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Abstract Over the last 12 years, numerous new theoretical
continuum models have been formulated to predict particle
segregation in the size-based bidisperse granular flows over
inclined channels. Despite their presence, to our knowledge,
no attempts have been made to compare and contrast the
fundamental basis upon which these continuum models have
been formulated. In this paper, firstly, we aim to illustrate
the difference in these models including the incompatible
nomenclature which impedes direct comparison. Secondly,
we utilise (i) our robust and efficient in-house particle solver
MercuryDPM, and (ii) our accurate micro–macro (discrete
to continuum) mapping tool called coarse-graining, to com-
pare several proposed models. Through our investigation
involving size-bidisperse mixtures, we find that (i) the pro-
posed total partial stress fraction expressions do not match
the results obtained from our simulation, and (ii) the kinetic
partial stress fraction dominates over the total partial stress
fraction and the contact partial stress fraction. However, the
proposed theoretical total stress fraction expressions do cap-
ture the kinetic partial stress fraction profile, obtained from
simulations, very well, thus possibly highlighting the reason
why mixture theory segregation models work for inclined
channel flows. However, further investigation is required to
strengthen the basis upon which the existing mixture theory
segregation models are built upon.
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1 Introduction

Granular materials in nature [10,14] and industry [14]
often comprise highly polydisperse particle mixtures. The
constituents of these mixtures can vary in size, density, inelas-
ticity, shape, surface roughness, etc. When such polydisperse
mixtures are subjected to external forces such as shaking, stir-
ring or shearing [10], these mixtures often segregate, leading
to complex pattern formations such as particle segregation.
Several factors have been reported to be responsible for
segregation or de-mixing in polydisperse mixtures, where
individual studies confirm the influences of varying the size
[48], density [40], inelasticity [4], shape [30] and surface
roughness [43]. However, in rapid free-surface flows over
inclined channels, the differences in size and density are the
dominant factors [2,5,6] leading to particle segregation.

Kinetic sieving [9] is the dominant mechanism in dense
granular flows. Although it is an easy-to-comprehend mech-
anism, its effects can be mind-boggling. In order to illustrate
the idea of kinetic sieving, let us consider a size-bidisperse
granular mixture flowing down an inclined channel. As the
flow progresses, fluctuations in the local pore space cause
particles to fall under gravity into the space/gaps that are
created beneath them. As a result, smaller-sized particles
fall easily into these gaps leading to their gradual perco-
lation towards the base of the flow (i.e. in the direction
of gravity). Simultaneously, force imbalances lever/squeeze
particles towards the surface; this process was named as
squeeze expulsion by Savage and Lun [31]. The combina-
tion of kinetic sieving and squeeze expulsion results in a
net migration of large particles upwards and small particles
towards the base. As a result, this simple mechanism results
in stratified layers, which one terms as particle segregation.

In 2011, Fan and Hill [11] proposed an alternative kinetic-
stress-driven mechanism for segregation. The model was
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originally derived for vertical chutes; however, it was later
extended to include the gravity-driven mechanism [20,21]
and then applied to mixture flows over inclined planes and in
rotating drums. Their model is very similar to the gravity-
driven models and still uses the ideas of kinetic sieving;
however, it is driven by gradients in kinetic stress rather
than lithostatic pressure as in the case of the gravity-driven
mixture theory models. In the kinetic-stress-driven mech-
anism, all particles are squeezed away from regions of
higher fluctuation energy. During this process, smaller par-
ticles filter through the matrix of other particles, analogous
to the gravity-driven void-filling mechanism, resulting in a
net migration of small particles towards regions of lower
fluctuation kinetic energy. Previously, Windows-Yule et al.
[50] experimentally investigated the competition between
gravity-driven, kinetic-stress-driven, and other segregation
mechanisms in axially non-uniform drums. Here, we con-
sider a simpler scenario of size-bidisperse mixtures rapidly
flowing down an inclined plane.

In rapid free-surface flows, opposing kinetic sieving is dif-
fusive remixing, which causes the random motion of particles
as they collide and shear over each other [22]. Based on the
relative strength of these competing mechanisms, the mixture
strongly or weakly segregates; the relative strength is cap-
tured by the segregation Peclet number [18]. However, both
experiments [48] and particle simulations [38] have shown
that, in rapid chute flows, the effect of diffusive remixing is
around 10 % of the strength of segregation.

Apart from kinetic sieving, which is a purely size-based
effect, buoyancy effects due to differences in particle density
also play a major role in particle segregation [23]. For bidis-
perse mixtures, varying in size and density, experiments [13]
and particle simulations [41] indicate that a balance between
the two driving mechanisms is possible, i.e. kinetic sieving
and buoyancy effects, which in turn can keep the mixture
homogeneously mixed.

Although complete understanding of the dynamics of
segregation is beyond the scope of this paper, it becomes
increasingly difficult as one allows more particle proper-
ties to be varying, i.e. size, density, shape, roughness, etc.
In order to carry out the comparison between the exist-
ing particle segregation continuum models, we focus on the
leading-order effect of bidisperse mixtures varying in size
only. As an alternative to experiments, we employ discrete
particle simulations (DPMs) [24] from which macroscopic
quantities, appearing in the continuum models, are extracted.
To perform this accurately, we use an appropriate micro–
macro mapping technique called coarse-graining [1,16],
as this method gives continuum fields that exactly satisfy
the continuum equations. The method has previously been
extended to include the effects of boundaries or discon-
tinuities [47] and more recently to unsteady polydisperse
mixtures [42]. The technique has been successfully applied

to investigate monodisperse shallow granular flows [46] and
size-bidisperse mixtures [38,45]. However, Weinhart et al.
[45] focussed on steady bidisperse flows alone; here, we con-
sider both steady and transient data. For our simulations, we
use our in-house open-source code MercuryDPM [36,37,39]
which includes all the coarse-graining tools utilised in this
paper.

The following section, Sect. 2, gives a brief review of
the main theoretical models that have been proposed to
describe size-segregation. In this section, special care is
taken to express all the continuum segregation models using
a uniform notation, thereby facilitating direct comparison
between them. A look-up table, see Table 1, is also provided
which relates the different notations used in each of these
models. On the other hand, Sect. 3 contains a description
of the setup of our particle simulations, which we utilised
to compare and contrast the theoretical segregation mod-
els. More importantly, to perform the discrete-to-continuum
(micro–macro) step, Sect. 4 lists the coarse-graining (CG)
expressions, which are utilised to obtain the required macro-
scopic information from the discrete data. This section is
provided because in the case of measuring the pressure-
scaling functions, which are utilised in the segregation
models, it is vitally important that the micro–macro step is
done in a consistent way; it is very easy with other micro–
macro methods to produce misleading and even erroneous
results for the case of size-segregating flows. Section 5
explains how to apply the coarse-graining formulae from
Sect. 4 to microscopic particle data obtained from the parti-
cle simulations setup in Sect. 3. The results are presented in
Sect. 6, where the different segregation models presented in
Sect. 2 are compared and contrasted. Conclusions and future
directions are presented in Sect. 7. Moreover, Sects. 3, 4 and
5 are provided for completeness, so that this paper contains
a full description of the tools required to validate size-based
particle segregation continuum models; however, if you are
only interested in the actual validation of the models, Sects. 2,
6 and 7 are written such that they can be treated as a stand-
alone article.

2 Theoretical models

In this section, we present a brief overview of the existing
size-based segregation continuum models, which have been
formulated in the past few decades.

Based on the understanding of percolation and diffusion,
Bridgwater et al. [3] were the first to formulate a continuum
model quantifying particle segregation in a size-bidisperse
mixture. Given x, y and z denotes the down-slope, cross-
slope and depth direction (Fig. 1), their governing equation
was in terms of the volume concentration of small particles
expressed as a fraction of the solid volume (φ),
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Fig. 1 A snapshot of a bidisperse mixture, with particle size-ratio
ŝ = 1.3, flowing in a periodic box inclined at 26◦ to the horizontal (dis-
crete particle simulation). Colours/shades indicate the base/boundary
(yellowish green, F

b), species type-s and type-l (blue, F
s and red, F

l ).
We define the bulk as F

s ∪ F
l . Here, s and l denote small and large

constituents
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= ∂

∂z

(
D

∂φ

∂z

)
, (1)

where t is the time, q and D are the segregating velocity and
diffusion rates. However, they soon realised that the rate of
segregation q, i.e. segregating velocity, was dependent on the
shear rate, the particle size-ratio and the normal pressure [3].

A few years later, Savage and Lun [31] used statisti-
cal mechanics and information entropy theory to arrive at
a segregation model from the first principles. Their model
was formulated in terms of number densities and fluxes.
Although the model of Savage and Lun [31] considered
various functional forms for the shear rate, i.e. different
downslope velocity profiles u(z), it certainly had a down-
side because their model predicts segregation even in the
absence of gravity, which is odd given kinetic sieving is a
gravity-driven process.

Almost a decade later, from a different perspective, Dol-
gunin and Ukolov [8] developed a model using an equivalent
mass transfer equation, which accounts for the granular mass
transfer due to convection, quasi-diffusion and segregation.
Their resulting governing equation is very similar to the form
of Bridgwater et al. [3], i.e.,

∂φ

∂t
+ ∂

∂x
(φu) + ∂

∂z

(
qφ(1 − φ)

)
= ∂

∂z

(
D

∂φ

∂z

)
, (2)

where u is the down-slope flow velocity. Although, the above
model (2) had all the features essential for describing particle
segregation, a general framework to derive such models was
still missing.

In 2005, Gray and Thornton [19] proposed a general
continuum framework to model size-based segregation by
utilising the principles of mixture theory [29]. Gray and
Thornton [19] postulated that in a gravity-driven process
of segregation, larger particles bear more of the pressure or

normal stress relative to their local concentration in com-
parison to the smaller particles, which are busy percolating
into the voids underneath. This postulate is quantified by
subdividing or partitioning the pressure/normal stress among
the two constituents (e.g. large and small), where the subdi-
vision is done by the so called pressure-scaling functions
[19]. Thereby, the resulting framework governing size-
based particle segregation, including diffusive remixing [18],
follows as

∂φ

∂t
+ ∇ · (φu) − ∂

∂z
(q F(φ)) = ∂

∂z

(
D

∂φ

∂z

)
, (3)

where ∇ := [∂/∂x, ∂/∂y, ∂/∂z]T and F (φ) is the function
that specifies the segregation flux as a function of the local
volume fraction of small particles. The exact details con-
cerning the forms of q and F(φ) depend on the physical
assumptions and the choice of the so-called pressure-scaling
functions. Thereby, the focus of this work is to compare and
contrast these different forms of pressure-scaling functions,
using particle simulations and advance micro–macro tools.
In the original model of Gray and Thornton, q was taken to
be a constant, D = 0, and F(φ) = φ(1 − φ). The frame-
work (3) is itself clearly a simplification, as diffusion only
acts in the z-direction and the segregation also occurs in the
z-direction, i.e. not the direction defined by gravity. How-
ever, the original framework was soon extended to include
the effects of diffusive remixing [18], D �= 0, and intersti-
tial fluids [35]. More recently, developments by [15,26,41]
have introduced revised forms of scaling functions which in
turn has led to different forms of F(φ). The origins of these
scaling functions are explained, documented and compared
in the following section, Sect. 2.1.

In 2010, May et al. [27,28] extended the Gray and
Thornton model to include non-uniform (exponential) shear
profiles (i.e. by modifying q in (3)). Assuming no diffu-
sion, they modified the segregation rate q to depend on the
vertical direction (z) and be proportional to the shear rate,
γ̇ (z) = du/dz. Based on these assumptions, they proposed
the following functional form

q(z) = sγ̇ (z) = q0e−z/λ, (4)

where s is a dimensionless segregation parameter with q0

and λ being fitting parameters. However, the extended model
could only capture the qualitative features in comparison to
their experimental findings.

In 2012, Marks et al. [26] significantly extended the par-
ticle segregation continuum theories to polydisperse flows,
which also allows for varying density and size effects.
Besides this, they also attempt to incorporate the shear-rate
dependency in a consistent way. By doing so, they include
the dependence of percolation velocities on spatially varying
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shear rate and particle size-ratio, i.e. q in (3) is a function
of both shear rate (γ̇ ) and particle size-ratio (̂s). Moreover,
they were also the first to attempt to quantify the segregation
flux, F(φ), in terms of the real particle properties such as the
particle size-ratio (̂s) itself.

New extensions to the Gray and Thornton [19] continuum
framework were added, in the year 2014, by Tunuguntla et
al. [41], where they make subtle fundamental changes to the
basis upon which Gray and Thornton [19] model is built
upon. However, this did not alter the resulting framework
presented in (3). Nevertheless, both, Tunuguntla et al. [41]
and Gajjar and Gray [15] presented different possible forms
for segregation fluxes, F(φ), which intended to quantify seg-
regation in more realistic scenarios. Besides these extensions,
the Gray and Thornton framework was further developed to
accord for the effects due to density differences [17,26,41],
thus enabling us to predict particle segregation in a wider
range of applications.

During the same period, 2014 to present, an alternative
transport equation approach is adopted by Leuptow and
co-workers [12,32,33,51], who use the same general frame-
work (3) to model particle segregation in two-dimensional
bounded heaps, circular drums and chute flows. Similar to
several extensions of mixture theory segregation models,
listed above, they have also extended their models to account
for polydisperse size effects [33] and density differences [51].
However, to close the model, they utilise particle simulations
to determine the flow kinematics and physical parameters
such as the incompressible bulk velocity field and diffusion
coefficient. Similar to Marks et al. [26] and Tunuguntla et
al. [41], Leuptow and co-workers [12,32,33,51] also con-
sider the percolation velocity to be dependent on the spatially
varying shear rates and particle size-ratios. This approach
of closing their models with particle simulations does pro-
duce relatively good results; however, it is unable to capture
flow transitions that lead to stratification patterns [25,49],
which the mixture theory models are able to predict. More-
over, it should be noted that they use a binning method to
extract their continuum fields, which are required to close
their models. The binning method has extra degrees of free-
dom compared with the coarse-graining method we utilise
here, namely how to split the stress between the large and
small particles. Making different choices of this split has a
large effect on the results, and crucially incorrect splitting of
the stress can even change the directions of segregation; see
the discussion in Staron and Phillips [34] for more details.
For this reason, we utilise our coarse-graining method for
bidiperse mixtures, which is summarised in Sect. 4.

In this paper, we focus on size-based mixture theory segre-
gation models and utilise particle simulations as a validation
tool alone. The key idea behind mixture theory segregation
models is that particle segregation is caused by a gradient in
lithostatic pressure caused by gravity, whereas in the case of

the Fan-Hill model [11] segregation is caused by a gradient
in kinetic stress. Thus, through the use of particle simulations
and advance micro–macro tools, we scrutinise and quantify
each of this mechanism and, more importantly, see how these
two mechanisms play a role in the process of size-based parti-
cle segregation. Moreover, as implied from this paper’s title,
we also compare and contrast the different proposed forms
of these models. The ultimate aim is to develop a theoretical
model that can accurately predict particle size-segregation,
thus eliminating the need for particles simulations entirely.
However, the work in this paper is only a stepping stone
towards this goal.

As a first step towards our analysis, in the following sec-
tion, we review the basic background theory upon which
these mixture theory models are based on and propose an
unified notation to make model comparisons easier, both, for
us and for future research.

2.1 Mixture theory framework

Mixture theory deals with partial variables that are defined
per unit volume of the mixture rather than with the intrinsic

variables associated with the material, i.e. the values one
would measure experimentally, such as the material density
of glass or steel particles.

The basic mixture postulate states that every point in
the mixture is simultaneously occupied by all constituents.
Hence, at each point in space and time, there exist overlap-
ping fields (displacements, velocities, densities) associated
with different constituents.

Since each constituent is assumed to exist everywhere, a
volume fraction Φν is used to represent the percentage of the
local volume occupied by constituent ν. Clearly, for size-
bidisperse mixture,

Φs + Φl + Φa = 1, (5)

where Φa denotes the fraction of volume corresponding to
interstitial pore space filled with a passive fluid, e.g. air. How-
ever, for convenience, studies often consider volume fraction
of the constituents per unit granular volume rather than per
unit mixture volume, e.g. [35]. As the volume fraction of
granular constituents per unit mixture is

Φg = Φs + Φl , (6)

the volume fraction of each constituent per unit granular vol-
ume is defined as

φν = Φν/Φg, with ν = s, l, (7)
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which also sum to unity,

φs + φl = 1. (8)

For each individual constituent, conservation laws for
mass, momentum, energy and angular momentum can all
be obtained, but here for simplicity, we only consider mass
and momentum balance for bulk constituents and ignore the
interstitial fluid effects. Each bulk1 constituent satisfies the
fundamental laws of balance for mass and momentum [29].
For a flow down a plane inclined at a constant angle θ , these
balances are

∂tρ
ν + ∇ · (ρνuν) = 0,

ρν(∂t u
ν + uν · ∇uν) = −∇ · σ ν + ρνg + βν, (9)

given in terms of partial flow quantities, such as partial
stress, σ ν , density, ρν , and velocity, uν = [uν, vν , wν]T ,
in the three coordinate directions, corresponding to each
constituent indexed ν = s, l. g = (gt , 0,−gn)T is the
gravity vector, with g being the standard acceleration due
to free fall; gt = g sin θ and gn = g cos θ . Additionally,
the variable βν represents the interspecies drag force due
to resisting motion between the constituents. As these are
internal forces residing within the granular mixture, from
Newtons’ third law the sum of these drags must be zero,
i.e., βs + βl = 0. Furthermore, the bulk density ρ, barycen-
tric granular velocity, u and the bulk stress σ are defined as
ρ = ρs + ρl , u = (ρsus + ρlul)/ρ, σ = σ s + σ l , respec-
tively.

The intrinsic variables defined for each of the constituents
also play an integral role in the constitutive theory. These
quantities are related to the partial quantities and hence are
the key features of mixture theory. The intrinsic density of
the constituent ρν∗, i.e. the mass of the constituent per unit
volume of the constituent, is related to the partial density by
constituent volume fraction φν . The same relation applies
to the partial and intrinsic stresses, σ ν and σ ν∗, of the con-
stituents. However, in standard mixture theory the partial
velocity, uν , of the constituent is identical to the intrinsic
velocity, uν∗, of the constituent,

ρν = φνρν∗, σ ν = φνσ ν∗, uν = uν∗, (10)

where all the intrinsic quantities are denoted with ’∗’. Note,
as here we define the density per unit granular volume, φν ,
not per unit mixture volume Φν , ρν∗ is still a bulk density
(i.e. it is averaged over the grain volume plus the air volume),
hence it is the bulk density of glass or steel particles in a non-
mixed state.

1 The bulk is defined as F
s ∪ F

l , see Fig. 1, excluding the interstitial
pore-space.

Gravity-driven segregation

Most of the mixture flows involved in industrial and geologi-
cal applications are shallow in nature, implying that the flow
quantities in the down- and cross-slope directions (i.e. x-
and y-directions) are nearly uniform. Moreover, we assume
that the partial densities and momenta become quasi-steady
even before the flow segregates, implying that the temporal
derivatives ∂t (ρ

ν) and ∂t (ρ
νuν) vanish after a certain equi-

librium time te. Therefore, we arrive from the momentum
equation (9)2 at

0 = −
∂σ ν

αz

∂z
+ ρνgα + βν

α with α = x, y, z, t > te.

(11)

where the subscript denotes the tensorial/vectorial compo-
nent. Summing (11) over each particle species ν = s, l for
α = z, setting σzz |z=∞ = 0 implies that the flow is in litho-
static balance

∂σzz

∂z
= −ρg cos θ. (12)

As stated earlier, the key idea behind the gravity-driven segre-
gation models [15,17,19,41] is represented by the stress frac-
tions2 ( f ν). These stress fractions determine the amount of
stress to be distributed among each of the constituents, i.e., as
smaller particles percolate downwards through the granular
matrix, they carry less of the weight, thus causing the larger
particles to proportionately carry more of the weight. In stan-

dard mixture theory, the constituent normal stress or pressure
is assumed to be linearly related to the bulk normal stress or
pressure through the volume fraction, i.e. f ν is assumed to
be equal to φν . We have, however, a crucial deviation from
the standard approach in order to account for the effects of
segregation. From the partial stress relation in (10), we have

σ ν
zz = φν σ ν∗

zz︸︷︷︸
f ν∗σzz

⇒ f ν = φν f ν∗ ⇒ σ ν
zz = f νσzz

(13)

where f ν∗ is defined as an intrinsic stress fraction and
physically f ν∗ is the fraction of the total stress bore by con-
stituent ν. On the other hand we define f ν as the over/under
stress, which indicates the amount of excess stress bore by
larger/smaller particles and is a convenient mathematical
construct. From (13), it is clear that f ν is simply related to
f ν∗ as f ν = φν f ν∗. Previously, models have been formu-
lated both in terms of f ν and f ν∗ and more confusingly both

2 Stress fractions can also be called as pressure scaling functions, see
[19].
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Table 1 Notations utilised in the existing mixture theory segregation
models

Models f ν∗ f ν

Gray and Thornton [19] - f ν

Thornton et al. [35]

Gajjar and Gray [15]

Marks et al. [26] f ν -

Tunuguntla et al. [41]

Fan and Hill [11] Rν ψν

Hill and Tan [21]

have been labelled simply f ν . In Table 1, we show the cur-
rent notation (13) compared with the ones used in previous
papers on modelling segregation.

For a monodisperse “mixture”, the whole mixture weight
is supported by the mixture itself, i.e.

f ν = 0 for φν = 0,

f ν = 1 for φν = 1. (14)

This is taken into account by defining the intrinsic stress
fraction, f ν∗, to take the following functional form, see the
work of Tunuguntla et al. [41],

f ν = φν (1 + Bν[φν](1 − φν))︸ ︷︷ ︸
f ν∗

, (15)

where the brackets [ ] denote a functional dependence. The
parameter Bν[φν] denotes a material parameter, which is in
general a function of the local partial volume fraction of the
species type-ν. As we are restricting our attention to just
two mixture components (small or large), from this point
onwards, without any loss of generality, we will simply define
φs := φ. Thereby, based on the definition of stress fraction
(15), Tables 2 and 3 list the intrinsic scaling functions ( f ∗ν)
used in previous segregation models. In both the tables, vari-
ables b, Aγ and γ are material or fitting parameters with
ŝ being the particle size-ratio dl/ds . Gajjar and Gray [15]
determined the values of Aγ and γ such that the maximum
of the two stress fractions f l

gt and f l
gg are the same, where

f l
gt and f l

gg denote the stress fractions used in the models
of Gray and Thornton [19] and Gajjar and Gray [15]. How-
ever, as mentioned by Gajjar and Gray, the values of Aγ and
γ are dependent upon the actual particle properties. Note:
f l
gt = φl f l∗

gt and f l
gg = φl f l∗

gg .
Besides satisfying the conditions in (14), an important

constraint is further imposed by the definition of bulk stress
(10), where

f s + f l = 1, (16)

as is clear from Tables 2 and 3.

Furthermore, all the gravity-driven segregation mod-
els [15,17,19,41] consider the interaction drag or inter-
constituent friction to take the form of Darcy’s law, which
on neglecting diffusive remixing is

βν = σ∇( f ν) − ρνc(uν − u), (17)

where c is an inter-constituent drag coefficient. The inter-
particle surface interaction force is given by σ∇ f ν , thus
ensuring that segregation is driven by the partial normal stress
(≈pressure) gradients. Substituting the expressions for the
drag force (17) into the normal momentum balance equation
for constituent type-ν (11)—neglecting normal acceleration
terms—results in relative percolation velocities between the
constituents and the bulk,

ρν(wν − w) = − f ν

c

∂σzz

∂z︸︷︷︸
normal
stress

gradient

− ρν gn

c
with ν = s, l. (18)

The above equation illustrates the key idea behind the
gravity-driven segregation models, where the relative veloci-
ties, between the constituents and the bulk, are dependent on
the normal stress or pressure gradients induced by gravity. As
ρ∗s = ρ∗l in our size-bidisperse mixture, on substituting the
condition of lithostatic balance (12) in the above expression,
(18) is restated in terms of constituents volume fraction as

φν(wν − w) = g cos θ

c
( f ν − φν) with ν = s, l. (19)

On the other hand, recently, Hill and Tan [21] presented
a theory that explicitly combines, both, gravity- and kinetic-
stress-driven mechanisms by modifying the interspecies drag
as below

βν = σ con
zz

∂

∂z
f con,ν + σ kin

zz

∂

∂z
f kin,ν − ρνc(uν − u), (20)

where σ con
zz and σ kin

zz denotes the contact and kinetic stress3.
Similarly, substituting the above Fan-Hill expression for the
drag force (20) into the normal momentum balance equation
for constituent type-ν (11) results in the relative percolation
velocities as

ρν(wν − w) = f con,ν − f kin,ν

c

∂σ kin
zz

∂z︸ ︷︷ ︸
Kinetic
stress

gradient

− f con,ν

c

∂σzz

∂z︸︷︷︸
normal
stress

gradient

−ρν gn

c
with ν = s, l. (21)

3 For details regarding the contact and kinetic stress and its correspond-
ing stress fractions, f con,ν and f kin,ν , please see Sect. 4.
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Table 2 Stress fractions
corresponding to small
constituents. Note that we
assume the model from
Bridgwater et al. [3] to be a
mixture theory model, for which
we back compute the pressure
scaling for the smaller
constituent of the mixture

Model f s∗ Bs [φ]

Gray and Thornton [19] 1 − b(1 − φ) −b (constant)

Marks et al. [26]
1

φ + ŝ(1 − φ)

1 − ŝ

φ + ŝ(1 − φ)

Tunuguntla et al. [41]
1

φ + ŝ3(1 − φ)

1 − ŝ3

φ + ŝ3(1 − φ)

Gajjar and Gray [15] 1 − bAγ (1 − φ)(1 − γφ) −bAγ (1 − γφ)

Bridgwater et al. [3] 1 − (1 − φ)2 −(1 − φ)

Table 3 Stress fractions
corresponding to large
constituents

Model f l∗ Bl [φ]

Gray and Thornton [19] 1 + bφ b (constant)

Marks et al. [26]
ŝ

φ + ŝ(1 − φ)
− 1 − ŝ

φ + ŝ(1 − φ)

Tunuguntla et al. [41]
ŝ3

φ + ŝ3(1 − φ)
− 1 − ŝ3

φ + ŝ3(1 − φ)

Gajjar and Gray [15] 1 + bAγ φ(1 − γφ) bAγ (1 − γφ)

Bridgwater et al. [3] 1 + φ2 φ

Note that we assume the model from Bridgwater et al. [3] to be a mixture theory model, for which we back
compute the pressure scaling for the larger constituent of the mixture

Thus, the above equation indicates that the relative percola-
tion velocities responsible for segregation, are dependent on,
both, the kinetic stress and the total normal stress gradient.
On further simplification, (21) is restated as

φν(wν − w) = f con,ν − f kin,ν

cρ

∂σ kin
zz

∂z

+ g cos θ

c
( f con,ν − φν) with ν = s, l. (22)

Moreover, from the above equation, one could also define a
dimensionless number as a ratio of its first and second term
as

V̂r = f con,ν − f kin,ν

f con,ν − φν

1

ρg cos θ

∂σ k
zz

∂z
. (23)

The above dimensionless (V̂r ) number can also be looked
at as a ratio of the kinetic and normal stress gradients,
∂σ kin

zz /∂z and ∂σzz/∂z, thus allowing us to measure the rel-
ative strengths of the two segregation mechanisms.

For gravity-driven mechanism, substituting the cons-
tituents percolation velocity (19), e.g. for ν = s, in the mass
balance equation (9)1, gives us back the earlier stated segre-
gation governing equation in terms of the volume fraction of
type-s, without accounting for diffusive remixing,

∂φ

∂t
+ ∇ · (φu) − ∂

∂z
(q F(φ)) = 0. (24)

Note that the form of segregation flux, F(φ), is dependent
on the choice of the pressure scaling functions, f ν , see the
works of [15,17,41].

In the following sections, we verify and compare the exist-
ing forms of scaling functions, listed in Tables 2 and 3, which
subdivide the bulk pressure among the constituents. This is
done by utilising information rich discrete particle simula-
tions, which are set up as described in following section.

3 Simulation setup

Fully three-dimensional (3D) discrete particle simulations
(DPMs) are used, as an alternative to experiments, to inves-
tigate segregation dynamics in a size-bidisperse mixture
flowing over inclined channels. The simulations are set up
in our in-house open-source particle solver, MercuryDPM
[36,37,39].

To begin with, we consider a cuboidal box inclined at 26◦

to the horizontal and is periodic in x- and y-direction. The
box has dimensions L × W × H = 30dm × 10dm × 10dm ,
where dm is the mean particle diameter defined as dm =
φsds + φldl . To create a rough base (bottom), we fill the
box with a randomly distributed set of particles with uniform
diameter dm and simulate them until a static layer of about
12 particles thickness is produced. Then a slice of particles
with centres between z ∈ [9.3, 11]dm is taken and translated
11 mean particle diameters downwards, to form the rough
base of the box. To ensure no flowing particles fall through
the base, a solid wall is placed underneath this static layer.
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Once the rough base is created, the box is inclined and filled
with a homogeneously mixed bidisperse mixture of particle
diameters ds and dl and equal material densities, i.e. ρs∗ =
ρl∗, as illustrated in Fig. 1; see Weinhart et al. [46] for more
details.

In our DPM simulations, we non-dimensionalise the para-
meters such that the mean particle diameter d̂m = 1, the mean
particle mass m̂m = 1, the magnitude of gravity ĝ = 1. This
implies that the mean particle density ρ̂m = m̂m/V̂m = 6/π

and the mean particle volume V̂m = π(d̂m)3/6. The non-
dimensional quantities are denoted by ‘̂ ’ . In this paper,
we consider three particular bidisperse mixtures with ŝ =
dl/ds = {1.3, 1.5, 1.7} without any size distribution around
its particle size. Hence, the use of term perfectly in the subtitle
of the paper.

Finally, we fill the box with the size-bidisperse mixture
comprising

Ns = φs V̂box

d̂s
3 and Nl = φl V̂box

d̂l
3 (25)

particles of species type-s and type-l with V̂box = 30 ×10 ×
10 being the non-dimensional volume of the box. The formu-
lae in (25) enforce (i) the dimensionless flow height Ĥ to be
the same in simulations, when the particle size-ratio is varied
and (ii) the ratio of the total volume of species type-s over
the total volume of the particles to be φs , see Appendix 1 for
details. Using (25) with homogeneous mixture initial condi-
tions (randomly mixed) and equal particle volume fraction
φs = φl = 0.5, DPM simulations for different values of ŝ

are carried out. For the given box volume and size ratios, the
flow thickness is approximately 16 mean particle diameters.

Furthermore, a linear spring-dashpot model is used, where
the spring stiffness and dissipation for each collision is cho-
sen such that the collision/contact time tc = 0.005

√
dm/g

and the coefficient of restitution rc = 0.88 are constant. The
microscopic sliding friction coefficient is taken to be 0.5 and
no rolling friction is considered. More details about the model
can be found in [7,24,46]. Besides the contact model, we use
the velocity-Verlet time-stepping algorithm.

Once the particle size-ratio, total number of particles and
the contact model parameters are given as an input, the par-
ticles are inserted into the box with dimensions V̂box =
30 × 10 × H where H is defined as (Ns + Nl)/300. If the
inserted particle at any position overlaps with another par-
ticle, the insertion is rejected and the insertion domain is
enlarged by increasing H to H + 0.01 to ensure that there is
enough volume for all the particles, thus leading to a loosely
packed mixture initially. Once the simulation starts, the mix-
ture compacts enough, see Fig. 1, giving the particles enough
energy to initialise flow. For more details, see Weinhart et al.
[46].

Given the particle simulations are setup in the above
described manner, we still need to extract continuum fields
to compare different forms of stress fractions, f ν , listed in
Tables 2 or 3. This is the focus of the following section, i.e.
how to perform the micro–macro step accurately?

4 Micro to Macro: coarse-graining (CG)

Compared to other, simpler methods of averaging such as
binning or the method of planes, the coarse-graining method
has the following advantages: (i) the resulting macroscopic
fields exactly satisfy the equations of continuum mechanics,
even near the base of the flow, see Weinhart et al. [47], (ii)
the particles are neither assumed to be spherical or rigid,
(iii) the resulting fields are even valid for a single particle,
as no averaging over an ensemble of particles is required,
(iv) the fields are determined at every point in space, not
just at the centre of averaging cells as in the case of binning
and (v) in a contact between different types of particles i.e.
large and small here, the stress-partition is clearly defined.
However, the coarse-graining method does assume (i) each
particle pair to have a single point of contact, i.e. the particles
are convex in shape; (ii) that the contact area can be replaced
by a contact point, implying the particles are not too soft;
and (iii) that collisions are not instantaneous (i.e., particles
cannot be perfectly rigid).

Considering the above advantages and assumptions, in
this section, we briefly elucidate the idea behind the coarse-
graining technique and, more importantly, the mapping
expressions, which will be employed to extract continuum
partial densities, velocities, stresses and the interaction force
density (interspecies drag force) from the discrete particle
simulations setup in Sect. 3. For more information regard-
ing the technique, please see Tunuguntla et al. [42], where
they not only derive the coarse-graining expressions sys-
tematically but also focus on its application in detail. More
importantly, they also present a general mixture-theory-based
CG framework that can be easily extended to polydisperse
mixtures without any loss of generality.

4.1 Nomenclature

Given that we have three different types of constituents:
(bulk) type-s, (bulk) type-l and boundary, interstitial pore-
space of which is filled with a zero-density passive fluid; see
Fig. 1. Each particle i ∈ F , where F := F

s ∪ F
l ∪ F

b, will
have a radius ai , centre of mass of which is located at ri with
mass mi and velocity vi . The total force f i (26), acting on a
particle i ∈ F is computed by summing the forces f i j due to
interactions with the particles of the same type j ∈ F

ν and
other type, j ∈ F/Fν , and body forces bi , e.g., gravitational
forces (mi g).
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vi, mi vj , mj

nij

cij

ri
rj

bij

Fig. 2 An illustration of two interacting constituents i and j , where
the interaction is quantified by a certain amount of overlap δi j . If ri and
r j denote the particles’ centre of mass then we define the contact vector
ri j = ri − r j , the contact point ci j = ri + (ai − δi j /2)ni j and a branch
vector bi j = ri − ci j

f i =
∑

j∈Fν

j �=i

f i j +
∑

j∈F/Fν

f i j + bi , for all i ∈ F

and ν = s, l, b. (26)

For each constituent pair, i and j , we define a contact vector
ri j = ri − r j , an overlap δi j = max(ai + a j − ri j · ni j ,0),
where ni j is a unit vector pointing from j to i , ni j = ri j/|ri j |.
Furthermore, we define a contact point ci j = ri + (ai −
δi j/2)ni j and a branch vector bi j = ri − ci j , see Fig. 2.
Irrespective of the size of constituent i and j , for simplicity,
we place the contact point, ci j , in the centre of the contact
area formed by an overlap, δi j , which for small overlaps has
a negligible effect on particle dynamics.

In the following sections, we first present the idea of
coarse-graining (CG) and then list the CG expressions for
the partial and bulk quantities, using the above nomencla-
ture.

4.2 Idea behind coarse-graining

To illustrate the idea, we consider the partial microscopic
(point) mass density for a system (in a zero-density passive
fluid) at point r and time t . From statistical mechanics, it is
given as

ρν,mic(r, t) =
∑

i∈Fν

miδ(r − ri (t)), (27)

where δ(r) is the Dirac delta function in R
3. This definition

complies with the basic requirement that the integral of the
mass density over a volume in space equals the mass of all
the particles in this volume.

To extract the partial macroscopic mass density field,
ρν(r, t), the partial microscopic mass density (27) is con-
volved with a spatial coarse-graining function ψ(r), e.g. a
Heaviside, Gaussian or a class of Lucy polynomials4, thus
leading to

ρν(r, t) :=
∫

R3
ρν,micψ(r − r′)dr′,

:=
∑

i∈Fν

miψ(r − ri (t)) =
∑

i∈Fν

miψi . (28)

The result is equivalent to replacing the delta function with
a spatial coarse-graining function (that is positive semi-
definite, integrable, and has finite support), ψ(r), also known
as a smoothing function. For simplicity, seen later, we define
ψi = ψ(r − ri (t)).

4.3 Coarse-graining expressions: novel micro–macro

map

Using the same idea as explained in the previous section,
expressions for partial quantities corresponding to con-
stituent type-ν are

Density: ρν =
∑

i∈Fν

miψi ,

Momentum: Pν =
∑

i∈Fν

mi viψi ,

Velocity: uν = Pν/ρν,

Total partial stress: σ ν = σ kin,ν + σ con,ν,

Kinetic stress: σ kin,ν =
∑

i∈Fν

mi v
′
i v

′
iψi ,

Contact stress: σ con,ν =
∑

i∈Fν

∑

j∈Fν

j �=i

f i j bi jΨi j

+ +
∑

i∈Fν

∑

j∈F/Fν

f i j bi jΨi j ,

(29)

where in the kinetic stress expression, v′
i is the fluctuation

velocity of particle i , defined as v′
i (r, t) = u(r, t) − vi (t).

Furthermore, in the contact stress expression, bi j denotes the
branch vector origination from the particle centre to contact
point, as illustrated in Fig. 2. Ψi j denotes a line integral along

the branch vector bi j , Ψi j =
∫ 1

0 ψ(r − ri + sbi j )ds, which
ensures the distribution of the force (26), between two con-
stituents i and j to the partial stresses to be proportional to the
length of the branch vectors. In other words, the stresses are
distributed proportionally, based on the fraction of the branch
vectors contained within each constituent. Thus, for con-
tacts between a small constituent and a large constituent, the

4 For more details regarding the coarse-graining functions, see
Tunuguntla et al. [42].
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larger-sized constituent receives a larger share of the stress.
All the above partial quantities are derived such that both the
mass and momentum balance laws are exactly satisfied.

On utilising the above CG expressions, stated in Sect. 4.3,
the following section focusses on extracting the continuum
fields from, both, the transient and steady particle data of our
size-bidisperse mixtures.

5 Applying coarse-graining to the DPM

simulations

In order to compare and contrast the existing mixture theory
segregation models, one needs to construct the continuum
fields to compute the stress fractions or pressure scalings
listed in Tables 2 or 3. Using the same coarse-graining expres-
sions stated in Sect. 4.3, Weinhart et al. [45] performed
the micro–macro step on their discrete particle data corre-
sponding to steady state alone. Although their findings did
illustrate important aspects of particle segregation, not much
was inferred regarding the transient dynamics itself. Thereby,
to understand transient segregation dynamics and also see
how the stress distribution on each of the mixture constituents
varies as a function of, both, space and time, micro–macro
step must be performed on unsteady discrete particle data as
well. This is the prime focus of this section, how to extract

continuum fields from the available unsteady particle data?

In the simulations setup in Sect. 3, the temporal deriva-
tives ∂t (ρ

ν) and ∂t (ρ
νuν) vanish after a short time interval

t̂ ∈ [0, t̂e ≈ 50], and thereafter the slow process of segre-
gation dominates the transient flow dynamics. For the given
particle size-ratio, this transient flow behaviour or the process
of segregation approximately happens within the first 2000
DPM time units. For example, see Fig. 3 where for particle
size-ratio ŝ = 1.3, the vertical centres of mass of, both, large

ẑcom

t̂dpm

6

8

10

2.0 x 103

1.51.00.5

t̂n−1

t̂n
t̂n+1

t̂n+2

Fig. 3 For bidisperse mixture of particle size-ratio ŝ = 1.3, evolution
of the vertical centre of mass for both large (solid line) and small (dotted
line) particles from unsteady to steady state is illustrated. Here, t̂n−1 to
t̂n+2 denote a range of points in time about which we would like to
temporally average. Note that the points above are just to illustrate, in
practice we average around more points than shown above

and small particles, are tracked. Therefore, we focus on the
time interval before the process of particle segregation has
reached a steady state, i.e. when t̂ ∈ [50, 2000], where ‘ ˆ ’
denotes non-dimensional quantities such as t̂ = t/

√
dm/g.

For the purpose of our investigation, particle data is stored at
every 5000 simulation time steps 5.

As in Tunuguntla et al. [42], we use the coarse-graining
expressions of Sect. 4.3 to spatially coarse-grain the particle
data. For our analysis, we need continuum fields which are
a function of, both, time (t̂) and flow depth (ẑ). To do so, for
a given spatial coarse-graining scale (ŵ = w/dm), we, first,
spatially average the extracted continuum fields in x- and y-
direction, thus resulting in averaged quantities, ζ̄ (t̂, ẑ), as a
function of both time t̂ and flow depth ẑ = z/dm . However,
to construct macroscopic continuum fields in the temporal
direction, we further need to average ζ̄ (t̂, ẑ) temporally over
a time interval

[
t̂ − ŵt , t̂ + ŵt

]
, where ŵt is defined as the

temporal averaging scale.
Given a spatial (ŵ) and temporal (ŵt ) averaging scale,

temporal averaging of any averaged field ζ̄ (t̂, ẑ) can be
defined as

¯̄ζ(t̂, ẑ) = 1

2ŵt

t̂+ŵt∫

t̂−ŵt

ζ̄ (t̃, ẑ)dt̃, for a given ŵ and ŵt , (30)

where t̂ denotes the point in time about which we would
like to average, and ŵt determines the width of the averaging
time interval,

[
t̂ − ŵt , t̂ + ŵt

]
, see Fig. 3. As seen in (30), the

coarse-graining expressions are completely dependent upon,
both, spatial and temporal coarse-graining scales. Thereby,
in Tunuguntla et al. [42], we focussed on determining opti-
mal spatial and temporal coarse-graining scales, especially
for segregating flows over inclined channels. Given these
are already determined, we chose the spatial and temporal
coarse-graining scale as ŵ = 0.5 and ŵt = 50. With these at
hand, coarse-grained fields are constructed at different times
t̂n ∈ [100, 3000], see Fig. 3, for particle data corresponding
to all the three size ratios.

Given these continuum fields, the following section brings
us to the much-awaited section of this paper, where we illus-
trate and discuss our observations.

6 Analysis and discussion

With coarse-grained quantities available at the transient
stages of particle segregation, we initially begin by looking

5 More particle data can be used for coarse-graining, if the coarse-
graining is applied while the simulation is running (live-statistics);
however, this is time consuming and was not deemed necessary for
this study.
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(a)

(b)

(c)

Fig. 4 Illustrates the evolution of local volume fraction, of the bulk (Λ) and the two mixture constituents (Λs & Λl ), as a function of time and flow
depth, z/dm . Each row corresponds to a mixture of a particular size ratio (a) ŝ = 1.3 (b) ŝ = 1.5 (c) ŝ = 1.7

at the evolution of the local solid volume fraction of, both,
type-s and type-l constituents as a function of the flow-depth.

6.1 Local mass fractions

From the partial density (28), the partial mass fraction is
defined as

Λν = ρν

ρν
p

, with ν = s, l, (31)

where ρν
p is the (constant) material density of constituent

type-ν. The bulk mass fraction is defined such that Λ =
Λ1 + Λ2.

Utilising these expressions, for ŝ = {1.3, 1.5, 1.7}, Fig. 4
illustrates the evolution of local mass fraction for, both, the
bulk and the mixture constituents. As seen, flows segregate
faster with an increase in the particle size-ratio. Moreover, as
the flow segregates, a pure layer of small particles develops
at the base. Right above this layer, Λl shows an oscillat-
ing behaviour at tn = [700, 2000, 3000] (Fig. 4), indicating
that layers of large particles develop on the small particle
bed. Once the flow is fully segregated, at tn = 3000, only
a single layer right above the layer of pure small particles
remains, see the circle highlighting this in the plots in the
rightmost column of Fig. 4a–c. This might be an artefact
of using monodisperse constituents, i.e. no size distribution

around ds or dl . Apart from these oscillations, Λl increases
steadily towards the free-surface, forming a layer of large
particles at the free-surface.

6.2 Transient vs. steady state analysis

As a step towards comparing the existing forms of stress
fractions or pressure scalings, listed in Tables 2 or 3, we first
utilise the computed total bulk and partial normal stresses,
where

σzz = σ con
zz + σ kin

zz and σ ν
zz = σ con,ν

zz + σ kin,ν
zz . (32)

With the coarse-grained normal stress fields at hand, we first
construct the total partial stress fractions as

f ν =
σ ν

zz

σzz

with ν = s, l, (33)

and then compute the partial stress fractions corresponding
to the contact and kinetic stresses as

f con,ν = σ
con,ν
zz

σ con
zz

and f kin,ν = σ
kin,ν
zz

σ kin
zz

with ν = s, l.

(34)

Note, that from (34) and (32) it follows that f ν �= f con,ν +
f kin,ν .
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The stress fractions determine the amount of normal
stresses to be distributed among the small and large con-
stituents. In gravity-driven segregation models, segregation
is driven by the pressure gradient which in turn is scaled by
the difference between the total partial stress fraction f ν and
the partial volume fraction φν , i.e. f ν − φν , see (19). On
the other hand, in the mechanism proposed by Hill and Tan,
(22) implies that it is the difference between the contact and
kinetic partial stress fractions ( f con,ν − f kin,ν) and ( f con,ν −
φν) which scales the strength of either of the stress gradi-
ents, ∂σ kin

zz /∂z and ∂σzz/∂z. If |( f con,ν − f kin,ν)∂σ kin
zz /∂z|

> |( f con,ν − φν)∂σzz/∂z|, segregation is majorly driven by
gradient in kinetic stress. If not, then segregation is driven
by the pressure gradients, as seen in (22). This is where our
dimensionless number (23) comes into picture. Moreover,
on re-examining (19) and (22), we also see that the pres-
sure gradients are scaled by two pre-factors ( f ν − φν) or
( f con,ν − φν), respectively.

To distinguish or determine the profiles of these differ-
ent pre-factors listed above, we plot the profiles of f ν − φν ,
f con,ν−φν , f kin,ν−φν and f con,ν− f kin,ν , for different par-
ticle size-ratio ŝ := {1..3, 1.5, 1.7}, in Figs. 5, 6, 7. The plots
are colour-coded-based on the flow depth and the markers
◦ and ⋄ denote large and small constituents. When closely
observed, the plots illustrate the evolving profiles of these
pre-factors, thus allowing us to improve our understanding
regarding the forces behind segregation in the size-based seg-
regation in inclined channel flows.

The pre-factors or the relative stress fractions of the large
and small constituents shown in Figs. 5, 6, 7 are point sym-
metric, as f s = − f l and φs = 1 − φl . In the initial stages
of segregation, i.e. at t̂n = 100 to 400 DPM time units, both,
the relative total and contact partial stress fraction profiles
look very similar, complex and mostly concentrated around
a small area between 0.25 < φν < 0.75, with values very
close to zero except near the free-surface. This indicates that
the fraction of the total and contact stress, (σzz) and (σ con

zz ),
bore by the large and small constituents is nearly the same
as its local volume fraction, φν . Therefore, one can neglect
f con,ν − φν , such that f con,ν ≈ φν . Note, this approxima-
tion was also previously used in the work of Hill and Tan
[21]. By making this approximation, it gives cleaner data to
fit for the kinetic-stress-driven mechanism; as it removes a
lot of complex fine structure in the f con,ν profiles, which
we believe may be artefacts of the perfectly bidisperse sim-
ulations, we considered here. On the other hand, the profiles
of the relative kinetic partial stress fractions ( f kin,ν − φν),
corresponding to both large and small constituents, are sig-
nificantly lower/higher than their local volume fractions, φν ,
in sharp contrast to their respective contact or total stress
fraction profiles. Although the points near the free-surface
(red diamonds and circles) do not exactly lie on an initially
formed curve, as seen in the third column of each timestamp

in Figs. 5, 6, 7, the values in the bulk and base of the flow
(black, sky-blue, burnt-orange diamonds and circles) align
themselves onto a different nonlinear curve.

As the process of segregation progresses, t̂n = 700 to
2000, the relative total and contact partial stress fractions
appear to have unfurled from their complicated initial pro-
files to a much more structured one. The initially strong
oscillations observed, near the free-surface (red circles and
diamonds), in the profiles of f ν − φν and f con,ν − φν , dis-
appear over time and the high concentration of data points
observed at intermediate volume fractions, 0.25 < φ < 0.75
initially, also resolve over time. However, the fraction of the
total and contact stress, (σzz) and (σ con

zz ), bore by the large and
small constituents is still nearly the same as its local volume
fraction. Moreover, when closely observed, the profiles of rel-
ative kinetic stress fraction ( f kin,ν−φν) and ( f con,ν− f kin,ν)
stay identical throughout the transient stages of segregation,
i.e. the amount of kinetic stress borne by the small and large
particles remains the same during the process of segregation
(overlooking the points near the free-surface). Strikingly, this
is also true compared with the corresponding profile in steady
state at t̂n = 3000. Thus, based on the illustrated profiles in
Figs. 5, 6, 7, it implies that in a size-bidisperse mixture with
given particle size-ratio, the smaller particles support a frac-
tion of the kinetic stress larger than their volume fraction, as
f con,ν ≈ φν , thereby complementing the findings of Wein-
hart et al. [45] and Hill and Tan [21].

Moreover, Fig. 8 further compares the steady state pro-
files of relative kinetic stress fraction ( f kin,ν − φν) and
( f con,ν − f kin,ν) for increasing particle size-ratio. As the
particle size-ratio increases, the smaller-sized constituents
support larger fraction of the kinetic stress and, interest-
ingly, we also observe that the relative kinetic stress fractions
become more asymmetric with the increase in particle size-
ratio. However, more detailed study is required to explain this
asymmetry.

6.3 Comparison of segregation models

In the previous section, we closely looked at the relative
stress fractions, also known as the pre-factors in (19) and
(22), computed from the simulations of a size-bidisperse
mixture flowing over an inclined channel. In this section,
we utilise these coarse-grained profiles and compare them
with the existing theoretical forms of stress fractions that are
listed in Table 2 and Table 3.

Given this, at t̂n = 3000, we compared the total partial
stress fraction profiles corresponding to the large constituents
with the scalings listed in Table 3, see Fig. 9. As illustrated,
with b = 1, γ = 0.9 and ŝ = {1.3, 1.5, 1.7}, none of the
expressions for the stress fractions seem to match the pro-
files computed from the particle simulations, ( f l

sim). Note
that the values of b and γ could be modified such the pro-

123



Comp. Part. Mech. (2017) 4:387–405 399

Fig. 5 Relative partial stress fractions at different times/stages of seg-
regation. Diamonds (sky-blue) and circles (burnt-orange) correspond to
small and large constituents, respectively. The plots are further colour-
coded based on the flow depth, values corresponding to points near the

base (z/dm ≤ 2.0) are denoted as black diamonds or circles. Similarly,
values corresponding to points near the free-surface (z/dm ≥ 15.0) are
denoted as red diamonds or circles

Fig. 6 Relative partial stress fractions at different times/stages of seg-
regation. Diamonds (sky-blue) and circles (burnt-orange) correspond to
small and large constituents, respectively. The plots are further colour-
coded based on the flow depth, values corresponding to points near the

base (z/dm ≤ 2.0) are denoted as black diamonds or circles. Similarly,
values corresponding to points near the free-surface (z/dm ≥ 15.0) are
denoted as red diamonds or circles
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Fig. 7 Relative partial stress fractions at different times/stages of seg-
regation. Diamonds (sky-blue) and circles (burnt-orange) correspond to
small and large constituents, respectively. The plots are further colour-
coded based on the flow depth, values corresponding to points near the

base (z/dm ≤ 2.0) are denoted as black diamonds or circles. Similarly,
values corresponding to points near the free-surface (z/dm ≥ 15.0) are
denoted as red diamonds or circles

Increasing ŝ Increasing ŝ

fk,ν − φν fc,ν − fk,ν

0.3

0.15

0

−0.15

−0.3
0 0.5 1

φν 0 0.5 1
φν

t̂n = 3000

Fig. 8 Illustrates the relative partial stress fractions after the flows have
fully segregated, i.e. when the flow is already in a steady state. The
plots are colour-coded based on the flow depth, values corresponding
to points near the base (z/dm ≤ 2.0) are denoted as black diamonds or
circles. Similarly, values corresponding to points near the free-surface

(z/dm ≥ 15.0) are denoted as red diamonds or circles. Here, diamonds
and circles correspond to small (sky-blue) and large (burnt-orange) con-
stituents. Note: We assume particle segregation to have reached steady
state, when the vertical centre of masses of, both, the large and small
particles do not vary in time

posed functional forms are closer to the relative total partial
scaling profiles. However, this would not be of much help
as the relative total partial scaling profiles obtained from
the simulations ( f l

sim), for different bidisperse mixtures,
are approximately the same as those of its local volume
fraction, φν , thus implying negligible relative percolation

velocity which in turn implies very weak segregation; see
(19), thereby forcing us to ask a very simple question: How

do these gravity-driven models even work, when none of the

currently proposed scaling forms match in Fig. 9? Even if

they do, which of them is relatively good at quantitatively

predicting particle segregation?
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Fig. 9 Compares the relative
total partial pressure scalings
( f ν − φν ), corresponding to
large constituents (ν = l), of
different theoretical models with
the one obtained from our
simulation, Sim. Here, GT ,
GG, Marks and T T ,
correspond to the scalings
utilised in the gravity-driven
segregation models of Gray and
Thornton [19], Gajjar and Gray
[15], Marks et al. [26] and
Tunuguntla et al. [41] models
whereas BW corresponds to the
scaling back computed from the
model of Bridgwater et al. [3].
The results correspond to
size-bidisperse simulation with
particle size-ratio (a) ŝ = 1.3 (b)
ŝ = 1.5 and (c) ŝ = 1.7. Note
that we used a fixed set of fitting
parameters, i.e. b = 1 in the
profiles corresponding to GT

and GG, with γ = 0.9 and
Aγ = 1.6042 in the profile
corresponding to GG

f l
− φl

(a)

(b)

(c)
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6.4 The kinetic-stress model

From the previous sections, we can infer that smaller particles
support a fraction of the kinetic stress larger than their local
volume fraction. Given that, we postulate the intrinsic partial
kinetic stress fractions ( f kin,s∗) to take the following form

f kin,ν∗ := 1 + Bkin,ν(1 − φν) with ν = s, l, (35)

where Bkin,ν , for example when ν = s, takes the form corre-
sponding to the one for the larger constituent listed in Table 3.
Basically, we imply that Bkin,s := Bl as listed in Table 4. By
utilising these functional forms, in Fig. 10 we make a com-
parison between the postulated forms of partial kinetic stress
fractions and the one obtained from our particle simulations.
When looked upon closely, for a chosen set of fitting para-
meters, the functional forms proposed by Gray and Thornton

and Gajjar and Gray match well with the ones computed
from the particle simulations. In fact, with the correctly cho-
sen fitting parameters, the form proposed Gajjar and Gray
is in a very close agreement with the relative partial kinetic
stress fraction obtained from the simulations. Although the
scaling proposed by Marks et al. incorporates the particle
size-ratio in its suggested form, it peaks at a different value
of φ, see Fig. 10, when compared to the one obtained from
simulation.

As a result, one could say that the gravity-driven segrega-
tion models work because the suggested functional forms for
total partial stress fractions capture the shape of the partial
kinetic stress fraction profiles obtained from the simulations.
They implicitly support the fact that smaller particles support
a fraction of kinetic stress larger than their volume frac-
tions. As seen, three out of the four suggested functional
forms are able to capture the segregation dynamics, with
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Table 4 Functional forms for
partial intrinsic kinetic stress
fractions corresponding to small
constituents

Model f kin,s∗ Bkin,s [φ]

Gray and Thornton [19] 1 + bφ b (constant)

Marks et al. [26]
ŝ

φ + ŝ(1 − φ)
− 1 − ŝ

φ + ŝ(1 − φ)

Tunuguntla et al. [41]
ŝ3

φ + ŝ3(1 − φ)
− 1 − ŝ3

φ + ŝ3(1 − φ)

Gajjar and Gray [15] 1 + bAγ φ(1 − γφ) bAγ (1 − γφ)

Bridgwater et al. [3] 1 + φ2 φ

Fig. 10 For small constituents,
this plot illustrates a comparison
of relative partial kinetic stress
fractions between the ones
obtained from simulation and
the one computed using the
functional forms listed in
Table 4. As seen in (a) for
ŝ = 1.3, with b = 0.35,
Aγ = 0.425 and γ = 0.45 (b)
for ŝ = 1.5, with b = 0.5,
Aγ = 0.65 and γ = 0.45 and
(c) ŝ = 1.7, with b = 0.68,
Aγ = 0.85 and γ = 0.45, the
forms suggested by Gray and
Thornton (GT) [19] and Gajjar
and Gray (GG) [15] appear to
closely capture the shape of the
profile obtained from our
simulation

the closest being the form suggested by Gajjar and Gray
[15]. However, there is still scope for work to be carried out
in this direction, where fundamental changes are needed to
be made in the basis upon which the mixture models are
constructed. Moreover, on a different note, it also raises

the interesting question of why did the model of Tunun-
guntla et al. best determine the zero segregation line [41]
if this model is incorrectly capturing the details of the stress
distribution.
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7 Summary and conclusions

In this work, we have reviewed the different segregation mod-
els that have recently been developed and have also defined
a common unifying notation that allows for different models
to be easily compared and contrasted.

In order to do so, we utilise particle simulations combined
with an advance micro–macro tool, called coarse-graining,
to analyse the different assumptions made in these models.
For the first time, we analyse data corresponding to transient
stages of a segregating flow rather than simply using data
corresponding to steady state.

Through our investigation, we found the following key
findings

– The kinetic stress bore by the large and small constituents
remains the same during the whole process of segrega-
tion, except near the free-surface of the flow where we
observe some fluctuations in the initial stages of the flow.

– Near the free-surface of the flow, initially the stress (con-
tact and kinetic) profiles are different; but, gradually they
relax onto the steady-profile. This process happens from
the centre outwards, i.e., the closer your location to the
centre the quickly the stress relaxes to the steady-state
value.

– The contact stress has a much more complicated evolu-
tion; however, this seems to be associated with layering
effects, that is present in the early stages of segregation.
These layers slowly melt as time progress.

– We confirm as previously reported by Weinhart et al. [45]
and Hill and Tan [21] that, for the given particle size-ratio,
the smaller constituents support a larger fraction of the
normal kinetic stress.

– With rightly chosen set of fitting parameters, the shape
of the partial kinetic stress fraction is best captured by
the functional form suggested by Gajjar and Gray [15].

– The measured relative stress fractions are asymmetric as
observed in the experiments of van der Vaart et al. [44].
However, they considered varying fill fractions, whereas
here we consider varying particle size-ratio. Moreover,
the asymmetry increases with the increase in particle size-
ratio.

The work of this paper could be extended and improved
in several ways:

– Firstly the strong layer we observed in the earlier stages
of segregation, i.e. earlier time data, may be due to the
use of a perfectly bidispersed mixture. Thereby, a small
size distribution around two distinct mean values should
be used.

– Also the flows used here are of intermediate thickness;
and deeper flows should be used to see the effect of
absolute depth.

– None of the partial stress fractions suggested in the lit-
erature match the simulation results; however, three of
the forms suggested, do closely match the profile of the
kinetic-stress fraction obtained from the simulation. So
this opens the question such as what is the correct func-

tional form? More interestingly, why did the form of

Tunuguntla et al. [41] capture the zero-segregating line

so well?

– Moreover, the effect of basal roughness and varying fill
concentrations on the stress fractions also needs to be
studied and included in the theoretical models.

It is clear that their still remains work do be done even for
the simple case of size-bidisperse segregation in flows over
simple inclined planes. Many different authors have recently
made significant contributions to this topic and we believe
the solution to fully understanding segregation will require
the combination of several of these ideas. Therefore we hope
this paper will serve as a useful reference point to understand
and compare these distinct models as they often use different
and inconsistent notation (relative to each other).
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Appendix 1: How to determine the number of par-

ticles in our DPMs?

We consider a cuboidal box, periodic in x- and y-direction,
inclined at 26◦ to the horizontal. The box has dimensions
L × W × H = 20dm × 10dm × 10dm and is filled up with
a bidisperse mixture particles up to a flow height of H occu-
pying a total particle volume of V p with a packing fraction
of π/6,

V p = (π/6)LW H, V
p

s = φV p, V
p

l = (1 − φ)V p. (36)

Hence, V
p

s and V
p

l is the volume occupied by all the par-
ticles of species type-s and type-l, respectively, which are
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taken to be equal for the simulations presented here, i.e.,
φ = 0.5. Below, we non-dimensionalise the particle diame-
ter of species type-s and -l, and the mixture volumes, (36),
as

ds = dm d̂s , dl = dm d̂l , (L , W, H) = dm(L̂, Ŵ , Ĥ),

V p = d3
m V̂ p with V̂ p = (π/6)L̂Ŵ Ĥ ,

V
p

s = φV̂ p , V
p

l = (1 − φ)V̂ p. (37)

Simultaneously, the total mass corresponding to the volumes
V

p
ν , with ν = s, l, and V p is

M p
ν = ρνV p

ν with ν = s, l and

M p = M
p
s + M

p
l with ρm = M p/V p = mm/Vm, (38)

and are non-dimensionalised as

M p = ρm(dm)3 M̂ p with M̂ p
ν = ρ̂ν V̂ p

ν and ν = s, l. (39)

From the above non-dimensionalised flow quantities, (37)
and (39), we determine non-dimensionalised particle diam-
eters and densities, and the number of particles of species
type-s and type-l to be filled in the box. Thereby, the
non-dimensional particle diameters of the two species type
are

d̂m = φd̂s + (1 − φ)d̂l = 1,

implying d̂s = 1

φ + (1 − φ)ŝ
and d̂l = ŝ d̂s . (40)

Similarly, the non-dimensional particle densities are given as

ρ̂m = M̂ p

V̂ p
= φρ̂s V̂ p + (1 − φ)ρ̂l V̂

p

V̂ p

= ρ̂1(φ + (1 − φ)̂r ) = 6/π,

implying ρ̂s = (6/π)

φ + (1 − φ)̂r
and ρ̂l = r̂ ρ̂s . (41)

Furthermore, if Ns and Nl are the number of particles of
species type-s and type-l in the mixture, from (39) we have

Ns = V̂
p

s

(π/6)(d̂s)3
= φ(π/6)L̂Ŵ Ĥ

(π/6)(d̂s)3
= φ L̂Ŵ Ĥ

(d̂s)3
,

Nl = V̂
p

2

(π/6)(d̂l)3
= (1 − φ)(π/6)L̂Ŵ Ĥ

(π/6)(d̂l)3
= (1 − φ)L̂Ŵ Ĥ

(d̂l)3
.

(42)

References

1. Babic M (1997) Average balance equations for granular materials.
Int J Eng Sci 35(5):523–548

2. Bridgwater J (1976) Fundamental powder mixing mechanisms.
Powder Technol 15:215–236

3. Bridgwater J, Foo WS, Stephens DJ (1985) Particle mixing and
segregation in failure zonestheory and experiment. Powder Technol
41(2):147–158

4. Brito R, Soto R (2009) Competition of brazil nut effect, buoyancy,
and inelasticity induced segregation in a granular mixture. Eur Phys
J Special Topics 179:207–219

5. Brock JD, May JG, Renegar G (1986) Segregation: causes and
cures. Astec Industries, Chatanooga

6. Cooke MH, Stephens DJ, Bridgwater J (1976) Powder mixing—a
literature survey. Powder Technol 15:1–20

7. Cundall PA, Strack ODL (1979) A discrete numerical model for
granular assemblies. Geotechnique 29(1):47–65

8. Dolgunin VN, Ukolov AA (1995) Segregation modeling of particle
rapid gravity flow. Powder Technol 83(2):95–103

9. Drahun JA, Bridgwater J (1983) The mechanisms of free surface
segregation. Powder Technol 36:39–53

10. Duran J (2000) Sands, powders, and grains. Springer, New York
11. Fan Y, Hill KM (2011) Theory for shear-induced segregation of

dense granular mixtures. New J Phys 13(9):095,009
12. Fan Y, Schlick CP, Umbanhowar PB, Ottino JM, Lueptow RM

(2014) Modelling size segregation of granular materials: the roles
of segregation, advection and diffusion. J Fluid Mech 741:252–279

13. Felix G, Thomas N (2004) Evidence of two effects in the size
segregation process in dry granular media. Phys Rev E 70:051,307

14. Feng YT, Cleary PW, Cohen RCZ, Harrison SM, Sinnott MD,
Prakash M, Mead S (2013) Prediction of industrial, biophysical
and extreme geophysical flows using particle methods. Eng Com-
put 30(2):157–196

15. Gajjar P, Gray J (2014) Asymmetric flux models for particle-size
segregation in granular avalanches. J Fluid Mech 757:297–329

16. Goldhirsch I (2010) Stress, stress asymmetry and couple stress:
from discrete particles to continuous fields. Granul Matt 12(3):239–
252

17. Gray JMNT, Ancey C (2015) Particle-size and -density segregation
in granular free-surface flows. J Fluid Mech 779:622–668

18. Gray JMNT, Chugunov VA (2006) Particle-size segregation and
diffusive remixing in shallow granular avalanches. J Fluid Mech
569:365–398

19. Gray JMNT, Thornton AR (2005) A theory for particle size seg-
regation in shallow granular free-surface flows. Proc R Soc A
461:1447–1473

20. Hill KM, Fan Y (2016) Granular temperature and segregation in
dense sheared particulate mixtures. KONA Powder Part J 33:150–
168

21. Hill KM, Tan DS (2014) Segregation in dense sheared ows: grav-
ity, temperature gradients, and stress partitioning. J Fluid Mech
756:54–88

22. Hsiau SS, Hunt ML (1993) Shear-in ced particle diffusion and
longitudinal velocity fluctuations in a granular-flow mixing layer.
J Fluid Mech 251:299–313

23. Khakhar DV, McCarthy JJ, Ottino JM (1999) Mixing and segrega-
tion of granular materials in chute flows. Chaos 9:594–610

24. Luding S (2008) Introduction to discrete element methods: basic of
contact force models and how to perform the micro-macro transi-
tion to continuum theory. Eur J Environ Civil Eng 12(7–8):785–826

25. Makse HA, Havlin S, King PR, Stanley HE (1997) Spontaneous
stratification in granular mixtures. Nature 386:379–381

26. Marks B, Rognon P, Einav I (2012) Grainsize dynamics of poly-
disperse granular segregation down inclined planes. J Fluid Mech
690:499–511

27. May LBH, Golick LA, Phillips KC, Shearer M, Daniels KE (2010)
Shear-driven size segregation of granular materials: modeling and
experiment. Phys Rev E 81(5):051,301

123



Comp. Part. Mech. (2017) 4:387–405 405

28. May LBH, Shearer M, Daniels KE (2010) Scalar conservation laws
with nonconstant coefficients with application to particle size seg-
regation in granular flow. J Nonlinear Sci 20(6):689–707

29. Morland LW (1992) Flow of viscous fluids through a porous
deformable matrix. Surv Geophys 13:209–268

30. Pollard BL, Henein H (1989) Kinetics of radial segregation of dif-
ferent sized irregular particles in rotary cylinders. Can Metall Q
28:29–40

31. Savage SB, Lun CKK (1988) Particle size segregation in inclined
chute flow of dry cohesionless granular solids. J Fluid Mech
189:311–335

32. Schlick CP, Fan Y, Isner AB, Umbanhowar PB, Ottino JM, Lueptow
RM (2015) Modeling segregation of bidisperse granular materials
using physical control parameters in the quasi-2d bounded heap.
AIChE J 61(5):1524–1534

33. Schlick CP, Isner AB, Freireich BJ, Fan Y, Umbanhowar PB, Ottino
JM, Lueptow RM (2016) A continuum approach for predicting seg-
regation in flowing polydisperse granular materials. J Fluid Mech
797:95–109

34. Staron L, Phillips JC (2015) Stress partition and microstructure in
size-segregating granular flows. Phys Rev E 92(2):022,210

35. Thornton AR, Gray JMNT, Hogg AJ (2006) A three-phase mixture
theory for particle size segregation in shallow granular free-surface
flows. J Fluid Mech 550:1–26

36. Thornton AR, Krijgsman D, Fransen R, Gonzalez S, Tunuguntla D,
te Voortwis A, Luding S, Bokhove O, Weinhart T (2013) Mercury-
dpm: fast particles simulations in complex geometries. Newsletter
EnginSoft 10(1):48–53

37. Thornton AR, Krijgsman D, te Voortwis A, Ogarko V, Luding S,
Fransen R, Gonzalez S, Bokhove O, Imole O, Weinhart T (2013)
A review of recent work on the discrete particle method at the
University of Twente: an introduction to the open-source package
MercuryDPM. In: DEM 6: 6th international conference on discrete
element methods and related techniques, pp 393–399

38. Thornton AR, Weinhart T, Luding S, Bokhove O (2012) Modeling
of particle size segregation: calibration using the discrete particle
method. Int J Mod Phys 23(8):1240014

39. Thornton AR, Weinhart T et al (2009–2016) Mercurydpm. http://
MercuryDPM.org/

40. Tripathi A, Khakhar DV (2013) Density difference-driven segre-
gation in a dense granular flow. J Fluid Mech 717:643–669

41. Tunuguntla DR, Bokhove O, Thornton AR (2014) A mixture theory
for size and density segregation in free-surface shallow granular
flows. J Fluid Mech 749:99–112

42. Tunuguntla DR, Thornton AR, Weinhart T (2016) From discrete
elements to continuum fields: extension to bidisperse systems.
Comput Part Mech 3(3):349–365

43. Ulrich S, Schröter M, Swinney HL (2007) Influence of friction on
granular segregation. Phys Rev E 76:042,301

44. van der Vaart K, Gajjar P, Epely-Chauvin G, Andreini N, Gray
JMNT, Ancey C (2015) Underlying asymmetry within particle size
segregation. Phys Rev Lett 114(23):238,001

45. Weinhart T, Luding S, Thornton AR (2013) From discrete particles
to continuum fields in mixtures. AIP Conf Procs 1542:1202

46. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) Clo-
sure relations for shallow granular flows from particle simulations.
Granul Matt 14(4):531–552

47. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) From
discrete particles to continuum fields near a boundary. Granul Matt
14(2):289–294

48. Wiederseiner S, Andreini N, Épely-Chauvin G, Moser G, Mon-
nereau M, Gray JMNT, Ancey C (2011) Experimental investi-
gation into segregating granular flows down chutes. Phys Fluids
23:013,301

49. Williams JC (1968) The mixing of dry powders. Powder Technol
2(1):13–20

50. Windows-Yule CRK, Scheper BJ, van der Horn AJ, Hainsworth
N, Saunders J, Parker DJ, Thornton AR (2016) Understanding
and exploiting competing segregation mechanisms in horizontally
rotated granular media. New J Phys 18(2):023–013

51. Xiao H, Umbanhowar PB, Ottino JM, Lueptow RM (2016) Mod-
elling density segregation in flowing bidisperse granular materials.
Proc R Soc A 472(2191):20150856

123

http://MercuryDPM.org/
http://MercuryDPM.org/

	Comparing and contrasting size-based particle segregation models
	Applying coarse-graining to perfectly bidisperse systems
	Abstract
	1 Introduction
	2 Theoretical models
	2.1 Mixture theory framework
	Gravity-driven segregation

	3 Simulation setup
	4 Micro to Macro: coarse-graining (CG)
	4.1 Nomenclature
	4.2 Idea behind coarse-graining
	4.3 Coarse-graining expressions: novel micro--macro map

	5 Applying coarse-graining to the DPM simulations
	6 Analysis and discussion
	6.1 Local mass fractions
	6.2 Transient vs. steady state analysis
	6.3 Comparison of segregation models
	6.4 The kinetic-stress model

	7 Summary and conclusions
	Acknowledgements
	Appendix 1: How to determine the number of particles in our DPMs?
	References



