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We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback.
Our demonstration is built on a feedback platform consisting of two superconducting qubits coupled to a
cavity, which are measured by a nearly quantum-limited measurement chain and controlled by high-speed
classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a
“passive” reservoir engineering method and an “active” correction based on conditional parity measure-
ments. In view of the instrumental roles that these two feedback paradigms play in quantum error correction
and quantum control, we directly compare them on the same experimental setup. Furthermore, we show
that a second layer of feedback can be added to each of these schemes, which heralds the presence of a
high-fidelity entangled state in real time. This “nested” feedback brings about a marked entanglement
fidelity improvement without sacrificing success probability.
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I. INTRODUCTION

The ability to perform quantum error correction (QEC)
by feedback is a crucial step towards fault-tolerant quantum
computation [1,2]. An open challenge that has drawn
considerable interest recently [3–5] is to find the best
strategy for this task. Two nominally distinct feedback
strategies for QEC are the measurement-based and driven-
dissipative approaches. The former has been more well
understood [6], owing to an existing foundation in classical
control and feedback in engineering. In the measurement-
based (MB) approach, a classical controller performs
projective measurements of a set of multiqubit stabilizer
operators that encode the logical qubit [1,4] in order to
track errors and/or perform any necessary correction.
Thus, for good performance, this approach requires both
high-fidelity projective measurements and low-latency
control electronics to process the measurement result

within the relevant coherence times of the quantum
system. The elements required for this MB strategy have
been demonstrated for small quantum systems on various
physical platforms such as Rydberg atoms [7], trapped ions
[8,9], photons [10], spin [11], and superconducting qubits
[12–21]. However, a steady-state multiqubit QEC capabil-
ity has yet to be achieved, and one of the key questions for
this development is whether the MB strategy is scalable to
larger systems or whether an alternative approach is more
optimal.
One such alternative, driven-dissipative (DD) schemes

[22], also called reservoir or bath engineering (or autono-
mous or coherent feedback, as discussed below), utilizes
coupling between the quantum system of interest and a
dissipative environment to transfer the entropy caused by
decoherence-induced errors out of the quantum system.
This approach has been demonstrated on a variety of
physical systems including atomic ensembles [23], trapped
ions [24], mechanical resonators [25,26], and supercon-
ducting qubits [27–32]. Moreover, experiments with
trapped ions [33] and superconducting qubits [34] have
demonstrated some of the basic elements of autonomous
QEC. DD schemes do not require high-fidelity projective
measurements or external control and therefore do not
suffer from the associated latency. They can also be
described as autonomous or coherent feedback [35]
because the reservoir coupled to the target quantum system
can be considered as an effective “quantum controller” that
has no external logical decision hardware and involves
Hamiltonian evolution of quantum degrees of freedom
[36]. Adjusting the feedback by changing the quantum
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controller, however, can be more challenging than reprog-
ramming a classical controller built with conventional
electronics. Thus, a further question is whether one can
combine this DD approach and the conventional MB
approach with minimal negative consequences from their
respective drawbacks.
Here, we report an experiment in which we built a

feedback platform utilizing a nearly quantum-limited
measurement chain and a customized field-programmable
gate array (FPGA) system to perform MB and DD schemes
within the same setup. The task of this platform was to
stabilize an entangled Bell state of two superconducting
transmon qubits [37]. This particular task of stabilizing a
single state is a proxy for more general QEC experiments
where a manifold of states is protected. We realize, for the
first time, a MB stabilization of a Bell state by repeated
active correction through conditional parity measurements
[15,38,39]. We compare this scheme to a DD entanglement
stabilization scheme [30] in which the conditional parity
switch is autonomous. By performing both schemes on the
same hardware setup and circuit QED (cQED) system [40],
we shed light on their close connection and compare them
on a level playing field.
Previous theoretical works have compared DD (under

the name of “coherent feedback”) and MB for linear
quantum control problems [41], such as for minimizing
the time required for qubit-state purification [42] or for
cooling a quantum oscillator [43]. These comparisons
showed coherent feedback to be significantly superior.
Here, we experimentally compare DD and MB on identical
hardware and study two performance metrics, the state
fidelity and success probability. In our particular setup, we
find that distinguishing the superior approach among DD
and MB is a more subtle task. The subtlety is twofold. First,
the performance difference depends on which process can
be better optimized: the design of the cQED Hamiltonian or
the efficiency of quantum measurement and classical
control. In the current experiment, we show that DD has
better steady-state performance, as the cQED Hamiltonian
parameters are engineered such that DD has a shorter
feedback latency. But DD’s advantage over MB is not
immutable. As certain experimental parameters are
improved, such as coherence times and measurement
efficiency, MB’s performance can catch up with DD.
Second, in the current situation in which neither the

cQED Hamiltonian parameters nor the measurement and
control parameters are ideal, we can obtain a boosted
performance by combining DD and MB to get the best of
both worlds. We explored this by devising a heralding
method to improve the performance of both stabilization
approaches. This protocol exploits the high-fidelity meas-
urement capability and the programmability of the feed-
back platform. The protocol is termed “nested feedback”
since it has an inner feedback loop based on either the DD
or MB scheme, and an outer loop that heralds the presence

of a high-fidelity entangled state in real time. Previously,
heralding schemes have been demonstrated for state prepa-
ration to combat photon loss or decoherence [12,15,44–49].
Extending such heralding capability to state stabilization
will be a valuable addition to the QEC toolbox.
Furthermore, the ability to herald in real time as opposed
to postselection is important for on-demand and determin-
istic quantum-information processing (QIP) since only
successful events lead to subsequent processing. Real-time
heralding for entanglement stabilization is particularly
challenging for superconducting qubits because of their
shorter coherence times compared to other systems. In this
article, we implement this real-time heralding capability on
a time scale faster than the few-microsecond coherence
time of our qubit-cavity system. By extending the feedback
platform developed primarily for the MB approach to the
DD approach, our results bring to light a new application of
MB. Adding a level of MB feedback can significantly
improve performance beyond what a single layer of feed-
back, whether DD or MB, can achieve.
We emphasize here the interest in state stabilization by

DD/MB methods over more traditional state preparation by
a unitary gate. In many algorithms, one may simply prepare
a new state when it is needed [1]. Nevertheless, it is
preferable to have a stabilized state ready to be consumed
so that the algorithm can avoid going through the process of
state preparation and suffer from the associated latency.
There is also a more fundamental interest in the task of
stabilizing a state since these feedback experiments (see
previous references) can be understood as a form of
Maxwell’s demon in action [50]. The nested feedback
approach is applicable to other quantum-information plat-
forms with precise Hamiltonian control, efficient quantum
measurement, and fast classical control such as trapped
ions and Rydberg atoms, where simpler forms of feedback
have been shown. Moreover, it can be applied not just to the
stabilization of a single state but also to other quantum-
information processing tasks such as full quantum error
correction of a logical qubit.
In the following, we first describe our experimental setup

(Sec. II), and in Sec. III, we explain and compare the DD
and MB schemes for entanglement stabilization. Then, in
Sec. IV, we introduce experiments where a second layer of
feedback is added to form a nested feedback scheme, and we
discuss its advantages. We end the article with a concluding
summary and a short discussion of further work.

II. EXPERIMENT SETUP

The simplified schematic of our experimental setup is
shown in Fig. 1(a), while Fig. 12 in the Appendix describes
the detailed wiring diagram of the system housed in an
Oxford Triton 200 dilution refrigerator, at a base temper-
ature below 20 mK. Two transmon qubits [37], Alice and
Bob, are dispersively coupled to a three-dimensional
aluminum cavity [51], with frequency fgg ¼ 7.5 GHz
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when both qubits are in the ground state and linewidth
κ=2π ¼ 2 MHz. The photon-number resolved qubit tran-
sition frequencies [52] with no photons in the cavity are
ω0
Alice=2π ¼ 4.87 GHz and ω0

Bob=2π ¼ 6.18 GHz, for
Alice and Bob, respectively. The anharmonicities for
the two qubits are αAlice=2π ¼ 212 MHz and αBob=2π ¼
209 MHz. Alice (Bob) has a T1 of 60 μs (18 μs), T2;Ramsey
of 9 μs (10 μs), and excited-state population in jegi and
jgei of 5% each. The dispersive shifts of each qubit
to the cavity mode were designed to be nearly equal and
in the strong dispersive regime (χAlice=2π ¼ 5 MHz, χBob=
2π ¼ 4.5 MHz).
The cavity output is amplified by the Josephson

Parametric Converter (JPC) operated as a nearly quan-
tum-limited phase-preserving amplifier [53] enabling rapid,
single-shot readout [54] and thus real-time feedback. The
JPC was operated with a gain of 20 dB and bandwidth of
6.2 MHz, with the frequency for maximum gain centered
between the two readout frequencies, fgg and fee. The gain
and noise visibility ratios at both fgg and fee were about
17 dB and 6 dB, respectively. We estimate the quantum
efficiency η of the combined measurement chain to be 0.3.
The amplified output is directed to a room-temperature
classical controller realized with two FPGA boards [55].
These FPGA boards are programmed with customized
logic for data acquisition, as well as active control of the
cavity-qubit system by arbitrary waveform and digital
marker generation.

An essential operation for our experiment is a two-qubit
joint quasiparity measurement using the common readout
cavity [15,38,39]. As shown in Fig. 1(b), the cavity is driven
at fgg (both qubits in the ground state) and at fee (both in the
excited state) at the same time. The output at fgg and fee
together distinguishes the even-parity manifold fjggi; jeeig
from the odd-parity manifold fjgei; jegig. When the two
cavity output responses both have an amplitude below a
certain threshold, the qubits are declared to be in odd parity;
when either one has amplitude above the threshold, the
qubits are declared to be in even parity. We note that, unlike a
true parity measurement, this readout actually distinguishes
the two even-parity states jggi and jeei; hence, we refer to it
as a “quasi” parity measurement. However, the feedback
schemes described below apply the same operation on both
even states, and thus, we need only record the parity of the
measured state. The choice of driving at the “even” cavity
resonances rather than between the “odd” resonances (feg
and fge) mitigates the effect of the χ mismatch, reducing
associated measurement-induced dephasing of the odd mani-
fold [39]. The controller FPGA a (b) modulates the fgg (fee)
drive to the cavity and also demodulates the response.The two
FPGAs share their measurements of the cavity response to
jointly determine the parity. In addition, FPGA a and b
generate the qubit pulses to Alice and Bob, respectively,
whichare conditionedon the joint state estimationduring real-
time feedback.

III. DD AND MB STABILIZATION—FIXED-TIME
PROTOCOL

A. Principle of experiment

We first briefly outline the DD stabilization of entangle-
ment, described in detail in Refs. [29] and [30]. This
stabilization targets the two-qubit Bell state jϕ−i ¼
ð1= ffiffiffi

2
p Þðjgei − jegiÞ. Figure 2(a) displays the states

coupled by the autonomous feedback loop. Two Rabi
drives on Alice and Bob at their zero-photon qubit
frequencies (ω0

Alice and ω0
Bob) couple the wrong Bell state

jϕþi to the even states, jggi, jeei, in the energy manifold
with zero cavity photons. A second pair of Rabi drives at
the n-photon qubit frequencies [ω0

Alice − nχ̄ and ω0
Bob − nχ̄,

χ̄ ¼ ðχAlice þ χBobÞ=2], with their relative phase opposite to
the first pair, couple jgg; ni, jee; ni to the Bell state jϕ−; ni.
The two cavity drives, at fgg and fee, connect the two
manifolds; hence, the combined action of the six drives
transfers the population from jggi, jeei, and jϕþi to
jϕ−; ni. Finally, cavity photon decay brings jϕ−; ni back
to jϕ−; 0i. In effect, the cavity drives separate qubit states
based on their parity, allowing one pair of Rabi drives to
move the erroneous odd population to the even states, while
the other pair transfers the even-state population to jϕ−i.
Counterparts to these elements of the DD feedback loop

can be found in the corresponding MB feedback scheme.
The action of our MB algorithm is shown as a state machine
in Fig. 2. We describe the quasiparity measurement ~P by

(a)

(b)

fee fgg
feg fge

FPGA b FPGA a

frequency

Transmission

FIG. 1. (a) Schematic of the experimental setup. Two inde-
pendently addressable transmon qubits, Alice and Bob, are
dispersively coupled to a three-dimensional microwave cavity.
The cavity output is directed to a nearly quantum-limited
measurement chain consisting of a Josephson amplifier (JPC)
followed by a semiconductor amplifier (HEMT). A pair of
custom field-programmable gate array boards (FPGA a, b)
monitor the amplified output and generate real-time modulated
microwave drives to control the cavity-qubit system. (b) Trans-
mission spectra of the cavity. Cavity outputs at fgg and fee are fed
to FPGA a and b, respectively.
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the projectors Podd ¼ jgeihgej þ jegihegj, Pgg ¼ jggihggj,
and Pee ¼ jeeiheej. We assign the outcomes ~p ¼ þ1 to the
even projectors, Pgg and Pee and ~p ¼ −1 to Podd. The MB
algorithm is built with a sequence of correction steps, each
of which consists of a conditional unitary and a quasiparity
measurement. The two possible states of the state machine
correspond to whether we apply the unitary UE or UO,
followed by the quasiparity measurement. Specifically,
UE ¼ Ra

xðπ=2Þ ⊗ Rb−xðπ=2Þ, where a (b) denotes Alice
(Bob), and UO ¼ Ra

xðπ=2Þ ⊗ Rb
xðπ=2Þ. In a correction step

k, the qubits are initially in either jggi, jeei, or in the odd
manifold because of the projective quasiparity measure-
ment in step k − 1; the controller then applies UE (UO) if ~p
in the previous step reported þ1 (−1).
The effect of the state machine on the two-qubit states is

shown in Table I, where the action of the controller during
one correction step is described in terms of the four basis

states, jϕ−i, jϕþi, jggi, and jeei (the latter two are grouped
in the “even” column). The quasiparity measurement infi-
delity, labeled by ϵEjO (ϵOjE), gives the error probability of
obtaining an even- (odd-) parity outcome after generating an
odd (even) state. Because these measurement infidelities are
small, the dominant events are those that occur without
measurement errors. At each step, UE on either jggi or jeei,
followed by the quasiparity measurement ~P, transfers the
states to jϕ−i with 50% probability. Since jϕ−i is an
eigenstate of UO and ~P (modulo a deterministic phase shift
that can be undone—see later discussion), these operations
leave it unaffected. On the other hand, UO and ~P transform
jϕþi into fjggi; jeeig; more generally, they take population
in any other odd state (i.e., a superposition of jϕ−i and jϕþi)
into jϕ−i and the even states.
By repeating a sufficient number of these correction

steps in sequence, the controller stabilizes the target Bell
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FIG. 2. Comparison between the DD and the MB entanglement stabilization, shown in the left (DD) and right (MB) panels.
(a) Diagram of qubit- and cavity-state evolution in the DD feedback loop. Two-qubit state manifolds are laddered for different photon
numbers in the cavity (labeled by jni). The green and pink sinusoidal double arrows represent cavity drives, while the straight double
red/blue and cyan/yellow arrows are Rabi drives on the qubits. These six drives and the cavity dissipation (black decaying arrow) couple
the different states of the system such that the target state jϕ−i is stabilized. (b) Functional pulse sequence for DD. The duration needed
to empty the cavity of residual photons (see text) before tomography is indicated by Tw. (c) Fidelity to the target as a function of
stabilization duration (Ts). The dashed line at 0.5 denotes the threshold for entanglement. The time given in the white box, τ, is the
characteristic time constant of the exponential rise of fidelity. (d) State machine representation of the MB feedback loop. The quasiparity
measurement reports jggi, jeei as ~p ¼ þ1 (even) and jϕ−i, jϕþi as ~p ¼ −1 (odd). For odd (even) parity, two π

2
pulses, with identical

(opposite) phases, are applied to Alice and Bob, respectively. (e) Sequence of correction steps conditioned by the quasiparity
measurement and leading into tomography. Counter k limits the number of steps to N. (f) Fidelity to the target Bell state as a function of
stabilization duration (TS) or number of correction steps (N).
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state irrespective of the initial two-qubit state. The sim-
ilarity between this active feedback and DD is that MB also
transfers population between different parity states by
conditional Rabi drives. However, while the Rabi drives
in DD are conditioned autonomously by the photon number
in the cavity, the unitary Rabi pulses in MB are conditioned
by real-time parity measurement performed by active
monitoring of cavity outputs.
The pulse sequences for DD and MB are shown in

Figs. 2(b) and 2(e). In DD, a set of continuous-wave drives
are applied for a fixed time Ts, and after some delay Tw to
allow remaining cavity photons to decay, a two-qubit-state
tomography is performed [56,57]. The cavity and Rabi
drive amplitudes and phases were tuned for maximum
entanglement fidelity, following the procedure described in
Ref. [30]. In particular, the optimal cavity drive amplitudes
were found to be n̄ ¼ 4.0. For MB, the continuous drives
are replaced by a predefined number of correction steps N,
resulting in a stabilization duration of Ts ¼ NTstep where
Tstep ¼ 1.5 μs. There is no extra delay before tomography
since each correction step already contains a delay after
the quasiparity measurement because of feedback decision
latency. The strength and duration of the quasiparity
measurement ~P were optimized as discussed in
Appendix A. The optimization achieved low parity meas-
urement infidelities ϵEjO and ϵOjE while keeping the
measurement-induced dephasing arising from the χ mis-
match [38,39] small compared to the natural decoherence
in the same duration (the measurement-induced dephasing
rate was Γm=2π ¼ 22 kHz, while the intrinsic decoherence
rate of the Bell state was ΓBell=2π ¼ 30 kHz). We exper-
imentally determined the infidelity of the quasiparity
measurement to be ϵEjO and ϵOjE of 0.04 and 0.05,
respectively (see Appendix C). The quasiparity measure-
ment also causes a deterministic qubit rotation about the
respective Z axis because of an ac Stark shift [39]; this
rotation was corrected within the unitary gate UO as
discussed in Appendix F.

B. Results

Figures 2(c) and 2(f) show the fidelity to the target Bell
state jϕ−i as a function of stabilization time for DD and

MB, respectively. The fidelity rises exponentially with a
characteristic time constant of 0.78 μs (1.4 μs) and asymp-
totically converges to a steady-state fidelity Fss of 76%
(57%) for DD (MB). Both fidelity values agree with
numerical modeling based on master equation simulation,
which gives 76% and 58% for DD and MB, respectively
(see the following section). The experimentally determined
time constants are in reasonable agreement with their
simulated values of 1.0 μs (1.4 μs) for DD (MB). In
MB, this loop time is related to the step length (1.5 μs),
which is given by the sum of the quasiparity measurement
duration (0.66 μs), the cable, instrument, and FPGA
latencies (0.69 μs), and the duration of unitary pulses
(0.15 μs). On the other hand, for DD, the measured loop
time is close to 10 cavity lifetimes, the expected time as
shown in Ref. [29].
It is tempting to compare the fidelities achieved by these

stabilization protocols to that achieved by the application of
a unitary entangling gate [17,58,59]. However, these
fidelities cannot be compared on the same footing. For
state preparation, the fidelity is meaningful only immedi-
ately after the gate and decays due to decoherence. On the
other hand, in stabilization, the state fidelity is maintained
for an arbitrarily long time, as shown in Figs. 2(c) and 2(f).

C. Steady-state model of DD and MB

The steady-state behavior of both DD and MB is
simulated by a Lindblad master equation, given by

dρðtÞ
dt

¼ − i
ℏ
½HðtÞ; ρðtÞ� þ κD½a�ρðtÞ

þ
X
j¼A;B

�
1

Tj
↓

D½σj−�ρðtÞ þ
1

Tj
↑

D½σjþ�ρðtÞ

þ 1

2Tj
ϕ

D½σjz�ρðtÞ
�
; ð1Þ

where D is the Lindblad superoperator, defined for an
operator O as D½O�ρ ¼ OρO† − ð1=2ÞO†Oρ − ð1=2Þ
ρO†O. The pure dephasing rate for Alice and Bob,
respectively, is given by 1=TA;B

ϕ ¼ 1=TA;B
2 − 1=2TA;B

1 ,
where 1=TA;B

1 ¼ 1=TA;B
↓ þ 1=TA;B

↑ .

TABLE I. Effects of the MB finite-state machine of Fig. 2 on a two-qubit system in the kth step of feedback, for
different starting cases (columns). Rows 2 through 4 describe the result of the previous quasiparity measurement and
the corresponding unitary that will be applied in the kth step. The symbols ϵEjO and ϵOjE denote parity measurement
errors (see text). The last row describes the possible system states attained by the applied unitary. The two alternative
states for a previous “Even” state occur with 50% probability.

Previous state jϕ−i jϕþi Even

~pk−1 þ1 −1 þ1 −1 þ1 −1
Outcome probability ϵEjO 1 − ϵEjO ϵEjO 1 − ϵEjO 1 − ϵOjE ϵOjE
Unitary UE UO UE UO UE UO
Next state Even jϕ−i jϕþi Even Even=jϕ−i Even=jϕþi
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The Hamiltonian HðtÞ is treated differently in DD and
MB. For DD, the Hamiltonian is described in detail in the
theory proposal [29], and parameters in the Hamiltonian,
such as the cavity and qubit drive amplitudes, are swept in
simulation to find the optimal values. The optimal value for
the cavity drive amplitude is found to be κ

ffiffiffī
n

p
=2 with

n̄ ¼ 4.0, and κ=2 for the qubit drive amplitudes at both
zero-photon and n-photon qubit frequencies. The DD
simulation predicts a characteristic time constant of 1 μs
and a steady-state fidelity of 76% (accounting for the delay
between stabilization and state tomography to allow
remaining cavity photons to decay).
For MB, a correction step is broken into four segments

for effectively piecewise master equation simulation. The
first part contains the conditional Rabi pulses which are
simulated as perfect instantaneous unitary operations on the
qubits. The second part is the decay during the pulses
(154 ns total). The Hamiltonian during this part is just the
dispersive interaction between the qubits and the cavity,
HðtÞ ¼ Hdisp ¼ ðχAσAz =2þ χBσ

B
z =2Þa†a, in the rotating

frame of the two qubits (ω0
A, ω

0
B) and the cavity mode

[ðωgg
c þ ωee

c Þ=2]. The third part is the quasiparity meas-
urement during which the cavity drives at the fgg and fee
resonances are on and the Hamiltonian is given by
HðtÞ ¼ Hdisp þ 2ϵc cos ððχA þ χBÞt=2Þðaþ a†Þ, where ϵc
is the amplitude of the cavity drive (660 ns total). The last
part is the remainder of the correction step, incurred by the
latency of the feedback during which all drives are off and
the qubit-cavity system is in free decay. The dynamics in
this part is again simulated by the dispersive interaction,
HðtÞ ¼ Hdisp (686 ns total). For the piecewise master
equation simulation of a complete correction step as four
segments, the density matrix at the end of a segment is used
as the initial density matrix for the next segment.
Since in MB the state at the end of a correction step

depends only on the initial state at the beginning of the step,
we can model the MB scheme as a Markov chain. In
Appendix D, we show how we derive the transition matrix
that describes this Markov chain. The model predicts a
steady-state fidelity of 58% to jϕ−i, agreeing very well
with experimental results.

D. Perspectives on fixed-time protocol

The superior performance of DD over MB for the steady-
state fidelity is due to the difference in correction loop time,
which needs to be shorter than the coherence times of the
two qubits for high-fidelity entanglement. For the current
experimental setup, the latency of the controller and
quantum efficiency of the measurement chain, which
affects the fidelity of the single-shot readout, result in a
longer loop time in MB. A source of the longer feedback
loop time is the quasiparity measurement duration. This
measurement duration, which was optimized as discussed
in Appendix A, is limited by dephasing induced by the
mismatch in χ (∼10%) and the measurement efficiency of

the output chain (∼30%), which can both be improved in
future experiments. Our simulations (Appendix D) suggest
that with a current state-of-the-art measurement efficiency
value and optimization of the FPGA/cable latency, the MB
steady-state fidelity can be improved to 66%. The limited
measurement efficiency does not affect the performance
of DD because the parity measurement and correction
take place autonomously within the qubit-cavity system,
indicative of its robustness against this hardware limitation.
On the other hand, both DD and MB schemes benefit
from longer intrinsic coherence times and reduction of
the χ mismatch. For example, simulations show (see
Appendix D) that if the coherence times are improved to
100 microseconds (achieved in other state-of-the-art cQED
setups), both DD and MB fidelities can increase to above
85%. For the rest of the article, however, we consider
boosting the fidelity in a different manner, without making
any physical changes to the qubit-cavity system.
Before we continue, a discussion on the effect of the

cavity linewidth κ is due. Increasing κ while keeping χ
the same would harm the performance of DD since the
selective Rabi drives would not be as selective [29,30]. For
some MB experiments, such as initializing a qubit to the
ground state, increasing κ is beneficial as this reduces
measurement time [60]; however, this is not necessarily
true in the MB scheme of stabilizing entanglement where
the qubit T2 is the dominant error process. In our system,
the T2’s of the qubits are limited by thermal photons in the
cavity resulting in T2 ≈ 1=ðnthκÞ, where nth is the average
thermal photon number [61]. Thus, increasing κ would
reduce T2. While the MB feedback loop would become
faster with a bigger κ, the reduced coherence time elim-
inates any gain in fidelity.

E. Motivation for an improved protocol

The DD and MB schemes described so far are synchro-
nous in the sense that the stabilization always ends after a
predetermined duration and the tomography follows.
Decoherence and measurement errors cause the qubits to
have a finite probability (1 − Fss ¼ 24% and 43% for DD
and MB, respectively) of not being in the target state when
the stabilization terminates. A more optimum protocol
would instead utilize all available information to determine
when to end the stabilization. For both DD and MB,
information is available in the cavity output, which we can
measure at the end of the stabilization period. The out-
comes of these measurements, Igg and Iee, give real-time
information on the state of the two qubits and thus can
herald a successful stabilization sequence.
In Fig. 3, we describe how monitoring the cavity outputs

improves target-state fidelity. We introduce two thresholds
fIheraldgg ; Iheraldee g (see Appendix B for details) to postselect the
measurement outcomes of Igg and Iee, respectively, and
identify successful stabilization runs [15,30]. The results of
varying fIheraldgg ; Iheraldee g are shown in Figs. 3(b) and 3(d) for
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DD and MB, respectively. The color plots show fidelity
improving as the thresholds become more stringent. The
success probability defined as the percentage of stabilization
runs kept for tomography, given a set of thresholds, is also
plotted as contours for both DD and MB. There is a clear
trade-off between success probability and fidelity.
To reach the maximum fidelity in DD of 82%, at least
75% of experiment runs need to be discarded. The trade-off
is less severe in MB, where only 50% of runs need to be
discarded to reach the maximum fidelity of 75%. However,
we aim to eliminate this trade-off altogether, i.e., to improve
the fidelity while maintaining a high success probability.

IV. DD AND MB STABILIZATION—NESTED
FEEDBACK PROTOCOL

This goal is achieved by introducing a nested feedback
protocol (NFP), in which the stabilization feedback loop
enters into a higher layer of feedback for “fidelity boosting”
instead of proceeding to state tomography directly. In
contrast to the “fixed-time” protocol, NFP conditions the
termination of stabilization on the quality of the entangle-
ment; i.e., it heralds a successful stabilization run in real
time, as illustrated by the state machine diagram in
Fig. 4(a). The control variable C is given by C¼
ðIgg < Iheraldgg Þ AND ðIee < Iheraldee Þ, where fIheraldgg ; Iheraldee g
are determined by the same postselection experiment dis-
cussed previously to optimize the fidelity [black square in

Figs. 3(b) and 3(d)]. If the controller determines that the
entanglement quality is not sufficient (C ¼ 0), a boost phase
is attempted, which comprises exactly one correction step for
MB or a stabilization period of similar duration for DD
(1.4 μs). During the boost phase, the cavity outputs are
integrated to give fIgg; Ieeg, which enables the next real-time
assessment of C. In DD, the parity measurement and first
layer of feedback are accomplished autonomously; therefore,
the FPGA only needs to check C. However, in the MB
scheme, both layers of feedback are performed solely by the
FPGA. It therefore checks if C ¼ 1 to herald that the
entanglement meets the desired quality. If not, it uses
the quasiparity thresholds [grey circles in Fig. 3(d)] to
decide whether the qubits are in even or odd states in order
to continue stabilization. This asynchronous pulse sequenc-
ing and conditioning by multiple thresholds exploits the
programmable nature of the FPGA-based platform.
The asynchronous behavior of NFP is displayed in

Fig. 4(b) [Fig. 4(e)] for DD (MB), which demonstrates
200 single-shot runs. The DD (MB) fidelity boosting
sequence continues until either success or a maximum
limit on boost attempts (set to 11 in the experiment) is
reached. For the MB protocol, the trajectory of the qubits’
parity can be tracked by the conditioning outcomes of the
inner-loop control variable ~p and the outer-loop control
variable C, which are independent. Through repeated boost
attempts until success, NFP significantly improves the
overall success probability. Within 11 attempts, 95%
(99.8%) of DD (MB) runs satisfy the success condition,
compared to just 25% (50%) with simple postselection.
This result is assessed by the cumulative probability, the
integral of the probability of having completed a certain
number of boost attempts before tomography, as plotted in
Figs. 4(c) and 4(f). Since MB requires a less stringent
threshold than DD to gain fidelity improvement, the MB
success probability converges to unity much faster than that
of DD. Finally, we show that the high success probability
does not come at the cost of reduced fidelity. The fidelity to
jϕ−i for DD improves from an unconditioned value of 76%
to 82% (averaged over all successful attempts). For MB, the
improvement is more pronounced: Fidelity rises from an
unconditioned value of 57% to 74%. Thus, for both DD and
MB, NFPs attain close to the fidelity achieved via stringent
postselection. This improvement can be simulated through
a Markov chain model, extended from that introduced in
Sec. III C, and the results given here agree well with the
simulation (see Appendix E).
We note, however, a continuous downward trend of the

fidelity in both DD and MB schemes as the number of
attempts increases. This is due to the non-negligible
population in the jfi states of the two qubits in the
experiment, which escape correction by the stabilization
feedback loops. After each further boost attempt of
stabilization, the probability of the population escaping
outside the correction space thus increases, diminishing the
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FIG. 3. Trade-off between success probability and fidelity for
both DD and MB schemes obtained by experiment. (a) Pulse
sequence for heralding DD stabilization by postselection. At the
end of the stabilization period, the cavity outputs, Igg and Iee, are
measured at their respective frequencies. (b) Color plot of fidelity
to the target state for DD as a function of thresholds chosen for Igg
and Iee (see Appendix B for details of the thresholds). Also
plotted as white dashes are contour lines of the success proba-
bility associated with each choice. The solid black square
indicates the thresholds chosen for the condition C in the nested
feedback protocol described in Fig. 4. (c,d) Same as above for
MB, including the corresponding thresholds for C. The grey
circle indicates the thresholds chosen for the quasiparity meas-
urement ~p used to condition MB correction steps.
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fidelity (see Appendix G). Also note that the error bars on
the fidelity of MB are bigger than those in DD for large
attempt numbers simply because the probability of needing
many attempts is lower in MB than in DD.
While real-time heralding by NFP removes the trade-off

between fidelity and success probability, it does so by
introducing a different trade-off—high fidelity and success
probability are achieved, but the protocol length now varies
from run to run. If NFP is a module within a larger QIP
algorithm, then this asynchronous nature must be accom-
modated by the controller. For our FPGA-based control,
NFP is easily accommodated because it is a natural
extension to fixed-time or synchronous operation. In
fixed-time operation, the controller conditions its state
by the protocol length, which is predetermined and stored

in an internal counter by the experimenter. On the other
hand, in NFP, the controller conditions its state on a
predetermined logical function of its real-time inputs.

V. CONCLUSION

In conclusion, we have implemented a new measure-
ment-based stabilization of an entangled state of two
qubits, which parallels a previous driven-dissipative
stabilization scheme. Instead of coherent feedback by
reservoir engineering, MB relies on actively controlled
feedback by classical high-speed electronics external to
the quantum system. When comparing both schemes in
the fixed-time protocol, we observe that DD gives a higher
fidelity to the target state because of lower feedback
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latency. Furthermore, we have improved the fidelity of
both schemes by a nested feedback protocol which heralds
stabilization runs with high-quality entanglement in real
time. The real-time heralding brings about the fidelity
improvement without a common trade-off in QIP: It does
not sacrifice the experiment success probability. It elim-
inates this trade-off by allowing asynchronicity in the
experiment.
Our experiment shows some of the key advantages of

MB platforms that have not been previously explored.
Typically, the performance of MB feedback in terms of
state fidelity has not been at par with methods based on
postselection because of the latency of the controller.
However, postselection methods improve state fidelity at
the expense of low success probability, and hence existing
digital feedback experiments have focused on achieving
deterministic state preparation, i.e., with perfect success
probability [12,14–16]. Here, we are exploring another
direction of feedback which achieves high fidelity with
high success probability. Our nested feedback strategy
maximizes the use of the information coming out of the
qubit-cavity system in order to make the correction process
as efficient as possible. We find that our feedback platform,
comprised of a nearly quantum-limited measurement chain
and a real-time classical controller, provides the necessary
tool set to implement such a strategy. We show that this
technology can be extended to improve the performance of
DD approaches as well as single-layer MB approaches
themselves. This strategy could be carried out further in
the future. For example, the FPGA state estimator could
perform a more sophisticated quantum filter of the micro-
wave output of the DD stabilization to herald successful
events with better accuracy, significantly improving the
success probability convergence rate. We also note that
tools from optimal stopping, a well-studied subfield of
applied mathematics [62], could be used to improve our
current implementation of nested feedback.
Similar ideas can be applied in the future towards other

forms of stabilization, such as for stabilizing Schrödinger
cat states of a cavity mode [63], a proposed logical qubit.
Initial experiments on such logical qubits with high fidelity
measurement [64] or dissipation engineering [31] have
been performed and could now be combined. Likewise,
future logical qubits based on the surface code [4] could
also be stabilized by either active stabilizer measurements
[17–19] or, as recently proposed, by dissipation engineer-
ing [5,65]. The idea of combining elements of measure-
ment-based and driven-dissipative feedback into a nested
protocol is also agnostic to the particular physical quantum
system being controlled and thus could, for example, be
applied to feedback experiments with trapped-ion [9,24]
and Rydberg atom systems [7] as well. Our experiment
demonstrates that measurement-based and driven-dissipative
approaches, far from being antagonistic, can be merged to
perform better than either approach on its own.
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APPENDIX A: MEASUREMENT STRENGTH AND
DURATION CALIBRATION FOR MB

The quasiparity measurement strength and duration
were optimized in order to maximize the fidelity of
MB. This optimization was done by maximizing the
fidelity of the Bell state created in a calibration experi-
ment, similar to Ref. [15]. The qubits are prepared in
ground states (by postselection), and then two π=2 pulses
are applied to Alice and Bob, producing the state
jψi ¼ 1

2
ðjggi þ jeei þ jgei þ jegiÞ. The quasiparity

measurement, consisting of the two cavity drives on
fee and fgg, respectively, projects the qubits into one of
the two even states or entangles the qubits into a Bell state
with odd parity. We varied the duration of this parity
measurement and its strength in terms of photon number
(set to be identical) for each readout frequency to find the
parameters that maximize the fidelity of the entangled
state to the closest Bell state (Fig. 5). The Bell state
fidelity would ideally increase and asymptotically
approach one with increasing measurement time as the
parity measurement better distinguishes the odd Bell state
from the even states. On the other hand, at long meas-
urement duration, the coherence of the entangled state
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FIG. 5. Experimental calibration of measurement strength and
duration for MB. Fidelity to the state jϕþi ¼ 1ffiffi

2
p ðjgei þ jegiÞ

after preparing the qubits in a maximally superposed state
followed by a quasiparity measurement with postselection.
The fidelity is plotted as a function of measurement duration
and shown for a set of measurement strengths. The optimal values
chosen for the experiment are 660 ns and n̄ ¼ 4.5.
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decreases because of both natural and measurement-
induced dephasing, the latter of which is caused by the
χ mismatch between the qubits and is proportional to the
average number of photons used for the measurement
[39]. Therefore, there is an optimal measurement strength
and duration. For our experiment, a measurement
strength of n ¼ 4.5 for each readout frequency and a
measurement duration of 660 ns are found to be close to
the optimal values and are chosen to attain a Bell state
fidelity of 80%.
The value of 80% sets the upper bound on the fidelity

that we should expect for heralding MB. In the actual MB
experiment, an extra 310-ns delay was introduced after the
quasiparity measurement in a correction step, which does
not occur in the sequence described in this section for
optimizing the parity measurement parameters. This extra
delay was required to accommodate the feedback latency in
MB. The conditioned fidelity we obtained for heralded MB
is about 6% lower.

APPENDIX B: MEASUREMENT OUTCOME
DISTRIBUTION FOR DD AND MB

The cavity outputs at fgg and fee for both DD and MB
can be used to monitor the state of the qubits during
stabilization [Fig. 6(a)]. Histograms of the measurement
outcomes Igg and Iee, recorded by integrating the cavity
output at fgg and fee, respectively, are shown in Figs. 6(b)–
6(e) for DD and MB, respectively. In DD, the cavity output
signals are captured while all the CW drives are still on; i.e.,
the qubits are being driven while their states are being
monitored. However, in MB the outputs are a result of the

quasiparity measurements that occur after the qubit pulses
and thus when the qubits are not driven. We observe that the
measurement outcome distribution of DD lacks the sepa-
ration seen in MB, which has a clear parity separatrix
fIparitygg ; Iparityee g. This feature also appears in numerical
simulations of DD by the stochastic master equation
[66]. The state estimation in both DD and MB uses
“box-car” filtering [60], which simply sums up the
recorded cavity output signals over time to obtain the
measurement outcomes. This method, while appropriate for
MB, is not suited for DD since in the latter, the qubits are
undergoing actively driven dynamics when the measure-
ment is taking place. A more advanced filter, such as a
nonlinear quantum filter, can be designed from either first
principles or machine learning [67] in the future to improve
the state discrimination accuracy in DD.
The measurement outcomes to the left of both the Iheraldgg

(shown in Fig. 6) and Iheraldee thresholds are much less likely
to come from even states than those to the right. Therefore,
the experiment runs with these outcomes are selected for
state tomography, giving the results plotted as a color map
in Fig. 3 (main text). Moving the threshold further to the
left increases the stringency of the threshold as fewer
measurement outcomes are included. The success proba-
bility for each threshold choice (plotted as contours in
Fig. 3) is calculated by the ratio of included outcomes to the
total number of experiment runs.

APPENDIX C: DETERMINING QUASIPARITY
MEASUREMENT INFIDELITIES

The determination of quasiparity measurement infidel-
ities consists of two steps, preparing a state of known parity
followed by a quasiparity measurement. An example
histogram of the quasiparity measurement is shown in
Figs. 6(c) and 6(e). Outcomes that are simultaneously to the
left of the parity separatrix fIparitygg ; Iparityee g [rightmost
dashed lines in Figs. 6(c) and 6(e)] are determined to be
“odd,” while outcomes on the right of either separatrix are
determined as “even.” To determine the even-parity meas-
urement error, the qubits are first prepared in jggi with a
fidelity greater than 99% and the number of “odd” out-
comes. Normalizing these error counts by the total number
of outcomes gives ϵOjE, the error probability of obtaining
an odd-parity outcome after generating an even state.
Similarly, to determine the odd-parity measurement infi-
delity, the qubits are first prepared in jegi by preparing in
jggi followed by a π pulse on Alice, and the number of
“even” outcomes is determined. Normalizing these error
counts by the total number of outcomes gives ϵEjO), the
error probability of obtaining an even-parity outcome after
generating an odd state. We chose to use the states jggi and
jegi because of the significantly longer T1 of the Alice
qubit, which provides a more accurate estimate of the
infidelities.
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FIG. 6. (a) The cavity outputs at fgg and fee are integrated to
obtain measurement outcomes Igg and Iee, respectively. (b)–
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APPENDIX D: STEADY-STATE MODEL
FOR DD AND MB

As discussed in the main text, we can describe the qubits
by the density matrix ρ ¼ π−jϕ−ihϕ−j þ πþjϕþihϕþjþ
πggjggihggj þ πeejeeiheej. Therefore, in terms of proba-
bility distributions in the four basis states, the qubit state ~S
can be represented by a vector,

~S ¼

0
BBB@

π−
πþ
πgg

πee

1
CCCA: ðD1Þ

If the qubits are prepared in jϕ−i, that is, ~SðiÞϕ− ¼
ð1; 0; 0; 0ÞT, we can calculate ~SðfÞϕ− after a correction step
by applying the master equation simulation method
described in Sec. III C. We need to consider the two
possible cases where the conditional unitary applied is

UO or UE, respectively. The ~SðfÞϕ− is a weighted average of
the two cases.

~SðfÞϕ− ¼ ð1 − ϵEjOÞ � ~SðfÞϕ−jU¼UO
þ ϵEjO � ~SðfÞϕ−jU¼UE

; ðD2Þ

where ϵEjO and ϵOjE are the quasiparity measurement
infidelities due to limited measurement efficiency, intro-
duced in the main text. In a similar manner, we can obtain
~SðfÞϕþ . In the case of an even initial state, for example,
~SðiÞgg ¼ ð0; 0; 1; 0ÞT, we have

~SðfÞgg ¼ ð1 − ϵOjEÞ � ~SðfÞggjU¼UE
þ ϵOjE � ~SðfÞggjU¼UO

; ðD3Þ

and similarly for ~SðfÞee .

Given ~SðfÞϕ− ,
~SðfÞϕþ ,

~SðfÞgg , and ~SðfÞee , we can construct the
transition matrix T of a correction step,

T ¼ ð ~SðfÞϕ− ;
~SðfÞϕþ ;

~SðfÞgg ; ~S
ðfÞ
ee Þ; ðD4Þ

where the ~SðfÞ’s are the columns of the 4 × 4 matrix. Now,
applying this transition matrix on any arbitrary initial state
gives the final state after a correction step,

~SðfÞ ¼ T ~SðiÞ: ðD5Þ

The transition matrix T is also called the stochastic
matrix, with the property that each column sums to 1.
One of the T ’s eigenvalues is guaranteed to be 1, and the
corresponding eigenvector ~S∞ is the steady state of the
Markov chain. It can easily be shown that for any arbitrary
initial state ~SðiÞ,

lim
k→∞

T k ~SðiÞ ¼ ~S∞: ðD6Þ

For the given experimental parameters in MB, the T matrix
is displayed in Fig. 7, and we find the steady-state
eigenvector to be

~S∞ ¼

0
BBB@

0.58

0.11

0.18

0.13

1
CCCA: ðD7Þ

Thus, the Markov model predicts a steady-state fidelity of
58% to jϕ−i. Taking into account the duration of a
correction step (1.5 μs), we can also calculate the character-
istic time constant of the MB scheme from the model,
which gives 1.4 μs. Both values agree very well with
experimental results.
We can calculate the expected fidelity when some of

the experimental parameters are improved in the near
future. If the measurement efficiency is improved from
30% to the current state-of-the-art value of 60%, the
measurement duration can be reduced by half while
maintaining the quasiparity measurement infidelities
[54]. The instrument and FPGA latencies incurred in
the experiment can also be reduced by 100 ns in the
latest hardware setup and FPGA logic design in operation
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FIG. 7. Markov model of a correction step in MB. Transition
between any two nodes is possible and is represented as a
directional edge. The 16 possible transitions make up the 16
matrix elements in the stochastic transition matrix T , correspond-
ing to a correction step in MB. Numbers next to the edges
represent the elements of T calculated for the current experiment
parameters by a master-equation simulation.
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while this article was being prepared. The measurement
duration and control latency reduction can shorten the
correction step length to 1 μs, which can improve the
steady-state fidelity to 66%. Furthermore, if the coher-
ence times are also improved to the state-of-the-art values
in the hundred microsecond range for superconducting
qubits, both DD and MB fidelities in the fixed-time
protocol can be above 85%, limited by the χ mismatch
(assumed to be 10%, as in the current experiment). The
prospects of both DD and MB schemes are summarized
in Table II.

APPENDIX E: SIMULATION OF REAL-TIME
HERALDING BY NESTED FEEDBACK

PROTOCOL FOR DD AND MB

The Markov chain model introduced in Appendix D can
be extended to simulate NFP. We can construct a “nested”

Markov chain (Fig. 8) for each boost attempt of NFP. At the
outermost level, there are two nodes. One node denotes
the trajectories that have just been heralded as successful;
the other node denotes the trajectories that require at least
another boost attempt. Building on the vector description
established in the previous section, we represent the
heralding of trajectories before a boost attempt by a
diagonal matrix ~c,

~c ¼

0
BBB@

cϕ−
cϕþ

cgg
cee

1
CCCA: ðE1Þ

After stabilization of some predetermined duration, if
the qubits are (on average) in state ~Sð0Þ, then the
average state of the qubits that are heralded is then
given by

~Sð0Þherald ¼
~c ~Sð0Þ

∥~c ~Sð0Þjj1
; ðE2Þ

where ∥ · jj1 is the L1 norm of the vector (the sum
of the entries in the vector). The normalization is
required since heralding selects only a subset of the
trajectories; i.e., the matrix ~c does not preserve the
norm of ~S.
Each entry on the diagonal of ~c gives the fraction of

trajectories that get heralded (selected) from a particular
state. Their values depend on the particular heralding
thresholds used, Iheraldgg and Iheraldee (Appendix B). This matrix
can be determined phenomenologically by the postselection
experiment shown in Fig. 3 (main text). From the experi-
ment, we can find the average state without any conditioning

(no heralding), ~Sð0Þ ¼ ðπð0Þ− ; πð0Þþ ; πð0Þgg ; π
ð0Þ
ee ÞT, and the aver-

age state of the heralded trajectories, ~Sð0Þherald ¼ ðπ0−; π0þ;
π0gg; π0eeÞT. Given the success probability Ps of using the
thresholds [the white dashed contour line of Figs. 3(b)
and 3(d) in the main text], the diagonal elements can be
calculated as

cϕ− ¼ π0−Ps

πð0Þ−
; cϕþ ¼ π0þPs

πð0Þþ
;

cgg ¼
π0ggPs

πð0Þgg

; cee ¼
π0eePs

πð0Þee

: ðE3Þ

For the specific heralding thresholds used in the experi-
ment [represented by the black squares in Figs. 3(b)
and 3(d) in the main text], ~cDD and ~cMB are explicitly
given by

boosting

heralded
c̃

1 − c̃

FIG. 8. Markov model of the NFP for real-time heralding. This
model is an extension of the model introduced for MB. During a
boost attempt, transitions occur inside the “boosting” node for
further stabilization. The edge leading from the boosting to the
“heralded” node represents the real-time heralding that selects
some fraction of trajectories by the threshold-dependent matrix ~c
(see text) at the end of a boost attempt. Those that are not selected
(1 − ~c) enter into another boost attempt.

TABLE II. Listing of the steady-state fidelities of the fixed-time
protocol for DD and MB schemes for the current experiment (see
detailed parameters in Sec. II) and simulation with improved
parameters, assuming χ values as in the current experiment. The
prospective values in the last row also take into account the
parameter changes in the second row. Note that measurement
efficiency and control latency change do not affect DD.

Steady-state fidelity

DD MB

Experiment Current parameters 76% 57%

Simulation η ¼ 0.6, latency ¼ 586 ns 76% 66%
T1,T2 ¼ 100 μs 86% 86%
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~cDD ¼

0
BBB@

0.26

0.20

0.19

0.18

1
CCCA;

~cMB ¼

0
BBB@

0.68

0.69

0.19

0.10

1
CCCA: ðE4Þ

Ideally for ~c, only cϕ− should be nonzero. But, in
practice, since we cannot distinguish jϕ−i and jϕþi, cϕþ
is comparable to cϕ− . Furthermore, for both DD and MB,
cgg and cee are also non-negligible. In DD, this is
predominantly due to the lack of separation between the
even and odd measurement outcomes as discussed in
Appendix B. In MB, the qubits can jump during the delay
between the completion of the quasiparity measurement
and the end of a correction step due to T1 events. Thus,
for MB, trajectories that are heralded by very stringent
thresholds still have a nonzero probability of being in the
even-parity states.

Given the heralding matrices ~cDD and ~cMB, we can now
calculate the average state of the trajectories that are not
heralded and thus require a boost attempt as

~sð0Þboost ¼ ðI − ~cÞ ~Sð0Þ; ~Sð0Þboost ¼
~sð0Þboost

∥ · jj1
; ðE5Þ

wherewe introduce the lowercase ~sð0Þboost as the un-normalized
population distribution vector and ∥ · jj1 denotes theL1 norm
of the numerator.
After this boost attempt, the qubits are in state ~Sð1Þ,

~Sð1Þ ¼ T ~sð0Þboost

∥ · jj1
¼ T ðI − ~cÞ ~Sð0Þ

∥ · jj1
; ðE6Þ

where T is the stochastic transition matrix that models the
stabilization during a boosting attempt. In Appendix D, we
have already found T for MB. By the same method, we can
also derive the effective transition matrix of a boost attempt
for DD. The calculation of T for DD is an approximation:
Because of the continuous cavity drives, the state of the
qubits at the beginning of a boost attempt is entangled with

(a) (c)

(b) (d)

DD MB

FIG. 9. Simulation of real-time heralding by NFP. The left (right) panel presents the results for DD (MB). (a,c) Cumulative success
probability of having completed, at most, a given number of boost attempts before tomography for DD and MB, respectively. The green
curve shows the experimental result as presented in the main text. The blue curve is the simulation result using the same experimental
parameters. (b,d) Fidelity to jϕ−i for DD and MB, respectively. The cyan dashed line denotes the unconditioned steady-state fidelity
obtained in the experiment. Green squares (blue circles) show the corresponding fidelity as a function of the number of boost attempts
during NFP obtained in the experiment (simulation).
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a qubit-state-dependent cavity state, which we approximate
unconditionally by the average steady-state cavity state in
DD. Nonetheless, as we show, the model still produces a
quantitative behavior that agrees very well with the
experimental results. From the above equations, it is easy
to show that the average qubit state of the heralded
trajectories after k boost attempts is given by

~SðkÞherald ¼
~cðT ðI − ~cÞÞk ~Sð0Þ

∥ · jj1
: ðE7Þ

In the case of a prestabilization of a sufficient number of
correction steps (or duration), ~Sð0Þ is given by the steady
state ~S∞ introduced in Appendix D.
For each of the k boost attempts, the first entry in the

vector ~SðkÞherald, i.e., π
0, gives the fidelity to jϕ−i. The L1 norm

of the numerator in the expression for ~SðkÞherald gives the
percentage of trajectories that have completed k boost
attempts. Summing the percentages over all values of k
from 0 to the maximum limit gives the overall success
probability. In Fig. 9, we show the results of the simulation
using the model described here and compare them to the
experimental results presented in Fig. 4 of the main text.
Furthermore, from the simulation, we find that with the
realistic system parameter improvement as specified in
Appendix D, the fidelity of heralded trajectories can be

90% and 95% for DD and MB, respectively, with order
unity success probability.

APPENDIX F: MEASUREMENT-INDUCED AC
STARK SHIFT AND CORRECTION FOR MB

The quasiparity measurement induces a deterministic
phase shift between the two qubits because of the meas-
urement-induced ac Stark shift [39]. This is evidenced by
examining the phase of the Bell state created in the
measurement optimization experiment described in
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FIG. 10. Correcting for the deterministic measurement-induced ac Stark shift. (a) Deterministic phase shift induced by measurement
as a function of measurement duration. (b) One example of a sequence trajectory illustrating the phase correction Rb

z ðθÞ at work. See the
detailed explanation in accompanying text. (c) Fidelity of the steady state to the target Bell state as a function of the correction angle of
the effective Z gate on Bob.
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FIG. 11. Experimental measurement of f-state population
plotted as a function of the boost attempt number in NFP for DD.
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Appendix A, in which we varied the measurement duration.
As the measurement duration is increased, the Bell angle of
the final Bell state changes linearly [Fig. 10(a)]. In order for
MB to work, we need to account for the deterministic phase
shift induced by the measurement. This correction is
accomplished by a “Z” rotation on Bob before the unitary
UO. Figure 10(b) gives one example of a sequence

trajectory to illustrate how the correction works. With no
loss of generality (and the reason will become clear soon
in the discussion that follows), we construct UE ¼
Ra
xðπ=2Þ ⊗ Rb−ϕo

ðπ=2Þ and UO ¼ Ra
xðπ=2Þ ⊗ Rb

ϕo
ðπ=2Þ

(where ϕo ¼ 0 corresponds to the X axis) such that jϕoi ¼
jgei þ eiϕo jegi is the eigenstate ofUO, and applyingUE on
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FIG. 12. Setup of the experiment. The qubit-cavity system was placed at the base stage of a dilution refrigerator (Oxford Triton200)
below 20 mK. On the input side, two FPGAs (Innovative Integration X6-1000M) generated the pulse envelopes in I and Q quadratures to
modulate the qubit drives at fAlice and fBob frequencies (Vaunix Labbrick LMS-802) for Alice and Bob, respectively. The I/Q
modulations were output by the FPGAs with one and two single-sideband modulations in MB and DD (so that both zero-photon and
n-photon qubit frequencies were addressed), respectively. The microwave frequency drives and I/Q modulation were mixed by IQ
mixers. Two Agilent N5183 microwave generators produced the cavity drives at fee and fgg, respectively. The cavity drives were also
pulsed by the FPGAs. On the output side, the transmitted signal through the cavity was directed by two circulators to the JPC for nearly
quantum-limited amplification. It was further amplified at the 3-K stage by a cryogenic HEMT amplifier. After additional room-
temperature amplification, the signal was split into two interferometric setups for readouts at the fgg and fee frequencies, respectively. In
each of the interferometers, the signal arriving from the fridge was mixed with a local oscillator set þ50 MHz away to produce a down-
converted signal at 50 MHz. A copy of the cavity drive that did not go through the fridge was also down-converted in the same manner to
produce a reference. Finally, the two signals with their respective references were sent to the analog-to-digital converters on the FPGA
boards for digitization and were further demodulated inside the FPGAs. The two FPGAs jointly estimate the qubit state by
communicating their results with each other. Along the input and output lines, attenuators, low-pass filters, and homemade Eccosorb
filters were placed at various stages to protect the qubits from thermal noise and undesired microwave and optical frequency radiation.
Moreover, the cavity and JPC were shielded from stray magnetic fields by aluminum and cryogenic μ-metal (Amumetal A4K) shields.
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the even states results in jϕoiwith 50% probability after the
quasiparity measurement. Suppose that the qubits are in the
ground states, UE is applied, and the subsequent quasi-
parity measurement gives ~p ¼ −1. During the quasiparity
measurement, a deterministic phase shift of ϕD is added.
Since the measurement is reported to be odd, the next
conditional unitary isUO. The Z gate beforeUO undoes the
phase shift and recovers the eigenstate which UO leaves
unchanged. After another parity measurement, the qubits
are in the state jgei þ eiðϕoþϕDÞjegi, with the phase shift
added again. Consequently, we can see that the MB
sequence actually stabilizes the jgei þ eiðϕoþϕDÞjegi state.
In practice, for our experiment, the Z rotation for Bob is
constructed from a composite of X and Y rotations, such
that Rb

zðθÞ ¼ Rxðπ=2ÞRyðθÞRx½−ðπ=2Þ�, and the effective
correction angle θ is swept [Fig. 10(c)] to find the optimal
value that cancels the deterministic phase shift and thus
maximizes the fidelity. Furthermore, to make the target
state of the stabilization jϕ−i, the rotation axis of the pulses
on Bob in UO and UE is chosen such that ϕo þ ϕD ¼ π.
This correction for the measurement-induced ac Stark shift
is also done in the simulation for MB.

APPENDIX G: f STATE MEASUREMENT
DURING NFP

While we have been treating our two qubits as purely two-
level systems, in reality there are higher energy levels; in
particular, the second excited level is expected to play a non-
negligible role in the dynamics. We find that the equilibrium
qubit population not in the jggi state was about 15%, and the
f state was also populated. To investigate whether the
decrease of the fidelity in NFP as a function of the boost
attempt number is due to the role played by the f-state
population, we measured the populations in jfgi, jfei, jgfi,
jefi, and jffi after a given number of boost attempts in DD.
The population in jfgi was measured by applying a π pulse
on Alice’s e-f transition, then a π pulse on its e-g transition,
followed by a measurement of the population in jggi. The
other f-state populations are similarly obtained. The sum of
these five populations gives the total f-state population
plotted in Fig. 11, which indeed increases as a function of
boost attempt number. It is therefore plausible that the
decrease in fidelity with respect to number of boost attempts
is due to the system being trapped in other levels outside the
correction space. This problem, which is common in similar
atomic physics experiments, could be addressed by addi-
tional drives.
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