimulate work on developing and validating optimal 

classifiers with high accuracy and reliability. The proposed 

dataset must have a good sample of the types of 

movements expected from patients in daily life and a good 

proportion of functional and non-functional movements of 

interest.  

2. Automatic annotation of functional/non-functional 

movements from video recordings using an RGBD camera 

must be explored to eliminate the cumbersome manual 

labelling process. Recent work has shown that data from 

multiple IMUs can detect different functional primitives of 

complex upper limb movements [25]. Thus, it is likely that 

pose estimates obtained from an RGBD camera can be 

used for automatically classifying functional and non-

functional movements, along with different task types as 

well. 

We believe that exploring these two avenues will help make 

sensor-based upper limb use detection highly accurate and 

efficient for routine clinical use. 

V. CONCLUSION 

This paper presented a detailed comparison of existing 

measures to quantify upper limb use, and confirms previous 

finding that an intra-subject random forest measure 

outperform others. The current work sheds light, for the first 

time, on the information used by random forest measure, 

demonstrating that it uses a combination of arm orientation 

and amount of movement to detect upper limb use. The work 

also demonstrates the effect of factors related to data, such as 

class proportion and types of tasks, on the performance of 

machine learning measures. We strongly believe that this 

study is a step towards understanding and optimizing machine 

learning measures to detect upper limb use. 
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