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ABSTRACT

Probabilistic forecasts, which communicate forecast uncertainties, enable users to make better weather-

based decisions. Using precipitation and numerous instability indices from the deterministic model

HARMONIE–AROME(HA; a nonhydrostatic numerical weather predictionmodel) as potential predictors,

we generate summer areal probabilistic maximum hourly precipitation forecasts across 11 regions of the

Netherlands.We compare the skill of three statistical postprocessingmethods: an extended logistic regression

(ELR), a zero-adjusted gamma distribution (ZAGA), and a machine learning-based method, quantile re-

gression forests (QRF). Forecast skill for low and moderate precipitation thresholds increases with the in-

clusion of extra predictors, in addition to HA precipitation. HA precipitation is the most important predictor

at all lead times in ELR andQRF, while in ZAGA, themost important predictor for the location parameter

shifts over lead times from HA precipitation to indices of atmospheric instability. All three methods im-

prove upon a climatological forecast for low and moderate precipitation thresholds. ZAGA and QRF are

generally the most skillful methods at moderate thresholds. QRF tends to be the most skillful method at

higher thresholds, particularly during the afternoon period. Forecasts are reliable at low and moderate

thresholds but tend to be overconfident at higher thresholds. QRF and ZAGA have more potential eco-

nomic value than the deterministic forecast, with value remaining at high thresholds. A maximum local

hourly precipitation threshold of 30 mm h21 (a criterion in the Royal Netherlands Meteorological

Institute’s code yellow warning for severe thunderstorms) is skillfully forecast by QRF in the afternoon

period at short lead times.

1. Introduction

Forecast uncertainty is inevitable, given the chaotic

nature of the atmosphere and unavoidable errors, such

as those that remain in the initial conditions and the

physical parameterization schemes of the numerical

model, among others. Deterministic forecasts ignore

this uncertainty and leave the user to add their own es-

timates of confidence to the forecast, while probabilistic

forecasts explicitly communicate the uncertainty and

enable users to make better decisions (Morss et al. 2008;

Joslyn and Savelli 2010; Joslyn and LeClerc 2012;

LeClerc and Joslyn 2015).

Global ensemble prediction systems (EPS) now play

an essential role in estimating the uncertainties in

numerical weather prediction (NWP). Mesoscale EPS

are becoming increasingly common, but computing re-

sources still limit the widespread use of high-resolution

EPS, particularly in smaller national meteorological

agencies. A high-resolution, nonhydrostatic model that

explicitly resolves deep convection is essential for fore-

casting extreme warm-season precipitation events. NWP

models that run without a parameterization for deep

convection can better represent convective processes;

however, errors in the location of precipitation events

remain (e.g., Clark et al. 2009; Gagne et al. 2014; Pinto

et al. 2015; Herman and Schumacher 2016).

Extreme weather events can have large impacts on

society, infrastructure, and the economy. Skillful and

reliable forecasts of these events can be beneficial to

many facets of the community. Many extreme events,

particularly warm-season thunderstorms, occur on small

spatial scales. Nonhydrostatic NWP models with high

horizontal resolution are necessary to fully resolve these

events. Deterministic forecasts from high-resolution

models often contain errors in the location of small-

scale extreme events and offer no information on the

uncertainty in the forecast. Postprocessing of extremeCorresponding author: Kirien Whan, whan@knmi.nl
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events is challenging, given their infrequent occurrence,

and this makes a large training dataset necessary (e.g.,

Hamill et al. 2013; Scheuerer and Hamill 2015). The

benefits to society of improved forecasts of extreme

precipitation events are numerous,making improving these

forecasts a challenging but important question. Here, we

focus on extreme precipitation amounts, as these can have

large impacts on society. The Royal Netherlands Meteo-

rological Institute (KNMI) is responsible for issuingweather

warnings (for severe thunderstorms, among other weather

hazards) and one criterion for a code yellow severe thun-

derstorm warning is the occurrence of local precipitation

amounts exceeding 30mmh21. This threshold is greater

than the 99th percentile in the afternoon period. A high-

resolution, nonhydrostatic EPS has been running exper-

imentally at KNMI (HarmonEPS; since autumn 2017),

but it is too early to be used operationally. Further, it is

expected that postprocessing of the output from this EPS

is still necessary.

Model output statistics (MOS) is a regression-based

statistical postprocessing technique that aims to correct

deterministic forecasts for systematic errors in the

dynamical model output by relating a response vari-

able (such as observed precipitation) to one or more

predictors from the numerical model, such as NWP

model precipitation (Glahn and Lowry 1972). Tra-

ditionally, MOS used multiple linear regression to

issue deterministic postprocessed forecasts that thus

offered no information about forecast uncertainty,

although later probabilistic forecasts were produced

using logistic regression (LR; Lemcke and Kruizinga

1988). More recently, MOS has been extended to

ensemble model output statistics (EMOS), which

links the parameters of a forecast distribution to

the characteristics of an EPS (such as the ensemble

mean or spread). Here, we link the parameters of a fore-

cast distribution to predictors from a deterministicmodel.

Probabilistic forecasts for exceeding a single threshold

can be issued from predictor variables using LR or for

the whole forecast distribution using extended logis-

tic regression (ELR; Wilks 2009). LR-based methods

and EMOS (using various parametric distributions)

have both been used extensively to postprocess many

variables, such as temperature and sea level pressure

(Gneiting et al. 2005), wind speed (Thorarinsdottir

and Gneiting 2010; Baran and Lerch 2016), and

lightning frequency (Schmeits et al. 2008). Statistical

postprocessing of quantitative precipitation forecasts

is challenging, compared to variables such as tem-

perature or wind speed, given the positive probability

of zero precipitation (point mass at zero in the fore-

cast distribution), the high spatial heterogeneity of

precipitation, and the increased uncertainty for high

precipitation amounts (Scheuerer and Hamill 2015).

Candidate distributions to calibrate precipitation fore-

casts are the generalized extreme value distribution

(e.g., Scheuerer 2014), variants of the gamma distribu-

tion, including the censored and shifted gamma (CSG)

and the zero-adjusted gamma (ZAGA) distributions

(e.g., Sloughter et al. 2007; Bentzien and Friederichs

2012; Baran and Nemoda 2016; Scheuerer and Hamill

2015), and the lognormal or inverse Gaussian distri-

butions (Bentzien and Friederichs 2012). These dis-

tributions are thought to be useful for modeling

precipitation, given their heavy tails. Combining a

logistic regression for the probability of precipitation

with a gamma distribution has shown to be skillful,

compared to other distributions (such as the lognormal

or the inverse Gaussian) with less uncertainty (Bentzien

and Friederichs 2012).

One limitation of ELR is its dependence on specific

training thresholds. The thresholds chosen for training

are critical in determining the most skillful parts of the

forecast distribution. One limitation of a parametric

approach is that a choice of distribution must be made.

A nonparametric, data-driven approach may be able to

avoid such assumptions (although surely making some

others) while better managing nonlinear relationships.

Examples of such nonparametric techniques are tree-

based methods, such as classification and regression

trees (CART; Breiman et al. 1984), random forests

(RF; Breiman 2001), and quantile regression forests

(QRF; Meinshausen 2006). Tree-based methods have

been applied to many ‘‘big data’’ problems in recent

years, including some implementations in climatology

(Cannon et al. 2002; Whan et al. 2014), hydrology and

streamflow forecasting (Chen et al. 2012; Galelli and

Castelletti 2013), and statistical postprocessing (Carter

and Elsner 1997; Gagne et al. 2014; Ahijevych et al. 2016;

Taillardat et al. 2016; Gagne et al. 2017; Loridan et al.

2017; Taillardat et al. 2017; Herman and Schumacher

2018a,b).

Gagne et al. (2014) postprocessed threshold-based

quantitative precipitation forecasts from a high-resolution

mesoscale ensemble using random forests and multiple

logistic regression. Forecast skill was comparable for

methods that selected from an extended set of potential

predictors (multiple logistic regression and random

forests), with random forests displaying less resolution

(as it was not able to forecast high probabilities). Ex-

tending the use of tree-based methods to a probabilistic

framework, Taillardat et al. (2017) find that calibration

of 6-h ensemble precipitation forecasts in France

using quantile regression forests outperforms analog

methods and compares favorably with a parametric

approach (a censored and shifted gamma distribution).
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Our work extends that of Taillardat et al. (2017) by

including comparison of a tree-based method with ad-

ditional traditional statistical postprocessing methods,

using a large number of potential predictors from

deterministic rather than ensemble NWP output,

by focusing on very extreme hourly precipitation

amounts and with the inclusion of additional verifi-

cation measures. Quantile regression forests have

also been used to generate probabilistic maps of wind

speed thresholds associated with hurricanes (Loridan

et al. 2017).

Here, we compare the skill and value of probabilistic

precipitation forecasts issued by three statistical methods:

1) extended logistic regression, 2) a zero-adjusted

gamma distribution, and 3) quantile regression for-

ests, using predictors from a deterministic NWPmodel

and with a focus on extreme precipitation. Description

of datasets and methods is next (section 2), followed

by results (section 3) and discussion and conclusions

(section 4).

2. Data and methods

a. Datasets

The observed dataset is hourly calibrated radar

precipitation in the Netherlands [calibrated against

rain gauges; further information on the radar data and

the calibration process can be found in Overeem et al.

(2009)]. The high temporal (1-h accumulation) and

spatial resolution (1 km2) provided by the calibrated

radar dataset allows postprocessing of precipitation

on the local scale. The measured reflectivity in the

radar signal on land is often influenced by tall objects

that can result in spuriously high values that do not

reflect real precipitation amounts (i.e., clutter). By

looking at the annual rainfall sums of 2012, 2014, and

2016, a total of 43 radar cells were removed from the

dataset (van Straaten et al. 2018). These land clutter

points were likely caused by infrastructure in Rot-

terdamHarbor and The Hague and towers in Cabauw,

Goes, and Hoogersmilde. However, no suitable cor-

rection was available for the occasional beam occu-

lation in the dataset, and some clutter likely remains

(Overeem et al. 2009). The calibrated radar dataset

contains only the land points over the Netherlands,

and we take 33 3 km2 averages. Average values, even

over such small boxes, will be equal to or lower than

any corresponding point measurements. We take such

averages because we wish to avoid using a dataset

where the most extreme precipitation values are

based on only a single radar pixel. This method

assumes that the heaviest precipitation events are

associated with spatial extents much larger than 1km2

(Lochbihler et al. 2017), so the most extreme events will

remain after averaging.

We divided the domain into 12 regions of approxi-

mately 80 3 90km2, similarly to Schmeits et al. (2008),

which allows the generation of area probabilistic fore-

casts. We excluded Region 1 from the analysis, as it has

very few land points (Fig. 1). The response variable is

the maximum 33 3 km2 radar precipitation in space (in

each of the 11 regions) and time [the hourly maximum in

each of four 6-h periods of a day: night (0000–0600UTC;

VT_0006), morning (0600–1200 UTC; VT_0612), after-

noon (1200–1800 UTC; VT_1218), and evening (1800–

2400 UTC; VT_1824)]. Taking area maxima from the

regions and subsequent pooling allows us to increase

the sample size, which is necessary for statistical

forecasts of extreme events. The spatial pattern of the

gridded hourly precipitation amounts and the maxi-

mum precipitation values for each region on a day with

extreme precipitation are shown in Fig. 1. Figure 1

also shows the number of extreme precipitation (Pr .

20mmh21) in the afternoon period over the complete

dataset (see below). Precipitation amounts are gener-

ally highest in the afternoon (1200–1800 UTC) and

evening (1800–0000 UTC) periods (Table 1, Fig. 2).

The observed precipitation quantiles for each verifica-

tion time are shown in Table 2. In all analyses (including

these tables and later figures), the values of all 11 regions

have been pooled.

Potential predictor variables are taken from KNMI’s

high-resolution (2.5-km horizontal grid spacing), non-

hydrostatic NWP model HARMONIE–AROME (HA).

We use cycle 37h1.2, which assimilates both conventional

observations (Bengtsson et al. 2017) and Mode-S aircraft

data (de Haan 2011). We use a 3-yr reforecast dataset for

the extended summer period (mid-April tomid-October)

in 2010, 2011, and 2013.Reforecasts were initialized every

6h (0000, 0600, 1200, and 1800 UTC) and run for 148h.

In addition toHAprecipitation, we use 41 other potential

predictors, including other direct model output (DMO)

variables (at various pressure levels) and indices of at-

mospheric instability [Table 3; for further details on

some indices, see Schmeits et al. (2005, 2008)]. Some of

the most important indices of atmospheric instability

are the Fateev index (based on differences between

temperature at various pressure levels and the differ-

ences between temperature and dewpoint tempera-

ture), themodified Jefferson index (based on differences

among wet-bulb potential temperature, temperature,

and the temperature/dewpoint temperature differ-

ence, at specific levels), and the Boyden index (based

on differences between geopotential height and tem-

perature). Each of the potential predictors is treated
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similarly to the response variable, as we take the max-

imum and minimum values in space (in each of the 11

regions) and time (maximum and minimum hourly

values in each of the four 6-h periods). The region

mask is defined on the radar grid. This mask is then

bilinearly interpolated to the HA grid, and then the

predictors are masked on their native model grid so

that neither the radar nor model data is interpolated.

Improved model fit has previously been reported

when a power transformation is applied to precipi-

tation data [see Scheuerer (2014) and references

within]. On a limited dataset, we test the skill of the

forecasts using four combinations of transformed

(cube root) precipitation as the response and pre-

dictor, where 1) both the predictor and response are

transformed, 2) neither are transformed, and 3) only

FIG. 1. The 12 regions (80 3 90 km2) and an example of extreme hourly calibrated radar

precipitation ending at 1700UTC 28 Jul 2011. Themaximum precipitation amounts in the 6-h

afternoon period (1200–1800UTC) are noted for each region in brackets following the region

number. The counts (n; over all days) where precipitation exceeds 20mmh21 in the afternoon

period are noted in the bottom of each region.

TABLE 1. Counts of space–time maximum calibrated radar precipitation values in bins (mm h21) for each verification time.

(0, 1] (1, 5] (5, 10] (10, 20] (20, 30] (30, 50] (50, 70]

VT_1218 4078 1082 497 234 51 20 3

VT_1800 4015 1010 437 192 45 11 1

VT_0006 4015 1081 327 128 16 1 0

VT_0612 4197 1174 393 164 34 5 1
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the predictor variable or 4) only the response vari-

able is transformed. The highest skill is generally

achieved for the parametric methods (ELR andZAGA)

when either both the response (observed precipitation)

and predictor variables (HA precipitation) are trans-

formed, or when only the predictor variable is trans-

formed. The nonparametric method (QRF) shows

fewer differences in forecast skill between the var-

ious combinations. As such, for future analyses,

we only use transformed HA precipitation for the

predictor.

b. Statistical postprocessing methods

We compare forecasts made using three statistical

methods: ELR, ZAGA, and QRF. Given the relatively

homogenous geography of the Netherlands, and to in-

crease the number of extreme cases in the training

dataset, values from all regions are pooled when fitting

the statistical models. We use a threefold cross-

validation framework to verify forecasts on an in-

dependent dataset comprising one summer half-year

after training on the remaining two summer half-years.

We then concatenate the three half-years of indepen-

dent forecasts and verify them together against clima-

tology from the full dataset. See appendix A for a

description of the selection of optimum parameters in

each statistical model.

We verify the probabilistic forecasts using the Brier

skill score (BSS), reliability diagrams for various thresh-

olds, and potential economic value (PEV; see appendix B

for details on these metrics). We use block bootstrapping

to calculate confidence intervals for the BSS. From a

verification dataset of length n (three summer seasons),

we draw 1000 random subsets of length n (with re-

placement) and take the cases for each of these n days

from all 11 regions. We then calculate the BSS on each

of these subsets using the climatology from the full

record as a reference. We show the 95% confidence

intervals of the BSS that are calculated from these

1000 bootstrap samples. We also computed confi-

dence intervals for the reliability diagrams but do not

present them here to maintain plot readability. The

reader should keep in mind that for high precipitation

thresholds, when the number of cases is small, the

uncertainty around the reliability curves generally

increases. We show sharpness diagrams for various

precipitation thresholds in the afternoon period.

These diagrams are representative of other verifica-

tion periods.

1) EXTENDED LOGISTIC REGRESSION

First, we fit an ELR model. ELR is a simple logistic

regression that includes a function of the threshold as a

predictor and thus yields the full predictive distribution

[Wilks 2009, Eq. (1)]:

p(q)5
exp[f (x)1 g(q)]

11 exp[f (x)1 g(q)]
. (1)

ELR predicts the probability of exceeding some

threshold [p(q)] from a linear function of predictors

[f (x)]. The function g(q) is a nondecreasing function of

the threshold or quantile q, which allows the logistic

regression equations for individual quantiles to be unified

into one equation for any quantile (Wilks 2009). Here,

g(q)5 a3 q is chosen. We use the generalized linear

modeling function (glm) from the base package ‘‘stats’’ in

the R statistical computing environment (R Core Team

2017). Predictors are chosen using forward and backward

stepwise selection to minimize the Akaike information

criterion (AIC; Akaike 1974; Sakamoto et al. 1986). The

AIC estimates the fit of a statistical model based on the

likelihood while penalizing more complex models

[Eq. (2)]:

AIC522[log(L)]1 2K , (2)

where L is the maximum likelihood function of the

model, and K is the number of parameters. We limit the

maximum number of predictors to avoid overfitting.

FIG. 2. Empirical cumulative distribution functions of calibrated

radar precipitation over all regions for each valid time: afternoon

(black, solid), evening (black, dashed), night (gray, solid), and

morning (gray, dashed).

TABLE 2. Observed quantiles of precipitation thresholds (0.3,

10, 20, 30 mm h21) in each verification period. Quantiles are

determined by the rank in the dataset.

0.3mmh21 10mmh21 20mmh21 30mmh21

VT_1218 0.583 0.950 0.988 0.996

VT_1800 0.607 0.960 0.991 0.998

VT_0006 0.604 0.976 0.997 1.000

VT_0612 0.587 0.966 0.993 0.999
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Further information on the parameter selection can be

found in appendix A.

2) ZERO-ADJUSTED GAMMA DISTRIBUTION

Second, we fit a ZAGA distribution using the

Generalized Additive Models for Location, Scale,

and Shape (gamlss) package in R (Rigby and

Stasinopoulos 2005; Stasinopoulos and Rigby

2007). The probability density function of ZAGA

is defined by three parameters—the location m,

scale s, and shape n—and is defined as follows

[Eq. (3)]:

TABLE 3. Potential predictor variables, including DMO and indices of atmospheric instability. Definitions of the convection indices

from temperature (T), dewpoint temperature (Td), Z (geopotential height), ff (wind speed), dd (wind direction), and u (potential tem-

perature) at various levels of the atmosphere (100, 500, 700, 850, 925, 1000 hPa), and c (the storm motion vector), u (zonal component of

the wind), y (meridional component of the wind), k (vertical movement vector), ql (liquid water content), and g (acceleration due to

gravity) are noted.

Predictor Levels Definition

uw 500, 850, 925 hPa DMO: wet-bulb potential temperature (8)

uws 500 hPa DMO: wet-bulb pseudopotential temperature (8)

Boyden Column 0:1(Z700 2Z1000)2T700 2 200

Bradbury Column uw500 2 uw850

CAPE surCAPE (surface), mulCAPE

(most unstable layer)

g

ðLNB

LFC

Ty(parcel)2Ty(environment)

Ty(environment)
dz

Convective inhibition Surface g

ðLFC

Surface

Ty(parcel)2Ty(environment)

Ty(environment)
dz

Cross totals index Column Td850 2T500

DPT 500, 600, 700, 850 hPa DMO: Dewpoint temperature

Fateev Column T850 2T500 2 (T2Td)850 2 (T2Td)700 2 (T2Td)600 2 (T2Td)500

HA precipitation Surface DMO:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2Aprecipitation3
p

Jefferson Column 1:63 uw925 2T500 2 11

Jefferson (modified) Column 1:63 uw925 2T500 2 0:5(T2Td)700 2 8

K index Column T850 2T500 1Td850 2 (T2Td)700
LFC Column Level of free convection

Lid strength Column uwsmax_lowest_500hPa
2 uwsmax_lowest_100hPa

Lifted index Column uws500 2 uw100
LNB Column Level of neutral buoyancy

Precipitable water Column
1

g

ðp1

p2

r dp, where r5mixing ratio

Rackliff Column uw925 2T500

Richardson (mulCAPE) Column mulCAPE/(0:53 Shear)2

Richardson (surCAPE) Column surCAPE/(0:53Shear)2

S Column sin(dd500 2 dd850)

Shear Column

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(u500 2 u500m)
2
1 (y500 2 y500m)

2
q

Showalter Column uws500 2 uw850

Storm-relative helicity Column

ðZ700

0

k3

�

(y2 c) 3
dy

dz

�

dz

Storm travel Column maxaf
ðhighest level

surface

[u cos(a)1 y sin(a)]dz

columnheight
g, 0#a#p

SWEAT Column Severe weather threat index:

123Td850 1 203 (Total totals index2 49)1 23 1:94ff850 1

1:94ff500 1 1253 (S1 0:2)

Total totals index Column T850 1Td850 2 23T500

TQ Column (T850 1Td850)2 1:7T700

UWND 700 hPa DMO: eastward component of horizontal winds

Vertical totals index Column T850 2T500

VWND 700 hPa DMO: northward component of horizontal winds

WDIR 500, 850 hPa DMO: the cosine of wind direction

WSPD 500, 850 hPa DMO: wind speed (m s21)

3656 MONTHLY WEATHER REV IEW VOLUME 146

Unauthenticated | Downloaded 08/21/22 09:18 AM UTC



f
Y
(yjm,s, n)5

8

>

>

<

>

>

:

n , if y5 0

(12 n)

"

1

(s2m)1/s
2

y(1/s
2)2 1e2y/(s2m)

G(1/s2)

#

, if y. 0

9

>

>

=

>

>

;

, (3)

with m. 0, s. 0, and 0# n# 1, and where G is the

gamma function. The ZAGA is a gamma distribution

that allows mass at zero (i.e., the probability of zero

precipitation), modeled by n with a logit link function.

The parameters of the ZAGA distribution are modeled

as a linear function of the predictors. Maximum likeli-

hood is used to fit the model.

3) QUANTILE REGRESSION FORESTS

Decision trees, such as CART (Breiman et al. 1984),

seek to split a response variable into increasingly ho-

mogeneous ‘‘nodes’’ (groups) by minimizing a similarity

measure [i.e., mean square error (MSE) in a regression

framework] based on values of the predictors. They are

easily interpretable but are known for easily becoming

overfit and unstable, as small changes in the training

dataset can result in very different trees and predictions

(Hastie et al. 2001). A decision tree searches through all

possible ‘‘splits’’ (break points in the predictors) and

finds the split that results in the largest increase in node

purity (largest decrease in MSE in the regression case).

If left unchecked, a decision tree will eventually place

each observation into ‘‘terminal nodes’’ (nodes with no

further splitting) containing only a single value (i.e.,

MSE 5 0). This overfitting can be reduced by ‘‘early

stopping.’’ The RF method aims to minimize undesir-

able overfitting and decrease the variance of the forecast

by building a set of m trees (e.g., m5 500) from m ran-

dom subsets of the training dataset and usingm random

subsets of the potential predictors (Breiman 2001). In a

regression setting, RF makes predictions of the condi-

tional mean. Probabilistic forecasts are then possible

using QRF (Meinshausen 2006). QRF extends RF by

estimating the forecast cumulative distribution function.

While RF only takes note of themean of each node,QRF

keeps all the values in the node and uses this to construct

the conditional distribution (Meinshausen 2006). One

benefit of nonparametric tree-based methods is that they

do not assume that the response variable conforms to any

particular distribution. This feature may be particularly

important for variables like precipitation, where there

is uncertainty about the distribution of the variable.

We use the R package ‘‘quantregForest’’ (Meinshausen

2017), which builds upon the R package ‘‘random-

Forests’’ (Liaw and Wiener 2002).

The relative importance of potential predictor vari-

ables in a random forest is calculated by averaging the

total decrease in node impurities when a predictor is

used in the tree. In a regression setting, this is mea-

sured by the differences in errors before and after the

split. Variables that reduce the errors more are then

more ‘‘important’’ (Liaw and Wiener 2002). There is

some randomness in the importance of the chosen

predictors due to the high correlations between some

of them. As such, we limit the discussion to the most

important and consistent predictors.

3. Results

a. Selected predictors

Figure 3 shows the predictors that are selected in

each of the cross-validation training sets for ELR and

ZAGA (a predictor can be chosen in a certain position a

maximum of three times) and the five most important

predictors in QRF. HA precipitation is an important

predictor that is selected by all methods at all lead times

during the afternoon verification period (Fig. 3). It is

selected as a predictor on two parameters of the ZAGA

distribution, m and n. HA precipitation is the first pre-

dictor selected for the probability of zero precipitation

(n) at all lead times and is always followed by the Fateev

index (Table 3). The two predictors chosen for m are

HA precipitation and the modified Jefferson index,

with precipitation selected first at short lead times

and second at longer lead times. Wind speed (maxi-

mum, 850 hPa) and thetaW (maximum and minimum,

850 and 925 hPa) are all selected as predictors for s

in one of the cross-validation training sets (Fig. 3).

For all cross-validation sets and lead times, HA pre-

cipitation is the second predictor selected after the

threshold by ELR. At short lead times, the Fateev

index is selected third by ELR, while at longer lead

times, the modified Jefferson index is selected third.

The fourth predictor selected by ELR varies between

cross-validation sets and lead times (Fig. 3). HA

precipitation is the most important predictor in the

QRF at all lead times. At short lead times, the next

most important predictors are the Fateev index,

CAPE (surface and the most unstable layer), and the

lifted index. At longer lead times, the importance of

the Fateev index decreases, and the importance of

other indices, such as the level of neutral buoyancy

(LNB), increases (Fig. 3). It is remarkable that CAPE

(surface and the most unstable layer) is only selected
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by QRF, with the most unstable layer CAPE being

selected more often than surface CAPE, as expected.

In the evening period, the importance of HA pre-

cipitation as a predictor for m decreases with lead time,

as it is the first predictor selected at short lead times and

the second predictor at longer lead times, similarly to

the afternoon period. However, contrary to the after-

noon period, there is less consistency in the index of

atmospheric instability that is chosen as the second

predictor. At short lead times, the Bradbury, modified

Jefferson, and Showalter indices are each selected

second, each in one cross-validation fold, while at

longer lead times, the modified Jefferson and LNB

are selected as the first predictors (Fig. 4). Similarly,

there is less consistency in the evening period for the

predictors selected for n, compared to the afternoon

period. At the shortest lead time, the Boyden index is

the second predictor, but at other lead times, the

second predictor is divided between the Boyden and

Fateev indices (Fig. 4). The signal-to-noise ratio can

be relatively small, and the correlations between

some predictors are relatively large. Random day-to-

day differences between potential predictors likely have

some influence on the final selected predictors, as evi-

denced by the differences in the predictors selected

between verification periods and lead times. HA pre-

cipitation is an important predictor for QRF and ELR at

all lead times. In the evening period, for ELR, the

Fateev index is the third predictor (after the threshold

and HA precipitation) at short lead times, while the

FIG. 3. Number of times in the cross validation (maximum 5 3) at (a)–(d) different lead times during the

afternoon verification period that selected indices are chosen as predictors for the parameters of the ZAGA dis-

tribution and the ELR model. The five most important predictors in QRF are also noted. THR is the threshold

predictor in ELR.
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modified Jefferson index is the third predictor at longer

lead times.

There are few differences in the correlation between

observed and HA precipitation between the afternoon

and evening (i.e., r 5 0.57 to 0.59 at the shortest lead

time), and the correlation decreases with increasing lead

time (i.e., r 5 0.58 to 0.5 for the afternoon verification

period; Fig. 5a). The variable importance for HA pre-

cipitation in QRF decreases substantially with increasing

lead time, particularly in the afternoon period (Fig. 5b).

The correlation between observed precipitation and

CAPE (themost unstable layer) is relatively strong (e.g.,

r5 0.51 at the shortest lead time). CAPE is not selected

as a predictor by the parametric models, although it is

one of the most important predictors used by QRF (at

least one version of CAPE is usually in the top five most

important predictors). The variable importance of CAPE

from QRF is not high, compared to HA precipitation at

short lead times; however, the relative importance

increases with increasing lead time, as the importance

of HA precipitation decreases. There is a strong cor-

relation between HA precipitation and CAPE (most

unstable layer; r5 0.70 in the afternoon period, at the

shortest lead time). Taken together, these results in-

dicate that CAPE adds relatively little information on

top of HA precipitation for short lead times. This is

possibly because we take space–time maxima, which

lessens the penalization of spatial and temporal errors

in HA precipitation. For other predictors (Fateev in-

dex and the modified Jefferson index), the differences

in correlations between afternoon and evening are

small, and the correlation decreases only slightly with

increasing lead time (e.g., in the afternoon, the cor-

relation at the shortest and longest lead times for the

modified Jefferson index is r 5 0.40 and 0.38, re-

spectively). The variable importance of the Fateev

FIG. 4. As in Fig. 3, but for the evening verification period.
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index decreases with lead time, while the importance

of the modified Jefferson index increases with lead time.

There are substantial differences between verification

times in the increases in node purity gained when splits

are made from HA precipitation (Fig. 5b).

We compare the skill (using the BSS) of statistical

models fit with HA precipitation only or the full set of

potential predictors for each verification time and over

four lead times (Figs. 6, 7). The value of allowing the

statistical models to select predictors from the extended

set of potential predictors (including other DMO and

indices of atmospheric instability), in addition to the

commonly used NWP model precipitation, is evident in

the higher BSS for moderate thresholds for all methods

and lead times (Fig. 6). Additional predictors are most

important for QRF, as it has the largest difference in

BSS between the rain-only model and the model using

the extended set of potential predictors (Figs. 6, 7).

FIG. 5. (a) The correlation between a subset of potential predictors and observed precipitation and (b) the

normalized variable importance for the same subset of predictors from QRF in the afternoon (solid) and evening

(dashed) verification periods. The relationship between observed precipitation and selected potential predictors:

(c) Fateev index, (d) modified Jefferson index, (e) HA precipitation, and (f) most unstable CAPE during the

afternoon verification period and the16–12-h lead time.Also shown are the correlation r, the linear regression (red

line), and the most common split point selected for each potential predictor in the forest (vertical blue line).
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Tree-based methods are not designed to be used with

only a single predictor, but in such a situation, theymake

linear splits on the single predictor. Indeed, homoge-

neous terminal nodes could be created with a single

predictor variable if the relationship between the pre-

dictor and the response was linear. The large differences

between the QRF models using only HA precipita-

tion and that using the full set of potential predictors

shows the value of including additional predictors and

may indicate possible nonlinearities in the relationship

between the selected predictors and the response vari-

able (Taillardat et al. 2016; Fig. 6). Indeed, scatterplots

show that the relationships between some selected

indices of atmospheric instability and observed pre-

cipitation are nonlinear (Figs. 5c–f). These nonlinear

relationships do not prevent the selection of these in-

dices in the linear, parametric framework, but it is likely

that the relationships can be better captured by a non-

linear tree-based method that can also easily handle

correlations between predictors.

FIG. 6. The BSS for forecasts for low precipitation thresholds in all verification periods: (a),(b) VT_1218;

(c),(d) VT_1800; (e),(f) VT_0006; and (g),(h) VT_0612 from models fit using three statistical methods (ZAGA,

ELR, and QRF) and two sets of potential predictors: HA precipitation only (red; dashed) and including all DMO

and indices of atmospheric instability as potential predictors (black, solid). Results are shown for four lead times

(16–12, 118–24, 130–36, and 142–48 h; indicated by the shapes) and two thresholds: (a),(c),(e),(g) 0.3 and

(b),(d),(f),(h) 4mmh21. The quantiles for each precipitation threshold in each verification period are indicated in

the figure title.
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At higher thresholds, additional predictor information

remains necessary for more skillful forecasts with QRF,

but the benefits for forecasts using ZAGA are only

evident during the afternoon and evening verification

periods (Figs. 7a–d) and are even absent for some

verification and lead times (e.g., short lead times

during the night period; Figs. 7e,f). Indeed, ZAGA

forecasts using only HA precipitation as a predictor

outperformed the models using all potential predictor

variables at longer lead times for higher precipitation

thresholds during the morning verification period

(Figs. 7g,h) and for higher precipitation thresholds

during the night period (Figs. 7e,f).

b. Verification results

Next, we compare the skill of forecastsmade by the three

statistical postprocessing models that have selected pre-

dictors from the full set of potential predictors. Figures 8

and 9 show the BSS and confidence intervals for each sta-

tistical postprocessing method over precipitation threshold

for each verification time and four selected lead times. The

decrease in forecast skill over forecast lead time is moder-

ate (Figs. 8, 9). Low tomoderate thresholds (0.3–10mmh21)

are the most skillfully forecast, compared to climatology by

all methods, in all verification periods and over all lead times

(night and morning verification periods in Fig. 9; not shown

for the afternoon and evening verification periods). The

highest skillfully forecast precipitation threshold varies by

verification period, in accordance with climatology: pre-

cipitation amounts of 15–30mmh21 are skillfully forecast in

the afternoon period (1200–1800 UTC; Figs. 8a–d), while in

the night period (0000–0600UTC), skillful forecasts can only

be made until 10–20mmh21 (Figs. 9a–d).

QRF is generally the most skillful statistical post-

processingmethod in terms of the BSS, althoughZAGA

is the most skillful at some verification times, lead times,

FIG. 7. As in Fig. 6, but for high-threshold precipitation forecasts (14 and 20mmh21).
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and thresholds (e.g., Fig. 9d). The uncertainties in theQRF

skill scores are also much lower, compared to ZAGA. For

example, the skill of QRF and ZAGA is comparable for

the 10–20mmh21precipitation thresholds in the afternoon

period at short lead times (Figs. 8, 9). However, the

uncertainties for ZAGA are much larger and overlap

the no-skill line, while for QRF, we can be confident that

the method is skillful in this range (Fig. 8a). At higher

thresholds, QRF outperforms ZAGA, and especially

ELR, during most verification periods and forecast lead

FIG. 8. The BSS for precipitation forecasts for thresholds between 10 and 40mmh21 in the afternoon (VT_1218) and evening

(VT_1800) verification periods from models fit using three statistical methods [ZAGA: red, ELR: blue, QRF (all potential predictors):

green, andQRF (DMO-only potential predictors): purple] at various lead times with HAprecipitation and all atmospheric indices as potential

predictors (see Table 3). Shading and dashed lines indicate the 95% confidence intervals of the BSS calculated from block bootstrapping.
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times, while at low and moderate thresholds, the com-

parative skill between methods is more mixed (Figs. 8, 9).

1) BSS: AFTERNOON PERIOD (1200–1800 UTC)

QRF is the most skillful method during the afternoon

period (1200–1800 UTC; Figs. 8a–d), as it maintains skill

with respect to the climatological probability (i.e., the

confidence intervals of the BSS are above zero) for

thresholds up to 20–30mmh21 at most lead times.

During this period, the BSS uncertainty for high pre-

cipitation thresholds is large, but at the shortest lead

time for QRF, the confidence intervals do not overlap

FIG. 9. As in Fig. 8, but for the night (VT_0006) and morning (VT_0612) verification periods and precipitation thresholds between 0.3

and 30mmh21.
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zero until the key threshold of 30mmh21 (Fig. 8a). ELR

converges to zero skill at around 20mmh21. For ZAGA,

the BSS uncertainty at higher thresholds is much larger

than for QRF, as it overlaps zero from around 15mmh21

(Figs. 8a–d).

Local precipitation amounts of 30mmh21 can be

skillfully forecast in the afternoon period by QRF at

the shortest lead time (16–12 h). For the remaining

verification and lead times, any postprocessed fore-

casts for this threshold have no BSS confidence in-

tervals that are above zero, compared to climatology

(Figs. 8, 9).

2) BSS: EVENING, NIGHT, ANDMORNING PERIODS

(1800–0000, 0000–0600, 0600–1200 UTC)

In the evening period (1800–0000 UTC; Figs. 8e–h),

ELR probabilities converge to the climatological prob-

ability around a threshold of 15–20mmh21, abovewhich

ZAGA becomes less skillful than climatology at short

lead times (Figs. 8e,f). The BSS confidence intervals for

QRF overlap zero from around 20mmh21 at short lead

times (Fig. 8e) and from around 10mmh21 at longer

lead times (Figs. 8f–h).

Precipitation amounts in the night verification

period (0000–0600 UTC; Figs. 9a–d) are lower and

are thus predictable only at lower thresholds. QRF

shows BSS confidence intervals above zero for

thresholds up to 10–15mm h21. At the longest lead

time, ZAGA appears to be the most skillful method

between 10 and 20mm h21, although confidence in-

tervals tend to overlap zero (Fig. 9d). Other methods

converge to the climatological probability around

this point (Figs. 9a–d).

In the morning verification time (0600–1200 UTC;

Figs. 9e–h), ELR and ZAGA are not skillful anymore

for thresholds exceeding 15mmh21 at short lead times,

while QRF is more skillful than climatology until about

20mmh21 (Fig. 9e).

3) BSS: DMO-ONLY PREDICTORS

The skill of QRF fit with only DMO as potential

predictor variables is comparable to, or somewhat

lower than, that of QRF fit with the full set of po-

tential predictors (Figs. 8, 9). Where QRF is the most

skillful method, the QRF model using only DMO

predictors tends to also be more skillful than ZAGA

and ELR; this is evident for high precipitation

amounts in most verification periods at short lead

times (Figs. 8a, 9e).

4) RELIABILITY DIAGRAMS

Forecast probabilities for low precipitation thresholds

are reliable using all postprocessing methods (Fig. 10). At

higher thresholds, QRF does not issue forecast prob-

abilities larger than 30%–50%, while ZAGA is over-

confident and issues probabilities up to 90% (Figs. 10c,

d,g,h). For moderate thresholds (e.g., 10mmh21), all

models tend to become somewhat overconfident at

longer lead times while continuing to make a positive

contribution to the BSS (Figs. 11c,d). Forecasts for

higher thresholds (e.g., 20mmh21), particularly with

ZAGA, are overconfident from shortest lead time and

do not make a positive contribution to the BSS at longer

lead times (Figs. 11e–h).

5) POTENTIAL ECONOMIC VALUE

We show the PEV for the afternoon verification

period at short lead times (16–12 and 112–18 h) for

the three statistical postprocessing methods and the

deterministic HA precipitation forecasts (Fig. 12).

PEV decreases with increasing precipitation thresh-

old, but for a given threshold, the decreases in value

between these lead times are moderate. In general,

the differences between the statistically postprocessed

forecasts from QRF and ZAGA are small, and prob-

abilistic forecasts using these methods have more value

than the deterministic forecast. QRF and ZAGA

maintain value at high precipitation thresholds for low

cost/loss (C/L) ratios (which makes up the majority of

users; e.g., Figs. 12c,d), while ELR loses value. The

statistically postprocessed forecasts using QRF and

ZAGA generally have more value for a wider range

of cost/loss ratios, compared to the raw HA pre-

cipitation forecasts.

4. Discussion and conclusions

Deterministic weather forecasts give no information

about forecast uncertainty. Statistical postprocessing

can generate probabilistic forecast information from

ensemble or deterministic model output that yields this

uncertainty. We compared the skill (defined by the

Brier skill score) of probabilistic maximum local hourly

accumulated precipitation forecasts in 11 regions of

the Netherlands produced by three statistical methods

(ELR, ZAGA, and QRF), using two sets of predictors

from the deterministic HARMONIE–AROME (HA)

model. This work demonstrates the production of

probabilistic forecast information using predictors

from deterministic NWP output, rather than the more

commonly used ensemble forecast information. The

sets of predictors were 1) only HA precipitation and

2) predictors selected from an extensive set of direct

model output (precipitation, wind, and temperature)

and indices of atmospheric instability. The inclusion

of additional predictors (either in the stepwise selection
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step for the parametric methods or in QRF) results

in a more skillful forecast for low and moderate

thresholds in all verification periods and for extreme

thresholds in all verification periods, but only for

QRF (Taillardat et al. 2016). The inclusion of addi-

tional potential predictors results in larger increases

in forecast skill, compared to using a different sta-

tistical postprocessing method. However, the value

of including additional potential predictors is mixed

for extreme precipitation thresholds for the para-

metric methods. The decrease in model skill from the

shortest (16–12 h) to the longest (142–48 h) lead

times is moderate. Further, we show the increased

potential economic value of the probabilistic QRF

and ZAGA forecasts, compared to the deterministic

HA precipitation forecast.

FIG. 10. Reliability diagrams for various precipitation thresholds (.0.3, 10, 20, and 30 mm h21) in the (a)–(d) afternoon and

(e)–(h) evening periods for 16–12-h forecasts made using three methods (ZAGA: red, ELR: blue, and QRF: green) and using all the

potential predictors listed in Table 3. As an indication, inset sharpness diagrams with a log scale are shown for each method in the

afternoon period. Additionally, the size of the symbol indicates the number of forecasts in each bin.
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Quantile regression forests is the preferred method,

as it is the most skillful with the least uncertainty in

the BSS in the majority of lead times and precipitation

thresholds, particularly for more extreme thresholds

in the afternoon verification period. Indeed, the un-

certainty in the BSS estimates from ZAGA were very

wide, particularly for extreme thresholds, although we

expect other parametric distributions to have higher

uncertainties (Bentzien and Friederichs 2012). The

high uncertainty in the BSS of the ZAGA distribution

for large precipitation thresholds indicates that the

forecast PDF is not well fit for extreme events. This

is probably a result of the selected predictors and

coefficients being heavily influenced by the bulk of

the distribution. This may also suggest that the re-

lationships between the response and predictors are

different for low and high values of the response

variable. This type of effect can be captured better

by tree-based methods.

The nonlinear relationships between indices of at-

mospheric instability and observed precipitation are

another possible reason why QRF outperforms the para-

metric methods. It is likely that further exploration and

transformation of these potential predictors may result in

more linear relationships and increased skill for the para-

metricmethods, but such an exercise is outside the scope of

the current study. One limitation of tree-based methods is

that they cannot issue forecasts for precipitation amounts

that are not in the training dataset, although in practice,

this is not an issue for a multiyear training dataset, as there

is no skill with respect to climatology for even the most

extreme observed precipitation amounts using any

method. A second limitation of QRF, which may have

more practical implications, is that it does not issue

higher forecast probabilities for extreme precipitation

amounts (e.g., probabilities .60% are not produced

for precipitation exceeding the 97th percentile in the

afternoon period), similarly to Gagne et al. (2014).

FIG. 11. Reliability diagrams for precipitation (a)–(d).10 and (e)–(h).20mmh21 during the afternoon verification period (VT_1218)

and four lead times for models fit with the three methods (ZAGA: red, ELR: blue, and QRF: green) and using all the potential predictors

listed in Table 3. The size of the symbol indicates the number of forecasts in each bin.
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Future work could compare other distributions, such

as the GEV (Scheuerer 2014) or a formulation of ELR

that does not depend on specific thresholds (Messner

et al. 2014) with the nonparametric method or explore

the influence of more elaborate methods to prevent

overfitting, such as L1 regularization. Taillardat et al.

(2017) found that QRF and a related method, gradient

forests, compared favorably with parametric methods

and outperformed an analogmethod. Future work could

also explore possible increases in skill for the highest

precipitation thresholds in this context that could be

gained by extending the tail of the QRF distribution

function using methods from extreme value theory, as

in Taillardat et al. (2017). The inclusion of a more ex-

tensive set of potential predictors could result in amore

skillful model [e.g., observations such as advected ra-

dar data could be included as an additional potential

predictor source for short lead times, as in Schmeits

et al. (2008)].We have taken themaximumvalues of the

response variable and predictors in the same regions,

which partially decreases the influence of spatial dis-

placement errors; however, in the future, this effect

could be further reduced by including information from

neighboring regions as potential predictors, as van der

Plas et al. (2017) showed that spatial precipitation pre-

dictors from large neighborhoods are more skillful than

those from smaller neighborhoods.

After a new reforecast dataset with the latest HA

cycle has been generated, a preoperational probabilistic

precipitation forecasting system will be developed using

QRF to guide KNMI forecasters in the issuing of code

yellow warnings for severe thunderstorms. Compari-

son of these statistical probabilistic forecasts with

those issued directly by HarmonEPS will be explored

in future work.
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APPENDIX A

Model Parameters

Several choices must be made for model parameters

for each method. Ideally, such choices would be made

on a separate independent dataset so as not to favorably

bias the verification results. In a situation with limited

data size, part of the dataset (e.g., 2 out of 3 years) can be

used so that another part remains for verification. Given

the focus on extremes and the limited reforecast dataset

that is available, use of a truly independent dataset is not

possible. However, the strong dependence of tree-based

methods on the training dataset makes use of dependent

data difficult, as these methods tend to give unrealisti-

cally skillful scores, resulting in unfair comparisons with

the parametric methods. Therefore, we use threefold

cross validation on the limited dataset. In this frame-

work, the training dataset is 2/3 of 2 years, and the test

dataset is the remaining 1/3 of the same 2 years (e.g., we

train on 2/3 of 2010/11 and then test on 1/3 of 2010/11).

In this way, the dataset we use to choose the optimum

model parameters is partly independent from the data-

set used to compare statistical postprocessing methods.

The optimum parameter choices vary between verifi-

cation times, and we base our partly subjective decisions

primarily on the Brier scores (BSs) from the afternoon

period when extreme rainfall amounts (and likely im-

pacts) are largest. The decision to choose optimal model

parameters based on the most important verification

time means that skill in the other verification periods

could likely be increased if models’ parameters were

chosen in a different way. An improvement to the cur-

rent framework would be to choose model parameters

that minimize the ranked probability score over a

number of thresholds and per verification time and

lead time.

a. ELR

We test the optimum values of the precipitation quan-

tiles used to estimate the threshold predictor q (three sets

of thresholds; Table A1) and the maximum number of

selected predictors in addition to the threshold predictor

(between one and eight). We fit models on the limited

dataset with varying values of these parameters and

calculate the BS.

Based on these results (Fig. A1), we choose to use

three predictors (in addition to the threshold) and the

following quantiles for the threshold predictor: 0.5, 0.7,

0.8, 0.85, 0.9, 0.925, 0.95, 0.99, 0.995, and 0.999.

b. ZAGA

We compare forecast skill using a varying number of

predictors on each parameter (between one and eight)

and by using two stepwise selection methods that both

select predictors based on the AIC. Method ‘‘A’’ fits a

forward stepwise model to each parameter sequentially,

given the selected model for the previous parameter

(first m, then s, and finally n). At each forward selection

step, the full set of remaining predictors is tested. Next,

backward stepwise selection is used in the reverse order

to eliminate unnecessary predictors. In method ‘‘B,’’

each of the potential predictors is fitted to all parameters

at once [see Rigby and Stasinopoulos (2005) for further

information]. Differences between stepwise selection

methods are small for a low maximum number of

predictors but increase for a higher maximum number

of predictors. The highest skill is generally found for

a low maximum number of predictors. According to

these results, we choose to use default stepwise selec-

tion method ‘‘A’’ and two predictors per parameter

(Fig. A1).

c. QRF

For QRF, we test the influence of the number of

trees in the forest (between 100 and 1000) and the

node size (an early stopping measure that limits the

minimum number of values in a terminal node; be-

tween five and 80). Differences in skill according to

the node size are larger than the differences between

the numbers of trees. Based on these results, we

choose to use the default value for both the number of

trees (500 trees) and the terminal node size (five;

Fig. A1).

TABLE A1. Possible values for the threshold predictor used

in ELR.

Threshold

group Quantiles

Even 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Moderate 0.1, 0.5, 0.8, 0.85, 0.9, 0.925, 0.95, 0.99, 0.995, 0.999

High 0.5, 0.7, 0.8, 0.85, 0.9, 0.925, 0.95, 0.99, 0.995, 0.999
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FIG. A1. BS for (a)–(c) ELR, (d)–(f) ZAGA, and (g)–(i) QRF models fit on a limited dataset (see text) with varying model choices in

the afternoon period and the 16–12-h lead time. For ELR, we test skill using various quantiles as the threshold predictor

(evenly spaced: circle, moderately high: triangle, high: plus; Table 4) and varying maximum number of predictors in addition to

the threshold predictor. For ZAGA, we test model skill for a varying number of predictors and two stepwise selection methods

(A: circle, B: triangle; see text for description of methods). For QRF, we test model skill for varying tree and node sizes (5: circle,

20: triangle, 40: plus, 80: cross).
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APPENDIX B

Verification Metrics

a. Brier skill score

The BS is a measure of the magnitude of proba-

bility forecast errors (Brier 1950; Wilks 2011) so

that a perfect score is zero. It is defined as the mean

square error over all times i5 1, 2, . . . , N between

the probabilistic forecast pi and a binary observation

oi, which equals zero if the event did not occur and

1 if the event did occur [Eq. (B1)]. The negatively

oriented BS is converted to the positively oriented

BSS that shows the skill of the probability forecast

relative to sample climatology [perfect score 5 1;

Eq. (B2)]:

BS5
1

N
�
N

i51

(p
i
2o

i
)2 , (B1)

BSS5 12
BS

BS
climatology

. (B2)

b. Reliability diagrams

Reliability (or attribute) diagrams plot the observed

frequency against the forecast probability over K bins

(e.g., 0%–10%, 11%–20%, and 21%–30%). A reliable

forecast is one where the forecast probabilities match

the observed frequencies so that the line lies perfectly

on the diagonal. For example, in a reliable forecast,

an event that is predicted to occur 60% of the time is

observed in 60% of the cases in which it is forecast.

In an unreliable forecast, there is substantial mis-

match between the forecast probability and the ob-

served frequency. The size of the points indicates the

number of data points in each bin. Regions that are

halfway between the observed sample climatological

frequency of an event and ‘‘perfect reliability’’ lines

are colored gray. Forecasts in the gray area are said to

be skillful, as they contribute positively to the BSS.

Dashed lines indicate the climatological probability

(Wilks 2011).

c. Potential economic value

PEV (Richardson 2000) can be plotted as a function

of the C/L ratio. Probabilistic forecasts are converted

to binary forecasts for all probability thresholds

(Wilks 2011). The value score is then calculated from

the hits (H; yes forecast/yes observed), false alarms

(FA; yes forecast/no observed), misses (M; no fore-

cast/yes observed), and climatological frequency o, as

in Eq. (B3):

PEV5

8

>

>

>

<

>

>

>

:

(C/L)(H1FA)1M

(C/L)(o2 1)
, if C/L, o

(C/L)(H1FA)1M2 o

o[(C/L)21]
, if C/L $ o

.

(B3)
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