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Comparing and Combining Predictive Business
Process Monitoring Techniques

Andreas Metzger, Philipp Leitner, Dragan Ivanović, Eric Schmieders, Rod Franklin, Manuel Carro,
Schahram Dustdar, and Klaus Pohl

Abstract—Predictive business process monitoring aims at fore-
casting potential problems during process execution before they
occur so that these problems can be handled proactively. Several
predictive monitoring techniques have been proposed in the past.
However, so far those prediction techniques have been assessed
only independently from each other, making it hard to reliably
compare their applicability and accuracy. We empirically ana-
lyze and compare three main classes of predictive monitoring
techniques, which are based on machine learning, constraint sat-
isfaction, and Quality-of-Service (QoS) aggregation. Based on
empirical evidence from an industrial case study in the area of
transport and logistics, we assess those techniques with respect to
five accuracy indicators. We further determine the dependency
of accuracy on the point in time during process execution when
a prediction is made in order to determine lead-times for accu-
rate predictions. Our evidence suggests that, given a lead-time of
half of the process duration, all predictive monitoring techniques
consistently provide an accuracy of at least 70%. Yet, it also
becomes evident that the techniques differ in terms of how accu-
rately they may predict violations and nonviolations. To improve
the prediction process, we thus exploit the characteristics of the
individual techniques and propose their combination. Based on
our case study data, evidence indicates that certain combinations
of techniques may outperform individual techniques with respect
to specific accuracy indicators. Combining constraint satisfaction
with QoS aggregation, for instance, improves precision by 14%;
combining machine learning with constraint satisfaction shows
an improvement in recall by 23%.
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I. INTRODUCTION

M
ODERN information technology offers unprecedented
means for real-time monitoring and control of cross-

organizational business processes. Cloud computing [1], the
internet of things [2], and service-oriented computing [3] are
increasingly adopted by industry to increase visibility, agility
and efficiency of business processes. The application domains
in which this is happening include agriculture [4], food [5],
manufacturing [6], energy [7], transport and logistics [8], as
well as supply chain management [9].

One emerging opportunity facilitated by increased visi-
bility of business processes is predictive business process
monitoring, which aims at detecting potential problems during
process execution ahead of time so that these problems can be
anticipated and thus proactively managed and mitigated [10].
Predictive business process monitoring makes it possible to
apply countermeasures to prevent the occurrence of problems
and it can help prepare mitigation and replanning mechanisms
for an upcoming problem in order to increase the ability to
respond to the problem [11]. As an example, if a delay in
delivery time is predicted during the execution of a freight
transport process, faster means of transport or alternative trans-
port routes could be scheduled proactively and before the delay
actually occurs, if such rescheduling brings an advantage to
the overall execution time of the process.

Traditionally, business process management solutions
offered limited capabilities for predictive monitoring of indi-
vidual business process instances. While techniques for
real-time business process monitoring, such as business
activity monitoring [12], exploit real-time data to support
dynamic decision making and optimization of running busi-
ness processes, those solutions lack predictive capabilities. On
the other hand, predictive approaches for business processes,
such as business (process) intelligence [13], focus on longer-
term predictions based on historic data or on predictions of
aggregate indicators, such as key performance indicators.

Recently, techniques for predictive monitoring of individual
process instances have been proposed. These predictive busi-
ness process monitoring techniques leverage, for instance, data
mining [14], machine learning [15], Quality-of-Service (QoS)
aggregation [16], and predictive event processing [17]. Initial
empirical evidence has been presented on the applicability
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and usefulness of these prediction techniques. Yet, empirical
evaluation so far focused on the assessment of each of the
prediction techniques in isolation. As a consequence, different
benchmarks were used and different assumptions were made
in each of these evaluations. This makes it hard to reliably
compare their applicability and accuracy.

To address the aforementioned gap, we perform an empirical
comparison of three main classes of predictive monitoring tech-
niques: machine learning [18], constraint satisfaction [19], and
QoS aggregation [20]. We analyze their applicability and predic-
tion accuracy in an industrial case study in the area of transport
and logistics. The case study covers a global supply chain involv-
ing actual transport and logistics services managed by a large,
international forwarding company. The data set underlying our
case study contains monitoring data of 3942 business process
instances collected over a period of five months, comprising a
total of 56 802 executions of business activities.

Our evidence suggests that the prediction techniques may
deliver good prediction accuracy with feasible lead-times; e.g.,
given a lead-time of half of the process duration, all predictive
monitoringtechniquesconsistentlyprovideanaccuracyofat least
70%. Yet, our evidence also indicates that the techniques differ
in terms of how accurately they may predict violations and non-
violations. We exploit these differences by combining individual
techniques with the aim of improving the prediction process.
Our empirical findings indicate that combinations of techniques
may outperform individual techniques with respect to specific
accuracy indicators; e.g., combining constraint satisfaction with
QoSaggregationimprovesprecisionby14%,combiningmachine
learning with constraint satisfaction improves recall by 23%.

The case study in this paper focuses on violations of process
performance. Specifically, we aim at predicting, during process
execution, whether the effective time of delivery will exceed the
planned time of delivery. It should be noted that the predictive
monitoring techniques we employ are not limited to performance
but might work also for other numeric and monotonic quality
attributes. For instance, such quality attributes include time of
booking cancellations (to predict late cancellations leading to
underutilization of transport assets [8]) or cargo volumes (to
predict volume discrepancies which may lead to over- or under-
loading situations [17]). Further, the prediction techniques might
be employed to predict multiple quality attributes. In the case of
fresh produce, as an example, such multiple quality attributes
could be time of delivery and quality of delivered product.

The remainder of the paper is structured as follows.
Section II discusses how our contribution advances the state of
the art in predictive business process monitoring. Section III
provides background and technical details on the three pre-
dictive monitoring techniques that we compare in this paper.
Section IV describes the design and execution of our case
study. Section V presents and discusses our findings for
the individual techniques. Section VI depicts the results for
combining the prediction techniques.

II. RELATED WORK

This section summarizes work related to monitoring and
prediction of business processes and discusses how our con-
tributions differ from that work.

Business activity monitoring (BAM) [12] aims to provide
continuous situation awareness and access to current business
process performance indicators [21]. BAM facilitates imme-
diate operational decisions, based on real-time data, i.e., data
which has arrived in the past seconds or minutes and thus
focuses on capturing and processing business events with
minimum latency [22]. In contrast to more traditional real-
time monitoring approaches, BAM draws information from
multiple systems and across organizations [23]. Although
BAM solutions exploit real-time data to support dynamic
decision making and optimization of business processes, BAM
solutions lack predictive monitoring capabilities.

Business (process) intelligence [13], which belongs to
the broader class of business analytics, aims to deter-
mine future trends based on past observations of business
process execution and to forecast the impact of business
process changes [22]. By exploiting simulation, data min-
ing or optimization techniques, business intelligence focuses
on providing longer-term predictions. In order to reduce
the latency between a business event and the reaction to
the event (see [24]), real-time business intelligence, also
known as operational intelligence, has been proposed [25].
Operational intelligence advocates real-time decision mak-
ing, and thus introduces capabilities for real-time, continuous
processes analysis. Typically, operational intelligence tech-
niques focus on the real-time prediction of aggregate indicators
computed for a set of process instances, such as key per-
formance indicators that abstract from individual process
performance measures. As an example, Castellanos et al. [14]
introduce a data-mining-based technique for predicting aggre-
gated metric values of process performance indicators, such as
average processing time. This means, that operational intelli-
gence techniques typically fall short in predicting performance
of individual process instances, and thus only provide lim-
ited support to proactively address problems related to the
execution of a single process instance.

For what concerns predictive monitoring of individual busi-
ness process instances, several solutions have been presented
in the literature, each focusing on one specific prediction
technique. Castellanos et al. [14] and Grigori et al. [26]
propose employing data mining to learn prediction models
for process instances. The authors provide evidence for the
usefulness of their technique and a high-level analysis of
the technique’s prediction accuracy. They observe that accu-
racy increases as process instance execution proceeds, and
that “critical” nodes in process execution affect accuracy.
In fact, those findings are corroborated by our empirical
results. However, the authors do not provide a detailed analysis
of accuracy in terms of false positive and negative predic-
tions, an important aspect that can differ significantly between
prediction techniques as we observe in Section V-D.

Van der Aalst et al. [16] propose predicting the remaining
execution time of running process instances by considering
process models that are mined from process logs. Process min-
ing allows addressing situations in which the actual process
model is not fixed or where it is unknown. Predictions are
performed using QoS aggregation rules (see Section III-C)
employing descriptive statistics over past observations, such
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as average, variance, or mean. Bevacqua et al. [27] sug-
gest to automatically cluster mined process instances based
on context factors (such as workload or calendar time) and
to derive prediction models for each of those clusters. The
empirical evidence gathered from a real-world example indi-
cates that this clustering-based prediction approach leads to
an improvement in prediction accuracy when compared, for
instance, with the approach of van der Aalst et al. [16]
and Rogge-Solti and Weske [28] provide yet another angle
to improve the prediction of the remaining execution time
of running process instances. In contrast to other predic-
tion techniques, the technique of Rogge-Solti and Weske [28]
explicitly considers expected events that have not yet occurred.
Business processes are modeled as stochastic Petri nets.
Monte Carlo simulations are employed to perform the actual
prediction. Rogge-Solti and Weske [28] provide empirical evi-
dence that indicates significant accuracy improvements over
the prediction technique of van der Aalst et al. [16]. All three
aforementioned techniques aim at predicting the remaining
time until process completion. Empirical evaluation resorts
to prediction error metrics (such as mean absolute error and
root mean squared error) to assess prediction accuracy. Despite
indicating the promising potential of the proposed prediction
techniques, prediction error metrics do not directly unveil how
well a technique may predict the actual need for proactively
managing and mitigating problems. This, however, is the aim
of the metrics that we introduce in Section IV-B, which take
into account planned process performance and thus can be
used to determine true and false predictions (see [29]).

Kang et al. [15] employ machine learning to augment
process monitoring with predictive capabilities. To this end,
they introduce an extension of support vector machines (see
Section III-A) for the purpose of prediction. Based on a data
set of 1030 instances, Kang et al. [15] provide initial evidence
for the applicability of machine learning techniques for pre-
dictive business process monitoring. Our results can thus be
considered to reinforce their initial findings in a real industry
setting.

Feldmann et al. [17] provide empirical evidence on the
applicability and usefulness of predictive complex event
processing (CEP). Generally speaking, CEP is a framework
whose purpose is the detection of complex events by analyz-
ing and aggregating incoming raw events [30]. CEP is widely
used in business activity monitoring solutions (see [12], [22])
However, as pointed out above, existing business activ-
ity monitoring solutions are reactive, i.e., only respond to
actual deviations observed during business process executions.
Feldmann et al. [17] leverage initial proposals to extend CEP
with predictive capabilities (such as [31], [32]) and develop a
concrete combination of a predictive model with probabilistic
rules that fire alerts based on predictions. Feldmann et al.’s [17]
findings are based on the same raw Cargo 2000 data that is
also the basis for our case study. However, in contrast to our
case study, the authors address prediction of volume discrep-
ancies, thereby supporting the proactive management of over-
and under-load situations of individual air transports.

Summarizing the discussion of related work, this paper pro-
vides three main novel contributions. First, using a common

Fig. 1. Main steps of machine-learning technique.

case study, we provide an in-depth comparison of predictive
monitoring techniques, fostering a better understanding of each
of the technique’s applicability and limitations in practice.
Second, we complement existing proposals for predictive pro-
cess monitoring (so far advocating data mining, machine
learning, QoS aggregation, and predictive CEP) by proposing
constraint satisfaction as a further promising technique. Third,
we present different combinations of prediction techniques
and provide evidence that suggests that such a combination
may outperform individual techniques with respect to specific
accuracy indicators.

III. PREDICTIVE MONITORING TECHNIQUES

This section introduces the predictive monitoring techniques
we experimentally compare in this paper. We provide back-
ground information about the class of techniques, as well
as details about each of the concrete techniques used. We
have purposefully selected one concrete, nonspecialized tech-
nique from each class, avoiding special-purpose or ad-hoc
techniques for the sake of generalizability of the results. In
some cases, it may have been possible to achieve better
results with less general, more case-study-specific approaches
or parameterizations, but then the conclusions drawn might
not be valid for similar cases where that specific technique or
parameterization is not applicable.

A. Machine Learning

Machine learning deals with (semi-)automated learning of
relationships or behavior from data. Fig. 1 outlines the overall
procedure of the machine learning-based predictive monitoring
technique. Essentially, there are two separate steps. First, in
the model learning step, a predictor is trained from an existing
set of training data, e.g., a data set containing historical pro-
cess execution traces. In this first step, we also need to decide
which data is most important for prediction. This can be done
manually by a human or semi-automatically using techniques
such as principal component analysis [33]. Second, in the run-
time prediction step, data collected from the running process
instance is used as input to the trained machine learning model
to generate a concrete prediction for this process instance.

Many different machine learning approaches could be
used to implement the aforementioned machine learning-
based prediction technique. Among the better-known and
most relevant approaches, we can cite artificial neural
networks (ANNs) [34], [35], decision trees [36], support vec-
tor machines (SVMs) [37], Bayes networks [38], and cluster
analysis [39]. In what follows, we describe an implementation
using ANNs, as we have used this approach to good success
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in earlier research [18], [40]. ANNs are a machine learn-
ing approach inspired by the inner workings of the human
brain and, therefore, belong to the larger group of bio-
inspired computing techniques [41]. Basically, ANNs consist
of one or more layers of nodes (neurons) and directed
connections between neurons. There are many possible inter-
connection schemes (topologies), but ANNs often consist of
an input layer, an output layer, and one or several interme-
diate layers. In each layer, every node is connected with all
nodes in the next layer. This architecture is called feed-forward
multilayer perceptron [34]. Central to the correct function-
ing of a neural network is the importance (weight) of each
connection between nodes. These weights are learned via
training from historical data. Typically, training starts with
random weights and is continued in several iterations until
a set of weights is found that maximizes the correlation
between the outcome of the network and the actual outcome
of the examples. Different algorithms can be used to adapt the
weights, such as back-propagation [35].

In order to employ ANNs for predictive monitoring of
the transport process in our case study, we firstly need to
define one or more concrete points in the process structure
where we want to carry out predictions. We refer to these
points as checkpoints. As an example, such checkpoints could
be established before each activity in a business process.

For each checkpoint, we select the process data that is
already available and which is most important for prediction
(as mentioned above), i.e., we define the attributes that are
most relevant and use them to train the ANN. As an example,
we use the execution times of the services that are executed up
to the checkpoint. At runtime, the technique triggers a predic-
tion whenever the execution of a business process instance
passes the checkpoint. It generates a prediction using the
runtime process monitoring data collected from this specific
process instance. Then, the technique compares the generated
prediction with the planned process performance and decides
whether a violation might occur.

As explained above, machine learning requires data about
the execution of past business process instances in order to
train the prediction models. A general concern in machine
learning is that only with enough of such past observations,
accurate predictions can be expected, and, oftentimes, more
data is better than improved machine learning algorithms [42].

B. Constraint Satisfaction

Constraint satisfaction [43] is a problem-solving approach
that expresses the conditions that a solution has to meet as con-
straints, i.e., equations involving problem variables over some
(e.g., numeric) domains. This set of constraints is termed the
constraint satisfaction problem (CSP). A solution to a CSP
is an assignment of values to variables that satisfies all con-
straints. This assignment is usually automatically generated
by a constraint solver. The availability of powerful constraint
solvers led to the wide-spread use of constraint modeling in
many application domains ranging from logistics to industrial
optimization.

Constraint solvers are designed to respect some correctness
criteria. When a solver determines that there is no solution to

Fig. 2. Main steps of constraint satisfaction technique.

a given problem, then we know for sure that it is not solvable.
However, in some cases, a solver may not be able to decide
whether there is a solution or not. Therefore, the absence of a
solution always means that the system is unsatisfiable, while
producing a candidate solution means that the system may be
satisfiable, but not neccessarily so.1

For the application of the constraint satisfaction technique
(and also for QoS aggregation, see Section III-C), business
process models are seen as structured “programs” whose con-
structs include both the execution of basic services as well
as complex constructs: sequences of service executions, con-
ditional executions, loops, and synchronization points (known
also as and-joins).

The CSP we formulate in this context is concerned with
quality attributes we wish to analyze—in particular, execution
time. The execution time of complex constructs is structurally
derived from that of their components: the duration of a
sequence of service executions s1 and s2 with respective exe-
cution times T1 and T2 is Tseq = T1+T2, while the duration of
their and-join (parallel execution) is Tand = max(T1, T2).2 By
using the structure of the business process, a set of equations is
progressively built. These equations relate the execution times
of the basic services with that of the progressively higher
constructs, up to the level of the entire process. For the indi-
vidual services of a business process, whose internal details
are unknown, we need to rely on collected evidence about their
behavior. In particular, for the execution times of individual
services, we use empirically determined bounds, which give
ranges of the form ℓ ≤ T ≤ u.

The equations derived from the structure of the business pro-
cess, together with the ranges for the individual services, form
a CSP whose formulation is the initial step in the constraint-
based predictive monitoring technique sketched in Fig. 2. All
the steps involved in formulating the CSP are purely mechan-
ical and thus do not require involvement of technical experts.
Those steps may even be automated to generate the CSP
from the process model and statistical data about past service
executions. A more detailed description is available in [19].

In the second step, we attempt to solve this CSP taking
into account the expected process performance, i.e., the “end-
to-end” quality target (a time limit, in our case). We construct

1This is an oversimplification for conciseness: in practice, it is often pos-
sible to tell apart a true solution, which guarantees satisfiability, from a
candidate solution.

2Assuming a parallel construct involving s1 and s2 always executes the
services really in parallel. If they can be executed one after the other, the
constraint should be max(T1, T2) ≤ Tand ≤ T1 + T2.
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two different cases to check: one where we require that the
overall time limit is respected (corresponding to the OK case),
and another one where we force the time limit to be exceeded
(the FAIL case). If the CSP where the time limit is exceeded
is unsatisfiable, then a violation is not possible and therefore a
nonviolation is predicted. Inversely, if the CSP where the time
limit is respected is unsatisfiable, a violation is predicted. If
no case is unsatisfiable, no definite prediction can be produced
at that time.

The CSP can be created at any point in the execution of a
process, and it will capture the conditions imposed by the rest
of the execution as determined by process monitoring (e.g., if
a service completed slower than planned, less time remains
for the rest of the process to complete on time). This makes
it possible to perform continuous prediction in several points
until the prediction outcome allows us to make a decision. In
this paper, for simplicity, we stop the prediction process once
the first definite prediction has been obtained.

Our implementation of the constraint-based predictor uses
the ECLiPSe constraint logic programming system [44] featur-
ing nonlinear integer and real constraints, and a background
MySQL database for storing and analyzing data-dependent
ranges of the execution times for the basic services.

Unlike machine learning, constraint satisfaction does not
need to be trained and only requires statistical information
about the past process executions.

C. QoS Aggregation

QoS aggregation refers to the rule-based reduction of pro-
cess models to determine end-to-end QoS values. QoS aggre-
gation rules are defined for the control constructs in a process,
and include sequence (Tseq = T1 + T2), parallel execution
(Tand = max(T1, T2)) and loop (Tloop = T1 ·k, with k being the
number of loop iterations). QoS aggregation was initially con-
ceived as a design-time technique, but has been extended into
a run-time technique for service compositions [45]. During
run-time, QoS aggregation rules are evaluated using process
monitoring data and planned QoS values for the remaining
service executions as input. It should be noted that, despite
using similar rules, the constraint satisfaction technique intro-
duced in Section III-B differs from QoS aggregation in so far
as constraint satisfaction uses these rules to formulate a system
of equations that is then solved during run-time.

Fig. 3 outlines the basic steps performed during QoS aggre-
gation at run-time. The first step is performed after the execu-
tion of each individual service, whereas the second step is only
performed if the first check indicates a service QoS violation.

To perform the service QoS violation check (first step), the
monitored (i.e., effective) QoS values Ti of an executed ser-
vice si are compared with the planned QoS values T̂i for that
service. To this end, the technique checks at runtime whether
the service executes slower than planned, i.e., whether Ti > T̂i.

If a service violates its planned QoS, the actual prediction
(second step) is initiated. To this end, the technique applies
QoS aggregation rules to the process model C, which is aug-
mented with QoS data for all service executions in the model.
More specifically, for all services that have been executed up
to and including service sj, which exhibited a QoS violation,

Fig. 3. Main steps of QoS aggregation technique.

actual monitoring data M = (T1, . . . , Tj) is used. For all
remaining services, the planned QoS values A′ = T̂j+1, . . . , T̂n

are employed as estimates. Hierarchically applying the QoS
aggregation rules to this augmented model C, it is computed
whether T(C, M, A′) ≤ T̂ , i.e., whether the planned process
performance, T̂ , may still be achieved despite the observed
constituent QoS violation.

Similarly to constraint satisfaction, the computation of the
QoS aggregation model involves purely mechanical steps and
thus can be automated. Our implementation of the QoS aggre-
gation technique uses the BOGOR model-checker system to
compute expressions specified in the ALBERT specification
language [46]. ALBERT allows expressing logical and tem-
poral dependencies of effective and planned service response
times along an executed path.

One benefit of QoS aggregation is that it is agnostic to past
process executions, because service QoS values are derived
from the planned QoS values for each business process. This
means that QoS aggregation can be applied immediately once
new, modified or extended process models have been deployed
(e.g., if additional activities are introduced in the business
process).

IV. CASE STUDY DESIGN AND EXECUTION

This section introduces the design of our case study, includ-
ing the research questions we address, the metrics used to
assess prediction accuracy, as well as details about the trans-
port and logistics processes and industry data set. It further
describes the case study execution and measurement.

A. Research Questions

As motivated in Section I, we aim to analyze the applica-
bility and accuracy of three classes of prediction techniques
when applied for predictive monitoring of individual business
processes. This led us to define the following two research
questions.

RQ1: What is the accuracy that can be achieved when
applying machine learning, constraint satisfaction and QoS
aggregation for run-time predictions of business process
instances?

RQ2: In how far does the accuracy of the individual tech-
niques depend on the point in time during process execution
when a prediction is made? The rationale behind this ques-
tion is that it always takes some time to execute the actions
required to respond to violations or mitigate their effects in
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TABLE I
CONTINGENCY TABLE

the execution of a process. Thus, the longer the lead-time for
producing predictions, the smaller the range of opportunities
for the proactive management of those violations becomes.
In extreme cases, predictive monitoring is not useful if the
lead-time exceeds the time needed to react [11]. In business
terms, an increase of delays between detection and response
to a business event reduces the business value of responding
to such events [24], [31].

Further, we aim to investigate into the combination of
techniques, leading us to formulate a third research question:

RQ3: Can prediction techniques be combined in order to
improve prediction accuracy?

B. Metrics

Informally, accuracy characterizes the ability of a predictive
monitoring technique to forecast as many true “problems” as
possible, while—at the same time—generating as few false
“alarms” as possible [11]. In our case study, we analyze how
accurately a technique is able to predict performance viola-
tions of business process instances. To this end, we employ
well-known metrics from the literature to compute indicators
to assess the accuracy of binary (i.e., violation/nonviolation)
predictions. Those metrics are derived from the four cases that
can result from binary predictions, which are depicted in the
contingency table shown in Table I.

Precision p = TP/(TP + FP) indicates how many predicted
violations were actual violations. Higher precision means
fewer false “alarms.” Recall r = TP/(TP + FN) measures
how many actual violations were correctly predicted as vio-
lations. Higher recall means that more true “problems” are
identified. To achieve accurate predictions, a technique should
achieve both high precision and recall. However, an intrin-
sic relationship between precision and recall exists: increasing
one of them may decrease the other. For example, always
predicting a violation makes FN = 0, and therefore recall
is one. However, that in turn increases the number of false
positivespt (FP) and therefore decreases precision. To com-
bine precision and recall in a single value, literature thus
recommends using metrics such as the F-metric [11], which
is defined as F = 2 · p · r/(p + r).

The above metrics do not reflect a prediction technique’s
ability in predicting true negatives [29]. To complement
our accuracy measurements, we also include specificity and
accuracy. Specificity s = TN/(TN + FP) indicates how many
actual nonviolations were correctly predicted as nonviolations.
Accuracy a = (TP + TN)/(TP + TN + FP + FN) measures
how many predictions (either positive or negative) were cor-
rect. However, using accuracy (a) as sole indicator of how
well a prediction technique performs may be misleading. Since
violations can be expected to occur rather seldom, a tech-
nique that always predicts nonviolation could achieve high

accuracy and be right in most cases, but it would never flag
any violation [11].

C. Transport and Logistics Processes

Fig. 4 shows a model of the business processes covered in
the case study as a UML 2.0 activity diagram.3 The model
represents the structure of the business processes of a freight
forwarding company, in which up to three smaller shipments
from suppliers are consolidated and in turn shipped together
to customers in order to benefit from better freight rates or
increased cargo security. The business process is structured
into incoming and outgoing transport legs, which jointly aim
at ensuring that freight is timely delivered to customers. Each
transport leg involves the following physical transport services,
which are modeled as activities in Fig. 4.

1) RCS (Freight Reception): Freight is received by airline.
It is delivered and checked in at departure warehouse.

2) DEP (Freight Departure): Goods are delivered to air-
craft and, once confirmed on board, aircraft departs.

3) RCF (Freight Arrival): Freight is transported by air and
arrives at destination airport. Upon arrival freight is
checked in and stored at arrival warehouse.

4) DLV (Freight Delivery): Freight is delivered from des-
tination airport warehouse.

A transport leg may involve multiple flight segments (e.g., in
case cargo is transferred to other flights or airlines at stopover
airports). In these cases, RCF loops back to DEP. In our case
study, the number of segments per leg ranges from one to four.

D. Industry Data Set

The transport services introduced above are denoted by
three-letter acronyms following the Cargo 2000 industry
standard. Cargo 2000 is an initiative of the International Air
Transport Association (IATA). It aims at delivering a new qual-
ity management system for the air cargo industry [48]. Cargo
2000 allows for unprecedented transparency in the supply
chain. Stakeholders involved in the transport process can share
agreed Cargo 2000 messages, comprising transport planning,
replanning and service completion events. Cargo 2000 is based
on the following key principles.

1) Every shipment gets a plan (called a route map) describ-
ing predefined monitoring events.

2) Every service used during shipment is assigned a prede-
fined milestone that defines the planned time for service
completion.

3) Stakeholders receive notifications upon successful com-
pletion and alerts when a milestone has failed, each
including the effective time the milestone has been
reached. If an alert is received, stakeholders can update
the transport plans by issuing route map updates.

Our case study rests on an industry data set of actual oper-
ational data from an international forwarding company. Data
has been collected through the company’s Cargo 2000 moni-
toring system and covers a period of five months of business
operations. From this Cargo 2000 data, we reconstructed

3UML 2.0 activity diagrams provide Petri net semantics. Petri nets are
widely used in business process management [47].
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Fig. 4. Structure of transport and logistics process covered by the case study.

TABLE II
ACTUAL PERFORMANCE VIOLATION RATES OF TRANSPORT

SERVICES AND PROCESSES OF CASE STUDY

execution traces of 3942 actual business process instances,
comprising 7932 transport legs and 56 082 service executions.
Each execution trace includes the planned and effective dura-
tion for each of the activities of the business process. We use
this data set for two purposes (see Section IV-E): 1) to pre-
dict violations of process performance, i.e., situations in which
the time of delivery of the end-to-end process is predicted to
be later than the planned time of delivery and 2) to analyze
the accuracy of those predictions.

The reconstruction of process execution traces involved data
sanitation and anonymization. We filtered overlapping and
incomplete Cargo 2000 messages, removed canceled trans-
ports (i.e., deleted route maps), cleaned up exceptions from the
Cargo 2000 system (such as events occurring before route map
creation) and homogenized information representation in dif-
ferent message types. Due to confidentiality reasons, message
fields that might exhibit business critical or customer-related
data (such as airway bill numbers, flight numbers, and airport
codes) were eliminated or masked. Finally, it should be noted
that handling of transport documents along the business pro-
cess differs based on whether the documents are paper-based
or electronic. As our data set did not allow us to discern the
different document types, we only consider services related to
the flow of physical goods.

Table II shows the rates of actual performance violations
and nonviolations for the individual transport services as well
as for the end-to-end business process.4 The complete data set,

4As can be observed, DEP has a very high rate of violations when com-
pared to the other transport services. This is due to the fact that on-time
departure strongly depends on the availability of flights going from an origin
to a destination airport. On-time departure, except for environmentally con-
trolled shipments, such as produce and animals, is not as significant from a
supply chain perspective as timely arrival.

including planned and effective delivery times of the transport
services for all the reconstructed business process instances is
available online.5 As can be seen from this data, 26.6% of
all process executions have problems with respect to timely
delivery and thus provide an opportunity to anticipate and thus
proactively manage and mitigate those problems.

E. Execution and Measurement

In order to analyze how accurately our prediction techniques
may work in practice (see research question RQ1), we fol-
low the well-known approach of cross-validation and partition
our data set into two complementary subsets.6 The first 2/3
of the data set are considered historic data, which is used as
training data set. How this training data set is employed dif-
fers for the three techniques and is thus detailed in Section V.
The remaining 1/3 of the data set are used as testing data set,
which means that it is used to validate whether the techniques
are in fact able to predict the future.

Using the testing data set, we determine the accuracy of
the predictive monitoring techniques as follows. Each of our
prediction techniques either predicts violation (true) or nonvi-
olation (false). We compare each prediction that is produced
by a technique for a given business process instance, i.e., the
predicted violation or nonviolation, with the actual business
process performance. Note that we know the actual business
process performance at the time of prediction as we work on
a recorded data set. If both prediction and actual agree, we
note a “true” prediction, if not, we note a “false” prediction.
As an example, if we predict a violation but observe an actual
nonviolation, we have a “false positive.” We count all four con-
tingency cases for all business process instances in the testing
data set. From those four cases we then compute the contin-
gency table metrics introduced in (Section IV-B), which are
used as indicators for prediction accuracy.

In order to gather insights into the lead-times required to
produce accurate predictions (see research question RQ2), we
empirically assess the accuracy of the prediction techniques for
each of the checkpoints of our business process by following
the measurements described above. To visualize the impact of

5See the data available at http://www.s-cube-network.eu/c2k
6It should be noted that due to the relatively large size of the case study data

set (see Section IV-D), we considered one round of cross-validation sufficient
to reduce variability of the results.
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prediction lead-time on prediction accuracy we employ a nor-
malized scale, which compensates for the fact that the number
of service executions varies between the individual process
instances. As an example, one transport leg may consist of
three segments, while another one may consist of only one
segment. To make it possible to compare the results, we chose
to present the results as follows. The “positions” provided
in the results tables and diagrams in Section V denote log-
ical positions in the business process instances (ranging from
0% to 100%). The and-join (where incoming transports are
consolidated) is defined to be at the 50% position.

To assess accuracy improvements when combining the
individual techniques (and thus addressing research ques-
tion (RQ3), we repeat the above measurement process and
determine the contingency table metrics for different combi-
nations of techniques (see Section VI).

V. ASSESSMENT OF INDIVIDUAL TECHNIQUES

This section presents empirical results for the three predic-
tion techniques and concludes with a general discussion.

A. Results for Machine Learning

For evaluating the machine learning based prediction tech-
nique, we use the implementation of ANNs provided by the
WEKA machine learning toolkit in version 3.4.13.7 WEKA
provides a collection of well-tested, popular, and well-known
machine learning algorithms, of which we chose the feed-
forward multilayer perceptron implementation.

We have established checkpoints for each service execu-
tion in the transport and logistics process. More specifically,
we have defined one checkpoint after each service invocation,
as well as one checkpoint at the beginning of the process,
which totals to 21 checkpoints.8 Based on these checkpoints
and the case study design as described in Section IV, we have
numerically evaluated the prediction quality of the machine
learning approach. To this end, we have trained ANNs for each
checkpoint using the training data set, and using tenfold cross-
validation. Afterwards, we have used the testing data set (the
remaining 1/3 of the process instances) to evaluate the quality
of the predictors in the different checkpoints, and calculated
the contingency table metrics presented in Section IV-B.

Table III contains a complete list of parameters used to train
the ANNs that led to the results presented below. For rea-
sons of brevity, we omit a full discussion of the relevance
of each parameter in this paper. More details can be found
in the online documentation of WEKA.9 Note that the con-
crete network topology depends on the checkpoint that we are
training the network for. Each ANN has a number of source
(input) nodes equal to the number of available previous ser-
vice results in this checkpoint, e.g., a checkpoint in which
the results of six service executions are already available has

7http://www.cs.waikato.ac.nz/ml/weka/
8Each transport leg consists of the services RCS, DEP, RCF and DLV,

where DEP and RCF can be repeated up to four times. This means that we
reach a total of 2 · (1 + 4 · (1 + 1) + 1) = 20 checkpoints. Together with the
checkpoint before process execution this leads to 21 checkpoints altogether.

9http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
MultilayerPerceptron.html

TABLE III
MULTILAYER PERCEPTRON PARAMETERIZATION

TABLE IV
CONTINGENCY TABLE RESULTS FOR MACHINE LEARNING

six source nodes. Further, each ANN always has exactly one
hidden layer of sigmoid nodes. This single hidden layer con-
sists of ⌊(sn + 1)/2⌋ nodes, where sn refers to the number
of source nodes. Note that all those parameter values are the
defaults proposed by WEKA out of the box. Informal parame-
ter optimization, most importantly with regard to the network
topology, has not led to significant improvements over those
default values. Arguably, this means that results similar to the
ones we present here could also be achieved by a user who is
not an expert in machine learning or neural network theory.

Table IV contains the contingency table results of the evalu-
ation of the machine learning prediction. For each checkpoint,
we report the rate of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN).

Analyzing these results, we can come to the observation
that prediction based on ANNs is less accurate up to the 50%
mark (i.e., in the parallelized part of the process), with about
two fifths of predictions being correct (i.e., TP + TN ≈ 2/5).
After the 50% mark, prediction accuracy is visibly improving.
However, it is evident that even with almost complete infor-
mation (i.e., shortly before the 100% mark) some amount of
inaccuracy remains using the machine learning approach.

In order to allow for more in-depth interpretation of this
data, Fig. 6 visualizes the prediction accuracy in terms of con-
tingency table metrics. From these plots we can observe that
there are a small number of points in the execution of the pro-
cess that impact on prediction accuracy. Firstly, accuracy (in
terms of the F-metric) improves visibly after the synchroniza-
tion point (50% mark) and again after the last RCF service
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of the outgoing transport leg. In between these points, pre-
diction accuracy does not change significantly. Specificity is
very low initially, but improves toward the end of the process
execution. This indicates that the machine learning approach
is able to indeed predict violations, but has a problem with
accurately predicting nonviolations if the lead-time for pre-
diction is longer, thus diminishing prediction accuracy at the
beginning of process execution.

In order to avoid impractically short lead-times between the
moment at which a violation is predicted and its occurrence,
and at the same time maintain accurate predictions, it appears
beneficial to place the predictor somewhere around the 60%
mark. This would leave more than one third of the time limit
for potential corrective actions, while still achieving good
accuracy (with an F-metric of about 0.75). In our concrete
case, for instance, a broad range of mitigation actions would
still be possible, as freight would not yet have been confirmed
on board (i.e., process execution would be before the DEP
service).

B. Results for Constraint Satisfaction

The results of the constraint satisfaction technique have been
determined using the data set as follows. The training data set
(i.e., the first 2/3 of the data) was used to determine the lower
and upper bounds of the effective execution time for the differ-
ent services in the transport process from Fig. 4. The testing
data set (i.e., the remaining 1/3 of the data) has been sub-
jected to the constraint-based continuous prediction. At each
prediction point, the approach looks at the remaining services
and tries to infer whether a violation of their (local) time lim-
its can be ruled out, therefore leaving the nonviolation as the
only possibility, and vice-versa. In that way, the approach is
typically able to infer violation or nonviolation of the planned
duration for the checkpoints closer to the point of prediction,
while remaining undecided for checkpoints that lay farther in
the future, for which neither violation nor nonviolation can be
ruled out at the moment.

The continuous prediction stops and returns a prediction as
soon as it is able to determine violation or nonviolation for
the overall process or for some checkpoint before the end but
which is close enough to the end. The choice of the position
of the earliest service that is used as the predictor for the
overall process (i.e., 100% for the final one or a smaller value
otherwise) affects the accuracy and the timing of prediction,
and is discussed below. If a prediction cannot be done before
reaching the end-to-end duration or before the completion of
the predicted process instance, we count this as an effective
negative prediction.

Table V lists the contingency table results for the constraint
satisfaction approach, and Fig. 7 shows the contingency table
metrics.

The “%” labels represent the position of the earliest pre-
dictor as introduced above. Fig. 5 shows the distribution of
the points in time where a prediction of an overall nonvi-
olation (the upper box plot) or a violation (the lower box
plot) was made as a percentage of the time when a predic-
tion was made with respect to the total running time of the
process instance. Basing the overall prediction strictly on the

TABLE V
CONTINGENCY TABLE RESULTS FOR CONSTRAINT SATISFACTION

Fig. 5. Prediction timing for constraint satisfaction.

final service (earliest predictor at 100%) gives the highest level
of precision, recall, accuracy, specificity, and the F-metric, all
very close to 1. However, this may lead to impractically short
lead-times between the moment at which a violation is pre-
dicted and its occurrence. Fig. 5 shows that in this case the
approach is able, on the average, to infer nonviolation after
two thirds of the limit, but the prediction of violation comes
at about only 2% of the time limit ahead of the violation,
which may be too short a time for any kind of corrective
action to avoid or mitigate the imminent violation. Therefore,
it seems beneficial to choose the position of the earliest pre-
dictor somewhere close to, but not as late as, the final service.
Fig. 5 suggests that choosing the position of the earliest service
somewhere between 60% and 85% of the process dramatically
improves the prediction timing, with, on the average, about
one third of the time limit available for potential corrective
actions. The improvement in timing comes at a price of a
decrease in precision, recall, and F-metric (at about 0.72), but
with still high specificity (at about 0.90) and accuracy (at about
0.84). In our concrete case, this later position—compared with
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TABLE VI
CONTINGENCY TABLE RESULTS FOR QOS AGGREGATION

the preferred prediction position of machine learning—would
reduce the range of mitigation actions, as freight would already
have been confirmed on board (at least for the first segment
of the outgoing transport leg).

Fig. 7 also shows that a choice of the position of the
earliest predictor between 10% and 50% leads to lower pre-
diction accuracy, with the F-metric at around 0.43, specificity
at around 0.79, and overall accuracy at around 0.67. This is
due to the fact that these early services belong to the incom-
ing parallel transport legs of which only the effectively longest
one affects the overall execution time.

C. Results for QoS Aggregation

While machine learning and constraint satisfaction
require data about past process instances, QoS aggregation
can be employed without such historic data. The technique
uses the planned delivery time for each of the services that
have not yet been executed as an estimate of service QoS
values (also see Section III-C). In order to provide a fair
comparison of the techniques, we thus only use the last 1/3
of the data set to perform the QoS aggregation predictions,
i.e., we used the same data employed as testing data set for
evaluating the other two techniques.

Table VI shows the contingency table results for QoS
aggregation, Fig. 8 visualizes the contingency table metrics.
Note that, as explained in Section III-B, QoS aggregation only
starts prediction once a QoS violation for an individual service
has been observed. As a consequence the technique does not
deliver predictions for the 0% position. In addition, depending
on the actual number of loop iterations, the result for the 100%
mark might also include the outcomes for the last-but-one ser-
vice execution, and thus includes false negatives of predicting
the RCF service. As a consequence, recall does not reach 1 at
the 100% mark (see Fig. 8).

While precision steadily increases toward the end of pro-
cess execution, recall experiences a sudden drop at the 60%
mark. This correlates with the execution of the DEP service,
which—as Table II shows—exhibits a violation rate of 84%.
As QoS aggregation is agnostic to historic data and thus can-
not learn from past service and process executions, this high
violation rate strongly impacts on recall.

For what concerns specificity, QoS aggregation outperforms
the other two techniques. Specificity remains within the inter-
val [0.931, 0.996]. The reason is that (as visible from Table II)
the duration of the planned services is often chosen too
optimistically (e.g., in 24% of the cases for the DLV service).

As QoS aggregation exploits those planned durations as esti-
mators for QoS values, this means that QoS aggregation is
more pessimistic in predicting violations and thus delivers less
false positives (see Table VI).

Due to the “instability” of recall, finding an early yet still
accurate moment for prediction is more difficult in the case of
QoS aggregation than it is for the other two prediction tech-
niques. It appears beneficial to place the predictor somewhere
around the 90% mark, as this would deliver an F-metric of
at least 0.54. However, this would leave only little time for
potential corrective actions.

D. Findings and Discussion

Considering our research questions defined in Section IV-A,
empirical evidence of the case study suggests that all three
types of predictive monitoring techniques can be applied to
business process instances and in turn lead to good results in
prediction accuracy (e.g., research question RQ1). If a pre-
diction is made after 50% of the workflow execution, all
three techniques exhibit a prediction accuracy which is greater
than 0.7 (see Figs. 6–8), meaning they deliver more true pre-
dictions than false predictions (see Section IV-B). Consistently
across all the techniques, the ability to predict increases as the
point of prediction gets closer to the end of process execution
(e.g., research question RQ2).

However, the techniques show visible differences in the
increase of accuracy, as well as in terms of false positive
predictions and false negative predictions (see Tables IV–VI).
These observed differences between techniques are important,
as the costs of not taking required actions in case of false nega-
tive predictions can differ from the costs of taking unnecessary
actions in case of false positive predictions [29].

1) False Negative Predictions: In terms of our transport and
logistics case study, current situation in industry is that
outcomes of individual business processes are not pre-
dicted. A possible action in case of negative predictions
(nonviolations) could thus be to do nothing. Then, if
an actual nonviolation is observed, all is well. If, how-
ever, a violation occurs, we are in the same situation
as industry is today and need to face the penalties for
violating performance promises.

2) False Positive Predictions: Reacting to positive predic-
tions (violations) would depend on the cost of proac-
tively addressing them. In case a violation actually
happens, cost savings could be determined on a per-case
basis (i.e., avoided penalty less cost of addressing the
violation; see [18]). However, if no violation happens,
i.e., if process execution would have proceeded as
planned, any resources spent on addressing this false
positive violation would be wasted.

To summarize, whether to proactively address a prob-
lem during process execution depends on: 1) the likelihood
that the prediction turns out correct, which, as our data
suggests, strongly depends on the technique used to predict
and the moment in time when the prediction occurs and 2) the
expected overall gain, taking into account costs due to a false
negative prediction, costs due to a false positive prediction and
the savings in case of true positive predictions.
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Fig. 6. Accuracy indicators for machine learning.

Fig. 7. Accuracy indicators for constraint satisfaction.

Fig. 8. Accuracy indicators for QoS aggregation.

VI. ASSESSMENT OF COMBINED TECHNIQUES

As the results in Section V indicate, prediction techniques
differ in terms of how accurately they may predict viola-
tions and nonviolations. In this section, we thus exploit the
characteristics of the individual techniques and propose their
combination with the aim of improving the prediction process.

In the area of machine learning, a combination of differ-
ent prediction models is used to increase prediction accu-
racy. Known as ensemble learning, different strategies and
techniques for combining prediction models exist [49]. We
draw inspiration from ensemble learning and aim to analyze

whether combinations of the individual techniques may lead
to accuracy improvements compared to when using the predic-
tion techniques separately (thereby addressing research ques-
tion RQ3). To this end, we assess different voting strategies
for combining the predictions of the individual techniques.

In order to define the combined predictions, let
qML, qCS, qQA ∈ {true, false} be the prediction that is deliv-
ered by machine learning (ML), constraint satisfaction (CS),
and QoS aggregation (QA) for a given logical position in the
business process instance, where true indicates a predicted
violation and false indicates a predicted nonviolation.



METZGER et al.: COMPARING AND COMBINING PREDICTIVE BUSINESS PROCESS MONITORING TECHNIQUES 287

TABLE VII
COMPARISON OF ACCURACY INDICATORS (ABSOLUTE VALUES IN BOLD,

DIFFERENCES IN NORMAL FONT; “+” INDICATES IMPROVEMENT)

A. Majority

The first voting strategy we evaluate is well-known from
ensemble learning. We use majority voting as we expect it to
contribute to an overall improvement in terms of the F-metric
and accuracy metric. It predicts a violation if at least two out
of the three techniques predict a violation: qmajority = (qML ∧

qCS) ∨ (qCS ∧ qQA) ∨ (qML ∧ qQA).
As discussed above, the costs of not taking required actions

in case of false negative predictions can differ from the costs
of taking unnecessary actions in case of false positive predic-
tions. This means that depending on the actual setting faced
in practice, it may be beneficial to improve the accuracy in
predicting either positives or negatives. This observation leads
us to define three specific voting strategies.

B. Recall-Oriented

We aim to define a voting strategy that may increase recall
by combining the predictions of the two techniques which
deliver the best recall amongst our three techniques. For
our case study (see Figs. 6–8) this means that this strat-
egy combines machine learning and constraint satisfaction. To
increase recall, we need to predict as many true positives as
possible. To this end, we define the voting strategy such that it
predicts a violation if at least one of the two individual tech-
niques predicts a violation, i.e., we are more “optimistic” in
selecting violations and thus may catch more true violations:
qrecall-oriented = qML ∨ qCS.

C. Precision-Oriented

This strategy aims to increase precision by combining the
two techniques with best precision. In our case study these
are constraint satisfaction and QoS aggregation. However, to
increase precision, we need to make sure that we avoid pro-
ducing false positives. We thus define the voting strategy such
that it predicts a violation only if both techniques predict a
violation, i.e., we are more “skeptical” in predicting violations

and thus may deliver less false violations: qprecision-oriented =

qCS ∧ qQA.

D. Specificity-Oriented

This strategy aims to increase specificity by combining
the two techniques which delivered the best specificity, viz.
constraint satisfaction and QoS aggregation. To increase speci-
ficity, we need to make sure that we predict as many true
negatives as possible. The voting strategy thus predicts a non-
violation if at least one of the two individual techniques
predicts a nonviolation; i.e., similar to the recall-oriented
strategy, we are “optimistic” in selecting nonviolations and
thus may catch more true nonviolations. In our case study,
this strategy is identical to the precision-oriented one, as the
same prediction techniques are chosen: qspecificity-oriented =

¬(¬qCS ∨ ¬qQA) = qCS ∧ qQA.
The accuracy indicators for the combined techniques are

shown in Table VII. They are compared with the indicators of
the three individual techniques, where differences larger than
zero indicate improvements over the individual techniques. All
indicators are computed based on totaling the predictions for
all logical position in the business process instances.

Interestingly, the majority voting strategy does not con-
tribute to a visible improvement in prediction accuracy. For
each accuracy indicator, there is at least one technique that
provides the same or better results than majority voting.
Specifically, the constraint satisfaction technique consistently
provides better results in terms of F and accuracy metrics.

In contrast, the voting strategies oriented toward specific
contingency table metrics lead to more promising results. For
what concerns the recall-oriented strategy, an improvement of
at least 0.152 (i.e., an improvement by 23%) can be observed
when compared to the recall of the individual techniques.
The precision-/specificity-oriented strategy delivers a precision
improvement of at least 0.093 (14%) and a specificity improve-
ment of at least 0.024 (3%). As one would expect, though, the
increase along one metric is paid for with a decrease along
other metrics. In particular, the F-metric, which combines pre-
cision and recall, is not improved by any of the combined
strategies over the best of the scores given by the techniques
taken in isolation.

Based on this initial evidence, we can conclude that it
appears feasible to combine prediction techniques in such
a way that their accuracy can be targeted toward specific
contingency table metrics. Referring to our observations in
Section V-D, this means that we may choose one combination
if we want to reduce the risk of taking unnecessary actions by
decreasing the rate of false positive predictions, and a different
strategy if we want to reduce the risk of not taking required
actions in case of false negative predictions.

VII. CONCLUSION

This paper provided a comparison of three main types of
predictive monitoring techniques, namely machine learning,
constraint satisfaction, and QoS aggregation. These techniques
may be used to complement existing business process manage-
ment solutions (such as business activity monitoring, business
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analytics, and business intelligence) with capabilities for pre-
dictive monitoring of individual business process instances.

Empirical evidence gathered from an industrial case study
in the domain of transport and logistics suggests that, given a
lead-time of half of the process duration, all three prediction
techniques consistently provide an accuracy of at least 70%.
However, our comparison of the techniques unveiled that they
exhibit important differences concerning the rate of positive
and negative predictions they deliver. Based on these findings,
we combined predictive monitoring techniques in such a way
as to reduce the risk of taking unnecessary actions in case of
false positive predictions, or the risk of not taking required
actions in case of false negative predictions. Our empiri-
cal findings indicate that combinations of techniques may
indeed outperform individual techniques. Specifically, com-
bining constraint satisfaction with QoS aggregation improves
precision by 14%; combining machine learning with con-
straint satisfaction improves recall by 23%. One further
direction for improving predictions is offered by probabilistic
prediction techniques. Such probabilistic prediction techniques
may provide, for instance, confidence levels for predictions
and thereby foster making statistically informed decisions on
whether to respond to a predicted violation or not.

We mainly focused on predicting violations of process per-
formance, specifically cases when planned freight delivery
times might not be met. However, the predictive monitoring
techniques we employed are not limited to process perfor-
mance. They can similarly be applied to other, numeric and
monotonic quality attributes, as well as for predicting mul-
tiple quality attributes. As an example, in the case of fresh
produce, the time of delivery could be predicted together with
the quality of the delivered product.

Our industry case study in transport and logistics demon-
strated the benefits and applicability of three major types of
prediction techniques for a very relevant application domain. To
foster potential generalization of our findings to other applica-
tion domains, we took two major design decisions for the case
study. First, we selected nonspecialized prediction techniques,
thereby avoiding special-purpose or ad-hoc techniques for the
sake of generalizability of the results. Second, all three tech-
niques have already been successfully employed in the domain
of service-oriented software systems (see [19], [20], [40]). This
means that, together with the results provided in this paper,
those techniques have shown their success and applicability
in two quite distinct application domains (logistics processes
and software services). This gives us reason to believe that
these techniques may also be applicable outside of those two
application domains. Of course, to fully understand how reason-
able such a generalization may be, further empirical evidence
is required. To this end, we provide all relevant parameters
and data10 used in this paper to enable fellow researchers to
replicate and extend our experiments and analyses.
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