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Given the variety of portfolio-based factors that have been examined by researchers, it is 

important to understand how best to combine them in a parsimonious asset-pricing model for 

expected returns, one that excludes redundant factors. There are standard econometric techniques 

for evaluating the adequacy of a single model, but a satisfactory statistical methodology for 

identifying the best factor-pricing model(s) is conspicuously lacking in investment research 

applications. We develop a Bayesian procedure that is easily implemented and allows us to 

compute model probabilities for the collection of all possible pricing models that can be formed 

from a given set of factors.   

Beginning with the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner 

(1965), the asset pricing literature in finance has attempted to understand the determination of 

risk premia on financial securities.  The central theme of this literature is that the risk premium 

should depend on a security’s market beta or other measure(s) of systematic risk.  In a classic test 

of the CAPM, Black, Jensen and Scholes (1972), building on the earlier insight of Jensen (1968), 

examine the intercepts in time-series regressions of excess test-portfolio returns on market excess 

returns.  Given the CAPM implication that the market portfolio is efficient, these intercepts or 

“alphas” should be zero.  A joint F-test of this hypothesis is later developed by Gibbons, Ross 

and Shanken (1989), henceforth GRS, who also explore the relation of the test statistic to 

standard portfolio geometry.2   

In recent years, a variety of multifactor asset pricing models have been explored.  While 

tests of the individual models are routinely reported, these tests often suggest “rejection” of the 

implied restrictions, especially when the data sets are large, e.g., Fama and French (2015b).  On 

the other hand, a relatively large p-value may say more about imprecision in estimating a 

particular model’s alphas than the adequacy of that model.3  Sorely needed are simple statistical 

                                                       
2 See related work by Treynor and Black (1973) and Jobson and Korkie (1982). 
3 De Moor, Dhaene and Sercu (2015) suggest a calculation that highlights the extent to which differences in p-values 
may be influenced by differences in estimation precision across models, but they do not provide a formal hypothesis 
test. 
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tools with which to analyze the various models jointly in a model-comparison framework.  This 

is an area of testing that has received relatively little attention,  especially in the case of non-

nested models.  The information that our methodology provides about relative model likelihoods 

complements that obtained from classical asset-pricing tests and is more in the spirit of the 

adage, “it takes a model to beat a model.” 4     

  Like other asset pricing analyses based on alphas, we require that the benchmark factors 

are traded portfolio excess returns or return spreads.  For example, in addition to the market 

excess return, Mkt, the influential three-factor model of Fama and French (1993), hereafter, FF3, 

includes a book-to-market or “value” factor HML (high-low) and a size factor, SMB (small-big) 

based on stock-market capitalization.  Although consumption growth and intertemporal hedge 

factors are not traded, one can always substitute (maximally correlated) mimicking portfolios for 

the non-traded factors.5  While this introduces additional estimation issues, simple spread-

portfolio factors are often viewed as proxies for the relevant mimicking portfolios, e.g., Fama 

and French (1996).   

We begin by analyzing the joint alpha restriction for a set of test assets in a Bayesian 

setting.6  Prior beliefs about the extent of model mispricing are economically motivated and 

accommodate traditional risk-based views as well as more behavioral perspectives.  The 

posterior probability that the zero-alpha restriction holds is then shown to be an easy-to-calculate 

function of the GRS F-statistic.  Our related model-comparison methodology is likewise 

computationally straightforward.  This procedure builds on results in Barillas and Shanken 

(2015), who highlight the fact that for widely-accepted criteria, model comparison with traded 

                                                       
4 Avramov (2006) also explores Bayesian model comparison for asset pricing models.  As we explain in the next 
two sections, his methodology is quite different from that developed here.  A recent paper by Kan, Robotti and 
Shanken (2013) provides asymptotic results for comparing model R2s in a cross-sectional regression framework.  
Chen, Roll and Ross (1986) nest the CAPM in a multifactor model with betas on macro-related factors included as 
well in cross-sectional regressions.  In other Bayesian applications, Malatesta and Thompson (1993) apply methods 
in comparing multiple hypotheses in a corporate finance event study context. 
5 See Merton (1973) and Breeden (1979), especially footnote 8. 
6 See earlier work by Shanken (1987b), Harvey and Zhou (1990) and McCulloch and Rossi (1991). 
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factors only requires an examination of each model’s ability to price the factors in the other 

models.    

It is sometimes observed that all models are necessarily simplifications of reality and 

hence must be false in a literal sense.  This motivates an evaluation of whether a model holds 

approximately, rather than as a sharp null hypothesis.  Additional motivation comes from 

recognizing that the factors used in asset-pricing tests are generally proxies for the relevant 

theoretical factors.7  With these considerations in mind, we extend our results to obtain simple 

formulas for testing approximate models.  Implementation of this approach allows us to go 

beyond the usual test of an exact model and to obtain insight into a model’s goodness of fit.   

As an initial application of our framework, we consider all models that can be obtained 

using subsets of the FF3 factors, Mkt, HML and SMB.  A nice aspect of the Bayesian approach 

is that it permits comparison of nested models like CAPM and FF3, as well the non-nested 

models {Mkt HML} and {Mkt SMB}.  Over the period 1927-2013, alphas for HML when 

regressed on either Mkt or Mkt and SMB are highly “significant,” whereas the alphas for SMB 

when regressed on Mkt or Mkt and HML are modest.  Our procedure aggregates all of this 

evidence, arriving at posterior probabilities of 50% for the two-factor model {Mkt HML} and 

40% for FF3.    

In our main empirical application, we compare models that combine many prominent 

factors from the literature.  In addition to the FF3 factors, we consider the momentum factor, 

UMD (up minus down), introduced by Carhart (1997) and motivated by the work of Jegadeesh 

and Titman (1993).  We also include factors from the recently proposed five-factor model of 

Fama and French (2015a), hereafter FF5.  These are RMW (robust minus weak), based on the 

profitability of firms, and CMA (conservative minus aggressive), related to firms’ new net 

investments.  Hou, Xue and Zhang (2015a, 2015b), henceforth HXZ, have proposed their own 

                                                       
7 Kandel and Stambaugh (1987) and Shanken (1987a) analyze pricing restrictions based on proxies for the market 
portfolio or other equilibrium benchmark. 
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versions of the size (ME), investment (IA) and profitability (ROE) factors, which we also 

examine.  In particular, ROE incorporates the most recent earnings information from quarterly 

data.  Finally, we consider the value factor HMLm from Asness and Frazzini (2013), which is 

based on book-to-market rankings that use the most recent monthly stock price in the 

denominator.  In total, we have ten factors in our analysis.  

Rather than mechanically applying our methodology with all nine of the non-market 

factors treated symmetrically, we structure the prior so as to recognize that several of the factors 

are just different versions of the same underlying construct.  Therefore, to avoid overfitting, we 

only consider models that contain at most one version of the factors in each category: size (SMB 

or ME), profitability (RMW or ROE), value (HML or HMLm) and investment (CMA or IA).  

The extension of our procedure to accommodate such “categorical factors” amounts to averaging 

results over the different versions of the factors, with weights that reflect the likelihood that each 

version contains the relevant factors.     

Using data from 1972 to 2013 we find that the individual model with highest posterior 

probability is the six-factor model {Mkt IA ROE SMB HMLm UMD}.  Thus, in contrast to 

previous findings by HXZ and FF5, value is no longer a redundant factor when the more timely 

version HMLm is considered; and whereas HXZ also found momentum redundant, this is no 

longer true with inclusion of HMLm.  The timeliness of the HXZ profitability factor turns out to 

be important as well.  The other top models are closely related to our best model, replacing SMB 

with ME, IA with CMA, or excluding size factors entirely.  There is also overwhelming support 

for the six-factor model (or the five-factor model that excludes SMB) in direct tests of the model 

against the HXZ and FF5 models.  These model-comparison results are qualitatively similar for 

priors motivated by a market-efficiency perspective and others that allow for large departures 

from efficiency.  

Model comparison results assess the relative performance of competing models.  We also 

examine absolute performance for the top-ranked model and for the HXZ model, which fares 

better than the FF5 model.  These tests consider the extent to which the models do a good job of 
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pricing a set of test assets and any excluded factors.  Although various test assets were examined, 

results are presented for two sets: 25 portfolios based on independent rankings by either size and 

momentum or by book-to-market and investment.  This evidence casts strong doubt on the 

validity of both models. The “rejection” of the six-factor model is less overwhelming, however, 

when an approximate version is considered that allows for relatively small departures (average 

absolute value 0.8% per annum) from exact pricing.  With average deviations of 1.2%, the 

approximate model is actually favored for a range of reasonable priors.   

The rest of the paper is organized as follows.  Section 1 considers the classic case of 

testing a pricing model against a general alternative.  Section 2 then considers the comparison of 

nested pricing models and the relation between “relative” and “absolute” tests.  Bayesian model 

comparison is analyzed in Section 3 and Section 4 extends this framework to accommodate 

analysis with multiple versions of some factors.  Section 5 provides empirical results for various 

pricing models and  Section 6 concludes.  Several proofs of key results are provided in an 

appendix. 

1.  Testing a Pricing Model Against a General Alternative  

Traditional tests of factor-pricing models compare a single restricted asset-pricing model 

to an unrestricted alternative return-generating process that nests the null model.  We explore the 

Bayesian counterpart of such a test in this section.   

Statistical Assumptions and Portfolio Algebra 

First, we lay out the factor model notation and assumptions. The factor model is a 

multivariate linear regression with N test-asset excess returns, tr , and K factors, for each of T 

months: 

t t t tr f ~ N(0, ),        
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where tr , t  and   are Nx1,   is NxK and tf  is Kx1.  The normal distribution of the t is 

assumed to hold conditional on the factors and the t are independent over time.  In matrix form, 

     R XB E           
where                                                                               

1

2

T

1 1

2 2

T T

r 1 f

r 1 f

r 1 f

R , X , B .










  

  

  

     
                     
     
     

  
and E =

                                     

(1.1)     

Here, R  is TxN, X  is Tx(K+1), B  is (K+1)xN and E is TxN.  The TxK matrix of factor data is 

denoted by F .  

We assume that the factors are zero-investment returns such as the excess return on the 

market or the spread between two portfolios, like the Fama-French value-growth factor.  Under 

the null hypothesis, 0H : 0  , we have the usual simple linear relation between expected 

returns and betas: 

    t tE(r ) E(f ) ,                               (1.2) 

where tE(f )  is the Kx1 vector of factor premia.   

The GRS test of this null hypothesis is based on the F-statistic with degrees of freedom N 

and T-N-K, which equals (T-N-K)/(NT) times the Wald statistic: 

  
 2 21

2 2

ˆ Sh(F,R) Sh(F)ˆ ˆ'
W T T

1 Sh(F) 1 Sh(F)

  
 

 
.                             (1.3) 

Here, 
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ˆSh(F) F F



   is the maximum squared sample Sharpe ratio over portfolios of the 

factors, where F is the vector of factor sample means and  and  are maximum likelihood 

estimates (MLE’s) for the covariance matrices  and .  The term 2Sh(F,R)  is the 

̂ ˆ
F

 f
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corresponding sample measure based on both factor and asset returns.  One can also show that W 

is T/(T-K-1) times the maximum squared t-statistic for the regression intercept, taken over all 

possible portfolios of the test assets.  The population Sharpe ratios, 2sh(f )  and 2sh(f , r) , are 

based on the true means and covariance matrices.  

Under the alternative hypothesis, 1H : 0  , the F-statistic has a noncentral F 

distribution with noncentrality parameter   such that   

   2 1 2 21 Sh(F) / T ' sh(f , r) sh(f )       .                          (1.4) 

See Gibbons, Ross and Shanken (1989).  Under the null hypothesis   0 , the tangency portfolio 

corresponding to the factor and asset returns,  ( f , r), equals that based on the factors alone, 

 ( f ).  Thus, the expected return relation in (1.2) is equivalent to this equality of tangency 

portfolios and their associated squared Sharpe ratios.   

A Bayesian F-test 

Bayesian tests of the zero-alpha restriction have been developed by Shanken (1987), 

Harvey and Zhou (1990) and McCulloch and Rossi (1991).  The test that we develop here takes, 

as a starting point, a prior specification considered in the Harvey and Zhou paper.  Although they 

comment on the computational challenges of implementing this approach, we are able to derive a 

simple formula for the required Bayesian probabilities.  The specification is appealing in that 

standard “diffuse” priors are used for the betas and residual covariance parameters.  Thus, the 

data dominate beliefs about these parameters, freeing the researcher to focus on informative 

priors for the alphas, the parameters that are restricted by the models.8  The details are as follows.  

The diffuse prior for   and   is 

                                                       
8 Using improper (diffuse) priors for “nuisance parameters” like betas and residual covariances that appear in both 
the null and alternative models, but proper (informative) priors under the alternative for parameters like alpha, is in 
keeping with Jeffreys (1961) and others.   
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    ( N 1) / 2
P( , )     ,                    (1.5) 

as in Jeffreys (1961).  The prior for  is concentrated at 0 under the null hypothesis.  Under the 

alternative, we assume a multivariate normal informative prior for  conditional on  and : 

   ,                                         (1.6) 

where the parameter k > 0 reflects our belief about the potential magnitude of deviations from 

the expected return relation.   

Asset-pricing theory provides some motivation for linking beliefs about the magnitude of 

alpha to residual variance.  For example, Dybvig (1983) and Grinblatt and Titman (1983) derive 

bounds on an individual asset’s deviation from a multifactor pricing model that are proportional 

to the asset’s residual variance.  From a behavioral perspective, Shleifer and Vishny (1997) argue 

that high idiosyncratic risk can be an impediment to arbitraging away expected return effects due 

to mispricing.  Pastor and Stambaugh (2000) also adopt a prior for  with covariance matrix 

proportional to the residual covariance matrix.  Building on ideas in McKinlay (1995), they 

stress the desirability of a positive association between  and  in the prior, which makes 

extremely large Sharpe ratio less likely, as implied by (1.4).9   

For a single asset, (1.6) implies that k is the prior expectation of the squared alpha 

divided by residual variance, or the square of the asset’s information ratio.  By (1.4), this is the 

expected increment to the maximum squared Sharpe ratio from adding the asset to the given 

factors.  In general, with a vector of N returns, the quadratic form 1(k )    is distributed as 

chi-square with N degrees of freedom, so the prior expected value of   1  is k times N.  

Therefore, given a target value maxSh  for the square root of the expected maximum, the required 

k is 

                                                       
9 Also see related work by Pastor and Stambaugh (1999) and Pastor (2000). 



  

P( | , ) MVN(0, k )    
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 2 2

maxk Sh Sh(f) / N                                                       (1.7) 

Note that using the factor data to inform the prior is appropriate in this context since the entire 

statistical analysis is conditioned on f.  Alternatively, we can just think about the expected return 

relation and our assessment of plausible deviations from that relation.  This is similar to the 

approach in Pastor (2000).  If our subjective view is, say, that alphas should be less than 6% 

(annualized) with probability 95%, then we would want to choose k such that   is about 3% 

(annualized).  Given a residual standard deviation of 10% per annum, for example, the implied k 

would be 0.032/0.102 = 0.09. 

The Bayes factor BF measures the relative support for the null hypothesis in the data.  

Formally, BF is the ratio of the marginal likelihoods: 0 1ML(H ) / ML(H ),  where each ML is a 

weighted-average of the likelihoods over various parameter values.  The weighting is by the 

prior densities associated with the different hypotheses.  Since the parameters are integrated out, 

the ML can be viewed as a function of the data (factor and test-asset returns):  

        ( | ) ( | , , , ) ( | , ) ( , )d d d .             ML P R F P R F P P         (1.8) 

Here, the likelihood function is the joint conditional density ( | , , , ) P R F  viewed as a 

function of the parameters.  1ML(H )  is computed using the priors given in (1.5) and (1.6); 

0ML(H )  also uses (1.5), but substitutes the zero vector for .   

 We can also view the test of 0H : 0   vs 1H : 0   in terms of the proportionality 

constant in the prior covariance matrix for  .  Thus, we have a test of the value 0 vs. the value 

k.  More generally, the null hypothesis can be modified to accommodate an approximate null that 

allows for small average deviations from the exact model, as captured by the prior parameter k0 

< k.  The usual exact null is obtained with k0 = 0.  We can now state our main result. 
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Proposition 1.  Given the factor model in (1.1) and the prior in (1.5)-(1.6), the Bayes factor for 

0H : 0   vs 1H : 0   equals  

(T K)/2

0

1 R

SML(H ) 1
BF

ML(H ) Q S


 

    
 

                    (1.9) 

where S and SR are the NxN cross-product matrices of the OLS residuals with  unconstrained 

or constrained to equal zero, respectively.  The scalar Q is given by 

          

1

(T K)/2 N/2

1
ˆ ˆQ exp ( ) ( ) P( | )P( | F,R)d d

2a

a k
1 (W / T) 1 ,

(a k) a

     

  

        
 

           

 
             (1.10)  

where  is the posterior density for  and  2a 1 Sh(F) / T  .  W is given in (1.3) 

and equals the GRS F-statistic times NT/(T-N-K).  Letting Qk0 be the value of Q obtained with 

prior value k0, the BF for k0 vs k is  

      
0 0k ,k kBF Q / Q                                           (1.11) 

Proof.  See Appendix B.10, 11 

 It is easy to verify that BF is a decreasing function of W; the larger the test statistic, the 

stronger is the evidence against the null that   is (approximately) zero.  When N = 1, W equals     

T/(T-K-1) times the squared t-statistic for the intercept in the factor model.  Other things equal, 

the greater the magnitude and precision of the intercept estimate, the bigger is that statistic, the 

                                                       
10 Harvey and Zhou derive (1.9) and the integral expression for Q.  The function of W in (1.10) is our simplification, 
while (1.11) is both a simplification and generalization of (1.9). 
11 The formula is identical, apart from minor differences in notation, to the Bayes factor that Shanken (1987b) 
derives by conditioning directly on the F-statistic, rather than on all the data, for simplicity.  Thus, surprisingly, it 
turns out that this simplification entails no loss of information under the diffuse prior assumptions made here. 

( | , )P F R 



 12

lower is BF and the weaker is the support for the null.  For N > 1, the same conclusion applies to 

the maximum squared t-statistic over all portfolios of the test assets.   

In terms of the representation in (1.9), the BF decreases as the determinant of the matrix 

of restricted OLS sums of squared residuals increases relative to that for unrestricted OLS, 

suggesting that the zero-alpha restriction does not fit the data.  BF also decreases as Q increases, 

where a large Q indicates a relatively small distance between the alpha estimate and the values of 

alpha anticipated under the prior for the alternative model.  Q is always less than one since the 

exponent in (1.10) is uniformly negative.   As the ratio of determinants is likewise less than one, 

a BF favoring the null (BF > 1) occurs when Q is sufficiently low, i.e., the prior for alpha under 

the alternative is “inconsistent” with the estimate.  The simple formula for Q will also facilitate 

the model comparison calculations in Section 3. 

One may wonder why we don’t consider a diffuse prior for alpha, so as to avoid having to 

make an assumption about the prior parameter k.  For some specifications, a diffuse prior can be 

obtained in the limit by letting the prior variance approach infinity.  Allowing  → ∞ would 

amount to letting k → ∞, which is not sensible economically since it implies, by (1.7), that the 

maximum Sharpe ratio expected under the alternative is itself infinite.  That some form of 

informative prior is required for alpha follows more generally from observations in a widely 

cited article on Bayes factors by Kass and Raftery (1995).  They discuss the relevance of 

“Bartlett’s (1957) paradox, a situation in which an estimate may be far from its null value, but 

even more unlikely under the alternative, thus yielding a Bayes factor that favors the null H0.  A 

consequence, they note, is that a prior under the alternative with a large variance will “force the 

Bayes factor to favor H0.”  They attribute this point to Jeffreys (1961), who recognizes that, “to 

avoid this difficulty, priors on parameters being tested must be proper and not have too big a 

spread.”  What this means in our application is that, in evaluating an asset pricing model, a 

researcher needs to think about how large the deviations from the model might plausibly be if the 

model is, in fact false. 
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One general method that can be used to obtain a proper prior is to update a diffuse prior 

with a “minimal training-sample,” i.e., a subset of the data that is just large enough to identify all 

the model parameters.  The resulting posterior distribution can then play the role of the prior in 

analyzing the remaining data.12  Avramov (2006) adopts a variant of this approach in comparing 

asset pricing models.  Although computationally convenient, a potential concern is that such a 

prior for alpha could have a very large standard deviation, one that would be judged 

economically implausible, and might conflict with Jeffreys’ recommendation that the prior 

spread not be “too big.”   

2.  Relative versus Absolute Model Tests 

In the previous section, we analyzed a test of a factor-pricing model against a more 

general alternative.  We refer to this as an absolute test of the fit of a model.  In this section, we 

address the testing of one factor-pricing model against another such model, what we call a 

relative test.  Assume as in the previous section, that there are K factors in all and N test assets of 

interest.  In general, we consider models corresponding to all subsets of the factors, with the 

stipulation that the market factor, Mkt, is always an included factor.  This is motivated by the 

fact that the market portfolio represents the aggregate supply of securities and, therefore, holds a 

unique place in portfolio analysis and the equilibrium pricing of assets, e.g., the Sharpe-Lintner 

CAPM and the Merton (1973) intertemporal CAPM.13      

In the present setting, the vector f corresponds to a subset of L-1 of the K-1 non-market 

factors.  The model associated with the L factors, {Mkt, f} is denoted by M and the K-L factors 

excluded from M are denoted by f*.  A valid model M will price the factor returns f* as well as 

the test asset returns r.  Thus, the alphas of f* and r regressed on {Mkt, f} equal zero under the 

                                                       
12 Berger and Pericchi (1996) suggest averaging such results across all minimal training samples as a means of 
increasing stability of the procedure.   
13 See Fama (1996) for an analysis of the role of the market portfolio in the ICAPM. 
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model.  However, the statistical analysis is greatly facilitated by using an equivalent 

representation of M.  Let 

    * * * *f [M kt, f ]                        (2.1a)   

and              
*

r r rr [M kt, f , f ]                       (2.1b) 

be multivariate regressions for f* and r.  Note that the model in (2.1b), which we will call Ma, 

includes all K factors.  Barillas and Shanken (2015) show that the model M, which is nested in 

Ma, holds if and only if * 0   and r 0  , i.e., if and only if * 0   and Ma holds for the test 

assets.  We use this characterization of M below. 

 For example, consider CAPM as nested in the Fama-French (1993) three-factor model 

(FF3).  In this case, the usual alpha restrictions of the single-factor CAPM are equivalent to the 

one-factor intercept restriction for the excluded-factor returns, HML and SMB, and the FF3 

intercept restriction for the test-asset returns.  As the test-asset restrictions are common to both 

models, the models differ only with respect to the excluded-factor restrictions.  If those 

restrictions hold, CAPM is favored over FF3 in the sense that the same pricing is achieved with 

fewer factors – a more parsimonious model.  Otherwise, FF3 is preferred since it does not 

impose the additional restrictions that are violated.  Alternatively, as Barillas and Shanken note, 

we can think about comparison in terms of a modified Hansen-Jagannathan (1997) distance, 

which ends up being equivalent to a factor-portfolio efficiency criterion. 14  If * 0  , the 

tangency portfolio (and associated Sharpe ratio) based on all the factors, i.e., spanned by Mkt, 

HML and SMB, can be achieved through investment in Mkt alone.  If * 0  , a higher 

(squared) Sharpe ratio can be obtained by exploiting all of the factor investment opportunities. 

Three asset-pricing tests (classical or Bayesian) naturally present themselves in 

connection with the nested model representation of M.   We can conduct a test of the all-

                                                       
14 The modification, due to Kan and Robotti (2008), is suitable in the excess-return setting with traded factors. 



 15

inclusive model Ma with factors (Mkt, f, f*) and left-hand-side returns r.  Also, we can test M 

with factors f and left-hand-side returns consisting of test assets r plus the excluded factors f*.  

These absolute tests pit the models (Ma or M) against more general alternatives for the 

distribution of the left-hand-side returns.  Finally, we can perform a relative test of M vs Ma with 

factors f and left-hand-side returns f*.  There is a simple relation between the Bayesian versions 

of these tests.  We denote the Bayes factor for Ma in the first test as 
a

abs

MBF , for M in the second 

test as abs
MBF , and for M (versus Ma) in the third test as relB F .  Given some additional 

assumptions similar to those made earlier, we then have 

Proposition 2.  Assume that the multivariate regression of f* on (Mkt, f) in (2.1a) and r on (Mkt, 

f, f*) in (2.1b) satisfy the condition that the residuals are independently distributed over time as 

multivariate normal with mean zero and constant residual covariance matrix.  The prior for the 

regression parameters is of the form in (1.5) and (1.6), with the priors for (2.1a) and (2.1b) 

independent.  Then the BFs are related as follows: 

     a

abs rel abs
M MBF BF BF                                  (2.2) 

Proof.  The ML is the expectation under the prior of the likelihood function.  Write the joint 

density (likelihood function) of factor and test-asset returns as the density for f* given (Mkt, f), 

times the conditional density for r given (Mkt, f, f*).  Using the prior independence assumptions, 

the prior expectation of the product is the product of the expectations.  By the earlier discussion, 

under M, both densities are restricted (zero intercepts) in the numerator, whereas only the density 

for r is restricted under Ma.  Therefore, letting the subscripts R and U stand for restricted and 

unrestricted densities,  

ab s
MB F  * *

R R U U{M L (f ) M L (r)} / {M L (f ) M L (r)}    

and  

a

abs *

M U RBF {ML (f ) ML (r)} /  *

U U{ML (f ) ML (r)} ,  

where the conditioning variables have been suppressed to simplify the notation.  Given that  
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BFrel {ML
R

(f *)ML
R

(r)} /{ML
U

(f *)ML
R

(r)}, 

the equality in (2.2) is easily verified. □ 

Proposition 2 tells us that the absolute support for the nested model M equals the relative 

support for M compared to the larger (less restrictive) model Ma times the absolute support for 

Ma.  Equivalently, the relative support for M vs. Ma can be backed out from the absolute BFs, as 

a

abs abs
M MBF / BF .  Thus, whether we compare the models directly or relate the absolute tests for each 

model, the result is the same.  This reflects the fact that, extending the argument in Barillas-

Shanken (2015), the impact of the test-asset returns r on the absolute tests, RML (r) , is the same 

for each model and so cancels out in the model comparison. We refer to this as test-asset 

irrelevance. 

Testing CAPM vs. FF3: An Illustration  

To illustrate these ideas, suppose we want to test whether Ma, here the FF3 model with K 

= 3, is superior to M = CAPM with L = 1.  In this case, f is the empty set (no non-market factors 

in CAPM) and there are 2 (K–L) excluded factors, f* = (HML, SMB).  Since the test assets are 

irrelevant, the pertinent restriction is that the CAPM alphas of SMB and HML are both zero.  

Thus, 1 plays the role of K and 2 the role of N in the required application of Proposition 1.  We 

evaluate the CAPM restriction from both the classical and Bayesian perspectives, using monthly 

factor data for the period 1927 to 2013 obtained from Ken French’s website (T = 1004).  The 

GRS statistic is 4.56 with associated p-value 0.01, statistically significant in the conventional 

sense.  The corresponding Wald statistic is then 2(1044)/(1044 - 2 - 1) times 4.56 or W = 9.14.  

 To implement the Bayesian approach, we need to specify the value of k in the prior.  

Since the full model Ma = FF3 includes 3 factors and the nested model M consists of the market 

factor only, adaptation of the earlier formula for k in (1.7) gives 

 2 2

maxk Sh Sh(Mkt) / (3 1)   .                   (2.3) 
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The divisor is 2 here since the two excluded factors are added to the market factor and play the 

role of left-hand-side assets.  As in Section 1, using the Mkt data to inform the prior is 

appropriate here since the entire statistical analysis is conditioned on the Mkt returns.  Similar 

remarks will apply to the general model-comparison analysis of the next section. 

 In our example, the question is, how big do we think the Sharpe ratio increase might be 

as a result of adding HML and SMB to the market index?  We allow for a 25% increase in this 

illustration, i.e., maxSh 1.25 Sh(Mkt)  .  More precisely, the square root of the prior expected 

squared Sharpe ratio is 1.25 time the market’s squared ratio.  With a value of 0.115 for  

,  a = (1 + 0.1152)/1044 = 0.00097 and (2.3) gives k = 0.0037.  Using (1.6), this value 

of k translates into (annualized) prior standard deviations of 2.51% and a 2.23% for the HML 

and SMB CAPM alphas, respectively.  The latter is smaller since the SMB residual variance in 

the regression on Mkt is lower than that of HML over the full period.    

Given this prior specification and letting k0 = 0, the BF for the null CAPM vs. the 

alternative FF3 is Q0/Q in (1.10)-(1.11), which equals 

(T 1)/2

2/2
a

1 (W / T)
k(a k)

1
1 (W / T) a


          
 
 

=                      

(1004 1)/2

2/2
0.097

1 ( /1044)
(0.097 )

1
1 ( /1044)

9.14
0.370.37
0.04 979.1


          
 
 

 

or 0.13.   Thus the data (viewed through the lens of the prior), strongly favor the conclusion that 

the two alphas are not both zero, by odds of more than 7 to 1.  Using the fact that the probability 

for the alternative is one minus the probability for the null, it follows that the posterior 

probability that the null is true is BF/(1 + BF) when the prior probabilities for both models are 

Sh(Mkt)
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0.5.  This gives a posterior probability of 11.6% for CAPM with the BF of 0.13.  As the p-value 

calculation does not even consider the alternative hypothesis, the 1% p-value cannot 

meaningfully be compared to this posterior probability.15  Later, we provide an example in which 

the posterior probability favors the null, even though the p-value is low by conventional 

standards.  

3.  General Model Comparison 

In the previous section, we saw how to use an asset-pricing test against a general 

alternative to compare two nested factor-pricing models.  Now suppose we wish to 

simultaneously compare a collection of asset pricing models, both nested and non-nested.  From 

a portfolio perspective, it is clear that the squared Sharpe ratio will always be maximized with all 

factors included, as in model Ma.  The question that is being addressed when we consider the 

various models is whether that maximum can still be attained with a proper subset of the factors, 

one as small as possible.  In other words, are some of the factors in Ma redundant?  Fama (1998) 

considers a related hypothesis in identifying the number of priced state variables in an 

intertemporal CAPM setting. 

Our methodology exploits the fact that the marginal likelihood (ML) for each model is 

the product of an unrestricted ML for the included factors and a restricted (alpha = 0) ML for the 

factors that are excluded and must be priced by the model.16  Given our analysis of the Bayesian 

F-test, these likelihood measures are easily calculated, with excluded factors playing the role of 

left-hand-side returns.  Thus, inference about model comparison ends up being based on an 

                                                       
15 Shanken (1987b) discusses this issue in detail.   
16 By “unrestricted ML” we mean that the corresponding regression density does not restrict alpha to be zero.  Of 
course, there is a sense in which the informative prior under the alternative restricts our view about different values 
of alpha. 
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aggregation of the evidence from all possible multivariate regressions of excluded factors on 

factor subsets.17 

We use braces to denote models, which correspond to subsets of the given factors.  For 

example, starting with the FF3 factors, there are four models that include Mkt: CAPM, FF3 and 

the non-nested two-factor models {Mkt HML} and {Mkt SMB}.  Given the MLj for each model 

Mj with prior probability P(Mj), the posterior probabilities conditional on the data D are given by 

Bayes’ rule as 

   P(Mj | D) =      ij j i iML P M / ML P M  ,                   (3.1) 

where D refers to the sample of all factor and test-asset returns, F and R.  

 One distinctive feature of our approach, as compared to Avramov (2006), is that the 

factors that are not included as right-hand-side explanatory variables for a given model play the 

role of left-hand-side dependent returns whose pricing must be explained by the model’s 

factors.18  This is important from the statistical standpoint, as well as the asset pricing 

perspective, since (3.1) requires that the posterior probabilities for all models are conditioned on 

the same data.  Thus, each model’s restrictions are imposed on the excluded factors f* as well as 

the test assets r in calculating the ML, whereas the ML for the included factors f is based on their 

unrestricted joint density.19  Therefore, we also need to consider the multivariate regression 

    f Mkt     ,                              (3.2) 

                                                       
17A frequentist approach to asset-pricing model comparison might be developed along the lines of Vuong (1989), 
but we leave that to future work. 
18 The phrase “either you’re part of the problem or part of the solution” comes to mind. 
19 That all marginal likelihoods must, in principle, be conditioned on the same data is a direct consequence of Bayes’ 
theorem, e.g., Kass and Raftery (1995) equation (1).  In traditional model comparison applications such as Avramov 
(2002), which examines subsets of predictors for returns in a linear regression framework, conditioning a model’s 
likelihood on all the data reduces to conditioning on the predictors that are included the model.  In that setting, the 
excluded predictors drop out of the likelihood function and thus can be ignored in evaluating the given model.  This 
occurs since imposing the model restrictions amounts to placing slope coefficients of zero on those predictors in this 
case.  The same is not true for the excluded factors in our application, as their pricing by the included factors does 
affect the model likelihood.  
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where the residuals are again independently distributed over time as multivariate normal with 

mean zero and constant residual covariance matrix.  Now, by an argument similar to that used in 

deriving Proposition 2, we obtain  

Proposition 3.  Assume that the multivariate regressions of f on Mkt in (3.2), f* on (Mkt, f) in 

(2.1a) and r on (Mkt, f, f*) in (2.1b) satisfy the distributional conditions discussed previously.  

The prior for the parameters in each regression is of the form in (1.5) and (1.6), with 

independence between the priors for (3.2), (2.1a) and (2.1b) conditional on the sample of Mkt 

returns.  Then the ML for a model M with non-market factors f is of the form 

  ML = MLU(f | Mkt) x MLR(f* | Mkt, f) x MLR(r | Mkt, f, f*),                     (3.3) 

where the unrestricted and restricted (alpha = 0) regression MLs are obtained using (A.1) and 

(A.2) of Appendix A. 

The value of k in the prior for the intercepts in the unrestricted regressions is determined 

as in (2.3), but using the total number of factors K in the denominator, with Shmax corresponding 

to all K factors as well.  It follows from the discussion after (1.6) that k is the expected (under the 

alternative) increment to the squared Sharpe ratio at each step from the addition of one more 

factor.  By concavity, therefore, the increase in the corresponding Shmax declines as more factors 

are included in the model.  Although we think this is a reasonable way to specify the prior, the 

results are not sensitive to alternative methods we have tried for distributing the total increase in 

the squared Sharpe ratio.   

Given (3.3), the posterior model probabilities in (3.1) can now be calculated by 

substituting the corresponding ML for each model.  We use uniform prior model probabilities to 

avoid favoring one model or another, which seems desirable in this sort of research setting.  

Thus, the impact of the data on beliefs about the models is highlighted.  Other prior assumptions 

could easily be explored, however.  Note that, since the last term in (3.3) is the same for all 

models, it cancels out in the numerator and denominator of (3.1).  Thus, test assets are irrelevant 

for model comparison, as in the nested case of Proposition 2.   
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Model Probabilities with the Fama-French (1993) Factors  

Over the period 1927 to 2013, we saw in the earlier illustration, that CAPM is rejected in 

favor of FF3 based on the conventional GRS test with p-value 0.01.  The Bayes factor for CAPM 

vs. FF3 was 0.13.  Now we compare these models simultaneously with the two-factor models 

{Mkt HML} and {Mkt SMB}.  As earlier, the prior assumes that Shmax = 1.25xSh(Mkt) for the 

three factors, with prior probability of 1/4 assigned to each of the four models.   

Before conducting the formal Bayesian analysis, we examine some additional regression 

evidence - annualized alpha estimates with t-statistics in parentheses.  Recall that the BF in favor 

of the zero-null hypothesis for a single dependent return is a decreasing function of this t-

statistic.  The alpha of HML on Mkt is large at 3.65% (2.85), while the alpha of SMB on Mkt is 

1.34% (1.18).  For SMB on Mkt and HML, the alpha is just 1.18% (1.04) and for HML on Mkt 

and SMB, it is 3.57% (2.79).  The large HML alphas are evidence against CAPM and {Mkt 

SMB}, but consistent with both the two-factor model {Mkt HML} and FF3.  The modest SMB 

alphas point to the two-factor model, however.  But how strongly should we view this 

suggestion?   

The Bayesian approach aggregates all of the evidence reflected in the marginal 

likelihoods and summarizes the results in terms of posterior model probabilities.  For example, 

using (3.3), the ML for the model {Mkt HML} equals the unrestricted ML for HML conditional 

on the market (the HML alpha is unconstrained) times the restricted ML for SMB conditional on 

Mkt and HML (the SMB alpha is constrained to be zero) times the restricted ML for the test 

assets conditional on all three factors (test-asset alphas are zero).  A similar calculation for each 

model results in model probabilities of 50.6% for {Mkt HML}, 39.6% for FF3, 5.2% for CAPM 

and 4.6% for {Mkt SMB}.  In this application, the restricted model {Mkt HML} that excludes 

SMB comes out on top, but in other situations the model that includes all of the factors can 

dominate the competition.  Also note that the ratio of probabilities for CAPM and FF3 is 0.13, 

equal to the BF obtained earlier from the Bayesian F-test.     
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4.  Comparing Models with Categorical Factors 

Often, in empirical work, several of the available factors amount to different 

implementations of the same underlying concept, for example size or value.  In such cases, to 

avoid overfitting, it may be desirable to structure the prior so that it only assigns positive 

probability to models that contain at most one version of the factors in each category.  In this 

section, we extend our analysis to accommodate this perspective.   

A Categorical Example  

Our main empirical application presented later in Section 5 will include data for four 

factor categories.  This data is available over the period 1972-2013.  In the present illustration of 

the methodology, we examine a subset of those factors over the same period: two size factors, 

SMB from FF5 and ME from HXZ, along with Mkt and HML.  The size factors differ in terms 

of the precise sorts used to construct the “small” and “big” sides of the spread.  We refer to Size 

as a categorical factor, in this context, in contrast to the actual factors SMB and ME.  Similarly, 

models in which some of the factors are categorical and the rest are standard factors are termed 

categorical models. 

To demonstrate the basic idea, consider categorical models based on the standard factors 

Mkt and HML, and the categorical factor Size.  As earlier, there are four categorical models, 

CAPM, {Mkt HML} {Mkt Size} and {Mkt HML Size), each with prior probability 1/4.20  We 

have two versions of the factors, w1 = (Mkt HML SMB) and w2 = (Mkt HML ME), and can 

conduct separate model comparison analyses with each over the 1972-2013 period.  These 

separate analyses employ the methodology of Section 3 with all standard factors.  The posterior 

model probabilities conditional on w1 are {Mkt HML} 55.9%, {Mkt HML SMB} 43.5%, CAPM 

0.4% and {Mkt SMB} 0.2%.  Conditional on w2, we have {Mkt HML ME} 50.7%, {Mkt HML} 

                                                       
20 The value of k in the prior now corresponds to a potential 50% increase in the Sharpe ratio relative to that of the 
market when the categorical model contains all three factors. 
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48.6%, {Mkt ME} 0.3% and CAPM 0.3%.  Now the question is, how should we aggregate these 

two sets of probabilities to obtain posterior probabilities for all six models?   

First, suppose we assign prior probability 1/2 to each w, i.e., to each version of the 

factors, and conditional prior probabilities of 1/4 for the four models in each w.  The 

unconditional prior probabilities for CAPM and {Mkt HML}, the two models common to both 

versions w1 and w2, are then (1/2)(1/4) + (1/2)(1/4) = 1/4 in each case.  In contrast, the 

probability for {Mkt SMB}, which is associated with just one version of the factors, is (1/2)(1/4) 

+ (1/2)(0) = 1/8 and likewise for (Mkt ME} and the three-factor models.  Thus, this simple prior 

specification effectively splits the categorical model probabilities for {Mkt Size} and {Mkt HML 

Size), equally between the two different versions of these categorical models, as desired.   

 The proposition below derives a formula for the posterior probability of each version of 

the factors and shows that the final model probabilities can be obtained by applying these 

weights to the conditional model probabilities above.  The weights in this case are 47.8% for w1 

and 52.2% for w2.  The probability for {Mkt HML} is then (47.8%)(55.9%) + (52.2%)(48.6%) = 

52.1%.  For {Mkt HML ME}, which is only associated with the second version of the factors, it 

is (47.8%)(0) + (52.2%)(50.7%) = 26.5%.  The probability is 20.8% for {MKT HML SMB} and 

less than 1% for the remaining models.  Note that the probabilities for models that include SMB 

are fairly similar to those for models that include ME.  This makes sense since the correlation 

between the two size factors is very high (0.98).  From the categorical model perspective, we 

have probability 52.1% for {Mkt HML}, 26.5% + 20.8% = 47.3% for {Mkt HML Size} and less 

than 1% for the remaining models.21   

Aggregation over Different Versions of the Factors  

Assume the categorical models consist of up to K factors, KC of which are categorical 

factors.  In the example above, K = 3 and KC = 1.  In general, there are CK2  versions of the K 

                                                       
21 Readers less interested in the methodological details can skip to the empirical Section 5 at this point. 
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factors (w1 and w2 above), each with prior probability CK1 / 2 .  The K 12   models associated with a 

given version are assigned uniform conditional prior probabilities of K 11/ 2  .  Let M be a version 

of a categorical model MC with LC categorical factors.  The number of factor versions that 

include model M is  CCK L2  (LC slots are taken), so the fraction of versions that include M is 

CCC CK L K L2 / 2 1/ 2  .  Thus, the total probability of K 11/ 2   for MC is split evenly between the CL2  

versions of that categorical model, of which M is one.  In the example, LC = 0 for {Mkt HML} 

and LC = 1 for {Mkt ME}.  With K = 3, the prior probability for the first model is K 11/ 2  = 1/22 = 

1/4, while the probability of the second is 1/2    ( CL1 / 2 ) of that, or 1/8.  

As mentioned earlier, it is essential that the MLs for the various models be based on the 

same data.  This requires a simple extension of (3.3).  Take the model {Mkt ME), for example.  

In the present context, the excluded factors consist of the non-categorical factor HML and the 

other version of the categorical Size factor, SMB.  We write the ML as the unrestricted ML for 

ME given Mkt, times the restricted ML for HML given Mkt and ME, times the restricted ML for 

SMB given all three factors in the version w2 = (Mkt HML ME).  Thus, the extra ML term at the 

end is for the second version of the size factor, which is treated like a test asset conditional on 

w2.  Similarly, for w1, the extra ML term at the end is for ME given (Mkt HML SMB).   

In general, given a K-factor version w, let w* denote the KC alternate versions of the 

categorical factors (w2
*

 would consist of SMB above).  Hence there are K + KC factors in all (3 + 

1 = 4 in the example).  F refers to all of this factor data.  For a model M with non-market factors 

f, all contained in w, let f* now denote the factors in w that are excluded from M.22  Let the prior 

for the parameters in the regression of w* on (Mkt, f, f*) take the usual form based on (1.5) and 

(1.6), again independent of the other components.  The test-assets r are now regressed on (Mkt, f, 

f*, w*), i.e., all the factors, and so the corresponding ML will cancel out in all probability 

                                                       
22 f* will differ across the different w’s that include the factors f (a w subscript is implicit). 
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calculations, as earlier.  This term will be ignored going forward.  Therefore, the counterpart of 

(3.3) is now 

          ML(M | w) = MLU(f | Mkt) x MLR(f* | Mkt, f) x MLR(w* | Mkt, f, f*).                 (4.1) 

For each w, the conditional posterior probabilities can then be obtained as in (3.1).  Note that the 

ML term corresponding to w* will drop out of these computations that are conditional on w.  The 

w* term will differ across the various w’s, however, and so will affect the posterior probabilities 

for the w’s, as we now see. 

Proposition 4.  The unconditional (not conditional on w) posterior model probabilities are 

obtained as follows.  First, calculate ML(M | w) in (4.1) for each version w of the factors and 

each model in w.  Then calculate the ML for each w as  

    ML(w) = EM|w{ML(M | w)}.                             (4.2a) 

where M|w refers to the uniform prior over the models in w.  Next, calculate the unconditional 

probability of the data, 

       P(F) = Ew{ML(w)},                   (4.2b) 

by averaging ML(w) over the uniform prior P(w).  The posterior probability for each w is then 

               P(w | F) = ML(w)P(w)/P(F).                  (4.2c) 

Finally, the unconditional probability for M is 

          P(M | F) = Ew|F{P(M  | w, F)},                                         (4.2d) 

where P(M | w, F) is the conditional posterior probability for M given factor version w and the 

expectation is taken with respect to the versions posterior P(w | F). 

Proof.  A general principle that we use repeatedly is P(Y) = EX{P(Y|X)}.  Also, by definition,   

ML(M | w) = P(F | M, w) and ML(w) = P(F | w).  In (4.2a), M plays the role of X and F the role 

of Y, while we condition on w throughout in the “background.”  In (4.2b), w plays the role of X 
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and F the role of Y.  (4.2c) is just Bayes’ theorem.  Finally, w plays the role of X and M the role 

of Y in (4.2d),  while we condition on F throughout in the background.  □ 

5 Empirical Results 

In this section, we first present model-comparison evidence and then Bayesian F-test 

results. 

 5.1 Empirical Results on Model Comparison 

   Model probabilities are shown at each point in time to provide an historical perspective 

on how posterior beliefs would have evolved as the series of available returns has lengthened.  

Examining different sets of factors provides additional perspective, as the collection of factors 

considered in the research community has expanded over time.  Thus it is interesting to see how 

this affects posterior beliefs about the models.  First, we simultaneously compare all the models 

that can be formed using the FF3 factors Mkt, SMB and HML.  This small example extends the 

results shown in Section 3 and serves as a good illustration of our methodology.  We then 

conduct our main empirical analysis, which compares models that can be formed from ten 

prominent factors in the literature.  Since there are four categorical factors with two versions 

each, an admissible model will have at most six factors.   

 Our benchmark scenario for all model comparison exercises in this section assumes that 

Shmax = 1.5 x Sh(Mkt), i.e., the square root of the prior expected squared Sharpe ratio for the 

tangency portfolio based on all six factors is 50% higher than the Sharpe ratio for the market 

only.  Given the discussion in Section 3, this is sufficient to determine the implied Shmax values 

as we expand the set of included factors from one to all six, leaving the intercepts unrestricted.  

In particular, for the three-factor model below, the corresponding multiple of Sh(Mkt) is 1.27, 

slightly higher than the 1.25 value used earlier.  We think of the 1.5 six-factor choice of multiple 

as a prior with a risk-based tilt, assigning relatively little probability to extremely large Sharpe 
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ratios.  Later, we examine the sensitivity of posterior beliefs to this assumption, as we also 

explore multiples corresponding to a more behavioral perspective and one with a lower value.23 

Model Probabilities with the Three Fama-French (1993) Factors 

 In previous sections, we presented results using these three factors to illustrate our 

methodology.  Recall that there are four models in all: CAPM, FF3 and the two-factor models     

{Mkt HML} and {Mkt SMB}. We now provide evidence on the formal model comparison 

among these four competing models over time.  As earlier, we employ data from January 1927 to 

December 2013.  Figure 1 presents the results of this exercise.  The top panel shows the model 

probabilities while the bottom panel gives cumulative factor probabilities, i.e., the probability 

that each factor is included in the best model.    

 Since we start with equal prior probabilities for each model, it is not surprising that it 

takes a while to see a substantial spread in the posterior probabilities.  The best-performing 

model since the mid-1980s has been {Mkt HML}, followed closely by FF3.  The probabilities 

for these models are 51.3% and 39.1%, respectively, at the end of the sample.  It is also of 

interest to note that the full model (FF3) need not have the highest probability.  The CAPM and 

{Mkt SMB} probabilities generally decline after 1980 and are quite low at the end.  However, 

CAPM would have been perceived as the best-performing model in the 1950s and 1960s, which 

interestingly was a time when the Fama-French model ranked last.  In related evidence, Fama 

and French (2006) and Ang and Chen (2007) find that CAPM works well for B/M-sorted 

portfolios before 1963.  

The cumulative factor probabilities are shown in the bottom panel.  For each factor, this 

is the sum of the posterior probabilities for models that include that factor.  The probabilities at 

the end of the sample are 90.3% for HML, reflecting its inclusion in the two top models, and 

43.6% for SMB.  Of course, the probability is one for Mkt by assumption. 

                                                       
23 MacKinlay (1995) analyzes Sharpe ratios under risk-based and non-risk-based alternatives to the CAPM. 
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[Figure 1] 
 

          The empirical analysis above was based on the prior assumption Shmax = 1.5 x Sh(Mkt) for 

six factors, including the market.  Now we explore the sensitivity of our full-sample results to 

different prior assumptions - multiples of 1.25, 1.5, 2, and 3.  Table 1 presents the full-sample 

results for the three Fama-French factors.  The sample Sharpe ratio for the market is 0.115 over 

the 1927-2013 period, while the FF3 Sharpe multiple is 1.23, close to the 1.27 implied by our 

baseline prior scenario.  With the three Fama-French factors, the top model is always {Mkt 

HML}, the posterior probabilities rising from 44.9% to 65.3% as Shmax increases.  At the same 

time, the probabilities for FF3 decline from 42.2% to 23.1%.  Overall, although we see some 

variation in the model probabilities for different priors, the rankings of the models are consistent.  

 

[Table 1] 

 

Model Probabilities with Ten Prominent Factors 

We now consider a total of ten candidate factors.  First, there are the traditional FF3 

factors Mkt, HML and SMB plus the momentum factor UMD.  To these, we add the investment 

factor CMA and the profitability factor RMW of Fama and French (2015a).  Finally, we also 

include the size ME, investment IA and profitability ROE factors in Hou, Xue and Zhang 

(2015a, 2015b), as well as the value factor HMLm from Asness and Frazzini (2013).  The size, 

profitability and investment factors differ based on the type of stock sorts used in their 

construction.  Fama and French create factors in three different ways.  We use what they refer to 

as their “benchmark” factors.  Similar to the construction of HML, these are based on 

independent (2x3) sorts, interacting size with operating profitability for the construction of 

RMW, and separately with investments to create CMA.  RMW is the average of the two high 

profitability portfolio returns minus the average of the two low profitability portfolio returns.  



 29

Similarly, CMA is the average of the two low investment portfolio returns minus the average of 

the two high investment portfolio returns.  Finally, SMB is the average of the returns on the nine 

small-stock portfolios from the three separate 2x3 sorts minus the average of the returns on the 

nine big-stock portfolios.  

Hou, Xue and Zhang (2015a) construct their size, investment and profitability factors 

from a triple (2 x 3 x 3) sort on size, investment-to-assets, and ROE.  More importantly, the HXZ 

factors use different measures of investment and profitability.  Fama and French (2015a) 

measure operating profitability as NIt-1/BEt-1, where NIt-1 is earnings for the fiscal year ending in 

calendar year t-1, and BEt-1 is the corresponding book equity.  HXZ use a more timely measure 

of profitability, ROE, which is income before extraordinary items taken from the most recent 

public quarterly earnings announcement divided by one-quarter-lagged book equity.  IA is the 

annual change in total assets divided by one-year-lagged total assets, whereas investment used by 

Fama and French is the same change in total assets from the fiscal year ending in year t-2 to the 

fiscal year in t-1, divided by total assets from the fiscal year ending in t-1, rather than t-2.  In 

terms of value factors, HMLm is based on book-to-market rankings that use the most recent 

monthly stock price in the denominator.  This is in contrast to Fama and French (1993), who use 

annually updated lagged prices in constructing HML.  The sample period for our data is January 

1972 to December 2013.  Some factors are available at an earlier date, but the HXZ factors start 

in January of 1972 due to the limited coverage of earnings announcement dates and book equity 

in the Compustat quarterly files. 

Rather than mechanically apply our methodology with all nine of the non-market factors 

treated symmetrically, we apply the framework of Section 4, which recognizes that several of the 

factors are just different versions of the same underlying concept.  Therefore, we only consider 

models that contain at most) one version of the factors in each category: size (SMB or ME), 

profitability (RMW or ROE), value (HML or HMLm) and investment (CMA or IA).  We refer to 

size, profitability, value and investment as categorical factors, in this context, in contrast to the 

actual factors employed in the various models.  Similarly, models in which some of the factors 
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are categorical and the rest are standard factors are termed categorical models.  The standard 

factors in this application are Mkt and UMD.  Since each categorical model has up to six factors 

and Mkt is always included, there are 32 (25) possible categorical models. Given all the possible 

combinations of UMD and the different types of size, profitability, value and investment factors, 

we have a total of 162 models under consideration. 

The top panel in Figure 2 shows posterior probabilities for the individual models, which 

were obtained under our baseline prior that allows for a multiple of 1.5 times the market Sharpe 

ratio.  We find that quite a few of the individual models receive non-trivial probability, the best 

(highest probability) model being the six-factor model {Mkt SMB ROE IA HMLm UMD}.  The 

second-best individual model replaces IA with CMA, the third-best uses ME instead of SMB and 

the sixth one uses both CMA and ME, as opposed to IA and SMB.  Both the fourth and fifth best 

models are five-factor models that do not have a size factor and differ only in their investment 

factor choice.  The top seven models all include UMD.  All of these models fare better than FF5 

and the four-factor model of HXZ. 

Figure 3 provides another perspective on the evidence, aggregating results over the 

different versions of each categorical model.  Similar to the findings in the previous figure, by 

the end of the sample, the six-factor categorical model {Mkt Value Size Profitability Investment 

UMD} comes in first with posterior probability close to 75% and the five-factor model that 

excludes size is next, but with probability a little below 20%.  The third best categorical model 

consists of the same five categories as in FF5, while the fourth best replaces the investment 

factor with momentum.  However, it is essential that the more timely versions of value and 

profitability are employed in these models.  Specifically, in untabulated calculations, the 

probability share for HMLm in the FF5 categorical model is 89.0%.  This is the sum of the 

probabilities over versions of the categorical FF5 model that include HMLm divided by the total 

probability for that categorical model.  Similarly, the shares for ROE are 99.9% in the categorical 

FF5 model and 99.0% in the categorical four-factor model. 
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In terms of cumulative probabilities aggregated over all models, we see from the bottom 

panel of Figure 3 that the recently proposed category, profitability, ranks highest.   Interestingly, 

value is second with over 99% cumulative probability.  Consistent with the findings in Figure 2, 

the categorical share for HMLm, i.e., the proportion of the cumulative probability for value from 

models that include HMLm, as opposed to HML, is 99.5%.  Similarly, the categorical share of 

profitability is 99.5% for ROE.  There is less dominance in the size and investment categories, 

with shares of 75.4% for SMB and 63.1% for IA.    

While the analysis above simultaneously considered all 162 possible models, we have 

also conducted direct tests that compare one model to another.  In particular, we test our six-

factor model against the recently proposed models of HXZ and Fama and French.  Such a test is 

easily obtained by working with the union of the factors in the two models and computing the 

marginal likelihood for each model as in (3.3).  Assuming prior probability 0.5 for each model 

and zero probability for all other models, the posterior probability for model 1 in (3.1) is just 

ML1/(ML1 + ML2).  Comparing the top individual model found above, {Mkt IA ROE SMB 

HMLm UMD}, to the four-factor model of HXZ, the direct test assigns 96.6% probability to the 

six-factor model.  The six-factor model probability is greater than 99% when compared to FF5, 

even if the size factor is deleted from the model.   

The model comparison above was based on a prior assumption that Shmax = 1.5*Sh(Mkt) 

in (2.5) when working with six factors.  We next examine sensitivity to prior Sharpe multiples of 

1.25, 1.5, 2, and 3.  Tables 2 and 3 present the results for the individual and categorical models, 

respectively.  Both tables show probabilities for the top seven models under the 1.5 multiple 

specification.  The top models, {Mkt SMB ROE IA HMLm UMD} and {Mkt SMB ROE CMA 

HMLm UMD}, are also the two best under the more behavioral priors that allow for increases in 

the Sharpe ratio of 2 and 3 times the market ratio.  Their probabilities rise from 21.9% to 45.3% 

and from 12.6% to 25.7% as the multiple increases from 1.25.  These two models are among the 

top four under the lower-multiple specification, though the posterior probabilities are more 

diffuse in this case.   
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The top model rankings for the categorical models are also stable across the different 

priors.  The six-factor categorical model {Mkt SIZE PROF INV VAL MOM} is always the best, 

regardless of the prior, and its posterior probability increases substantially as the multiple 

increases.  The categorical model that excludes size comes in second for all multiples as well.  

As noted above, the more timely HMLm accounts for 99.5% of the cumulative probability for the 

value category.  Table 4 shows that timely value remains responsible for the lion’s share of the 

cumulative value probability across the different priors, especially at higher multiples.  Varying 

the prior also yields fairly similar results for timely profitability (ROE), as well as IA and SMB.  

Relative Tests: Are Value and Momentum Redundant? 

Barillas and Shanken (2015) show that when comparing two asset-pricing models, all that 

matters is the extent to which each model prices the factors in the other model.  Hou, Xue and 

Zhang (2015b) and Fama and French (2015a) regress HML on models that exclude value and 

cannot reject the hypothesis that HML’s alpha is zero, thus concluding that HML is redundant.  

In addition, HXZ show that their model renders the momentum factor, UMD, redundant.  On the 

other hand, our results above show that the model {Mkt, SMB ROE IA UMD HMLm}, which 

receives highest posterior probability, contains both a value (HMLm) and a momentum factor 

(UMD).   

To shed further light on this finding, Table 5 shows the annualized intercept estimates for 

each factor in the top model when it is regressed on the other five factors.  We observe that the 

intercepts for HMLm and UMD are large and statistically significant, rejecting the hypothesis of 

redundancy.  HMLm has an alpha of 6.1% (t-stat 5.26) and UMD has an alpha of 6.6% (t-stat 

3.96).  When we regress the standard value factor, HML, on the non-value factors {Mkt, SMB 

ROE IA UMD} in our top model we find, as in the earlier studies, that it is redundant.  The 

intercept is 0.99% with a t-stat of 0.81.  The different results for the two value factors are largely 

driven by the fact that HMLm is strongly negatively correlated (-0.65) with UMD, whereas the 
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correlation is only -0.15 for HML24.  The negative loading for HMLm when UMD is included 

lowers the model expected return and raises the HMLm alpha, so that this timely value factor is 

not redundant. 

We now evaluate the hypothesis that HMLm is redundant from a Bayesian perspective.  

Figure 4 shows results for the Bayesian intercept test on the other factors.  As discussed earlier, 

the prior under the alternative follows a normal distribution with zero mean and standard 

deviation σα.  The larger the value of σα, the higher the increase in the Sharpe ratio that one can 

expect to achieve by adding a position in HMLm to investment in the other factors.  The 

horizontal axis in each panel of the figure shows the prior multiple.  This is the Sharpe ratio for 

the alternative, expressed as a multiple of the Sharpe ratio for the factors in the null model that 

excludes HMLm.   

The left panel of the figure gives the posterior probability for the null model.  It quickly 

decreases to zero as the prior Sharpe multiple under the alternative increases, strongly rejecting 

the conclusion that HMLm is redundant.  Although the inference is not sensitive to the prior here, 

in other cases it may well be.  The right panel of Figure 4 provides information about the implied 

value of σα.  This gives an idea of the likely magnitude of α’s envisioned under the alternative 

and should be helpful in identifying the range of prior multiples that one finds reasonable.25  For 

example, to get an increase in the Sharpe ratio of 25% from the already-high level of 0.44 for the 

null model, we would need a very large σα of about 7.5% per year.      

 

[Figure 4] 

  

The Bayesian analysis for UMD (not shown) looks much the same as Figure 4, strongly 

rejecting redundancy.  To highlight the role of HMLm in this finding, we exclude that factor and 

                                                       
24 Asness and Frazzini (2013) argue that the use of less timely price information in HML “reduces the natural 
negative correlation of value and momentum.” 
25 In general, the plot of σα is based on the average residual variance estimate for the left-hand-side assets. 
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show that the evidence then favors the conclusion that UMD is redundant with respect to the 

remaining factors {Mkt SMB IA ROE}.  This essentially confirms the earlier finding of Hou, 

Xue and Zhang (2015b), but with SMB as the size factor, rather than ME.  In Figure 5, we see 

that the posterior probability for the null hypothesis of redundancy (UMD alpha is zero) is 

always above 50%, with values over 80% for Sharpe ratio multiples around 1.15.  The 

conventional p-value also exceeds 50% here, as indicated by the horizontal line in the figure.      

 

[Figure 5] 

 

5.2. Absolute Test Results 

In this section we apply Proposition 1 with a set of test assets - what we call an absolute 

test. We will see that failing to account for the excluded factors when conducting the absolute 

test can lead to the conclusion that an inferior model performs better than one that is actually 

superior.  However, once we incorporate the excluded factors, comparing the absolute results for 

the two models is in line with our earlier results on model comparison.   

We saw above that over the sample period 1972-2013, the model with the highest 

posterior probability is the six-factor model {Mkt IA ROE SMB HMLm UMD}.  Now we 

evaluate this model, as well as the four-factor model of HXZ, from the absolute perspective.  

Although a wide variety of test-asset portfolios has been examined, we present results for two 

representative sets that serve to illustrate some interesting findings.  The first set of portfolios is 

based on independent stock sorts by size and momentum, whereas the second set is constructed 

by sorting stocks on book-to-market and investment.  Strictly speaking, the two models 

considered in this section are not nested because the HXZ model uses ME, whereas our top 

model uses SMB.  However, the results are similar whether one uses ME or SMB.   

To test the HXZ model, we initially follow common practice and only employ the test-

asset portfolios.  Then we add in the excluded factors UMD and HMLm as left-hand-side assets.  
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Using the 25-size/momentum portfolios from January 1972 to December 2013, the GRS statistic 

for the HXZ model is 2.72 with p-value approximately zero, rejecting the model.  A descriptive 

statistic that has also been used to judge model performance is the average of the absolute values 

of the test-asset alphas, e.g., Fama and French (2015a).  The HXZ model produces an average 

absolute alpha of 1.42% per annum.  When we add the excluded factors UMD and HMLm as left-

hand-side assets, the GRS statistic is 10.5 with p-value virtually zero, but the average absolute 

alpha increases only slightly to 1.45%.   

The Bayesian F-test results for the HXZ model with the size/momentum portfolios are 

given in Figure 6.  Similar to the redundancy tests, the horizontal axis in the figure shows the 

multiple of the Sharpe ratio for the factors in the given null model.  This is the multiple under the 

alternative that the left-hand-side assets are not priced by the model.  The blue line in each panel 

shows the results without the excluded factors UMD and HMLm, whereas the red dashed line 

adds those factors as left-hand-side returns.  We see in the left panel that the probability for the 

HXZ model is close to zero for Sharpe multiples in the range of 1.1 to 1.6 (blue), but when UMD 

and HMLm are added, there is even stronger evidence against the model, with the probability 

close to zero for a much wider range of priors (red).  

 
[Figure 6] 

 
Next, we examine the absolute performance of the six-factor model with the same 25 

size/momentum portfolios. The GRS statistic is 3.5 and the corresponding p-value is nearly zero, 

strongly rejecting the model in a classical sense.  The Bayesian F-test also provides strong 

evidence (not shown) against the null hypothesis.  The probability of the null curve looks very 

similar to the red line in Figure 6, quickly declining to an extended zero-probability range.  

Interestingly, in this case the average absolute alpha is 1.93% per annum, which is much higher 

than the 1.42%/1.45% under the HXZ model (with/without UMD and HMLm).  Yet, in our 

model comparison analysis, the six-factor model was strongly preferred to the HXZ model.  This 

is an example of the sort of conflict discussed in Barillas and Shanken (2015), who argue that 
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model comparison must be based on excluded-factor restrictions, whereas test-asset metrics can 

be misleading.   Indeed, we have verified that the ratio of the absolute-test probability for the 

HXZ model (incorporating UMD and HMLm) to that for the six-factor model is very small, 

except for Sharpe multiples close to one.   

Now we turn to the results for the 25 portfolios formed on sorts by book-to-market and 

investment.  For the HXZ model, the GRS statistic for the test-asset restrictions is 1.53 with a p-

value of 0.05. The average absolute alpha is 1.44% per annum.  Adding the excluded factors 

UMD and HMLm increases the GRS statistic to 1.94. The p-value is now much smaller, 0.004, 

but the average absolute alphas are only slightly higher at 1.47%.  The Bayesian results are 

plotted in Figure 7.  The probability based solely on test assets (blue line) is substantial and never 

below 20%.  As indicated in the figure, the probability exceeds one-half for Sharpe ratios a bit 

greater than 1.2 (σα around 1.8%) and beyond.  With HMLm and UMD considered (red line), 

however, the probability for the null is close to zero for all but the tightest priors.  Thus, 

challenging the HXZ model to price excluded factors reduces the probability of the null 

substantially for a wide range of priors. 

[Figure 7] 
 

 Next, we use the same 25 book-to-market and investment portfolios to evaluate the six-

factor model.  The GRS statistic is 2.89 with p-value nearly zero.  More interestingly, the 

average absolute alpha is 2.88% in this case, which is double the value under the HXZ model.  

As with the size/momentum test portfolios, focusing on this test-asset metric would incorrectly 

give the impression that the six-factor model is inferior to the HXZ model.  Figure 8 plots the 

Bayesian F-test results.  The probability for the six-factor model here is greater than that in 

Figure 7 for the HXZ model when the excluded factors are incorporated (red line), but lower 

otherwise (blue line).  Again, this shows that the absolute test results are in line with the model 

comparison analysis, both favoring the six-factor model, provided that the HXZ model is asked 

to price the value and momentum factors as well as the test assets.    
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[Figure 8] 

We conclude this section with some additional observations about the Bayesian analysis.  

First, the probability for the models in Figures 7 and 8 rebounds from zero in each case and 

becomes substantial, approaching one (apparent for the blue line in Figure 7) as the Sharpe 

multiple and prior standard deviation for alpha get large.  This is an example of Bartlett’s 

paradox, mentioned earlier.  Roughly speaking, although the alpha estimates may deviate 

substantially from the null value of zero, they may be even further from the values of alpha 

envisioned under the alternative when the Sharpe multiple is very large.  As a result, the 

posterior probability favors the restricted model in such a case.  Thus, in evaluating pricing 

hypotheses of this sort, it is essential to form a “reasonable” a priori judgment about the 

magnitude of plausible alphas (reflected in the choice of the parameter k).   

The differing classical and Bayesian views about model validity that emerge in Figure 7 

also deserve further comment.  The p-value of 5% in the evaluation based solely on test assets 

would typically be interpreted as evidence against the null.  However, the posterior probability 

(blue line) for the null is substantially higher than 5% for all priors, exceeding 50% for some 

more behavioral priors.  This finding is consistent with Lindley’s paradox: in sufficiently large 

samples, the posterior probability corresponding to a fixed p-value will be close to one, even if 

the p-value is small.26  This divergence reflects a fundamental difference between posterior 

probabilities and p-values.  Whereas the former reflects likelihoods under both the null and 

alternatives, the latter is a tail probability under the null that makes no reference to the 

distribution under the alternative.  Nonetheless, p-values are often treated in practice as if they 

are posterior probabilities.   The findings in Figure 7 serve as a reminder that this can lead to less 

than sensible conclusions and highlights what some perceive as an advantage of the Bayesian 

                                                       
26 Intuitively, an alpha estimate with a t-statistic of two, say, will be close to zero when the sample is very large.  
The likelihood for α = 0 will be quite high in this case, whereas the likelihood for alternative values that have 
substantial prior probability but are further from zero, will be much lower.  As a result, the Bayes factor (ratio of 
marginal likelihoods) will strongly favor the null.   
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approach.27 

Results for an Approximate Model 

We have seen that for priors with moderate to fairly large Sharpe multiples, the evidence 

in Figure 8 favors an alternative statistical model over the restricted pricing model {Mkt SMB IA 

ROE UMD HMLm}, the “winner” in our model comparison contest.  But perhaps the pricing 

model, nonetheless, provides a good approximation to the data.  After all, one might argue that 

models, by their nature, always leave out some features of reality and so cannot plausibly be 

expected to hold exactly.28  We address these issues in the Bayesian framework by modifying the 

null prior for a model to accommodate relatively small average deviations from the exact 

specification.  The modified BF formula was given earlier in Proposition 1. 

 The black dotted line in Figure 9 (test assets 25 size/momentum portfolios) indicates 

extremely strong evidence against the exact null, 0 , as discussed earlier.  The blue line in 

the figure shows the results of an analysis in which the prior under the null now assumes that σα0 

= 1% (annualized).  This allows for deviations from the exact version of {Mkt SMB ROE IA 

UMD HMLm} that have expected value of about 0.8% in magnitude.  Such deviations give rise 

to a higher Sharpe ratio under the approximate null hypothesis, about 10% larger than that for the 

exact null.  Thus, whereas the starting point previously was at a Sharpe ratio multiple of 1.0, the 

blue line now starts at a ratio just over 1.1.  Not surprisingly, the posterior probabilities in Figure 

9 for the less restrictive null model are higher than the probabilities obtained earlier for the exact 

model.  There is no longer a “zero probability range” for the approximate null, but the model 

probabilities are still less than 0.5 over what we would consider the more relevant range of prior 

Sharpe multiples. Thus, the less restrictive alternative is still favored.   

                                                       
27 Sample size is automatically incorporated in the BF.  While it is sometimes recognized that the significance level 
in a classical test should be adjusted to reflect sample size, this can be difficult to operationalize and is generally 
ignored. 
28 In the case of exact models, BFs still provide an indication of the “relative success” of the models at predicting the 
data, e.g., Kass and Raftery (1995), or the “comparative support” the data provide for the models, e.g., Berger and 
Pericchi (1996).   
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 To further explore the fit of the six-factor model, we increase σα0 to 1.5% (expected alpha 

about 1.2%), which corresponds to a Sharpe multiple just over 1.2.  The probability for this level 

of approximation, shown by the black dashed curve, is now greater than 0.5 over most of the 

prior range.  This sort of sensitivity analysis provides a computationally simple and conceptually 

appealing Bayesian complement to the descriptive statistics employed by Fama and French 

(2015a) to evaluate “goodness of fit” for a misspecified model.  An advantage of this extension 

of the Bayesian framework over the conventional F test is that it allows more subtle and 

informative inferences to be obtained in situations where the sample size is large and models are 

routinely rejected at conventional levels as above or, e.g., in Fama and French (2015b). 

6. Conclusion 

We have derived a Bayesian asset-pricing test that requires a prior judgment about the 

magnitude of plausible model deviations or "alphas" and is easily calculated from the GRS                

F-statistic.  Given a set of candidate traded factors, we develop a related test that permits an 

analysis of Bayesian model comparison, i.e., the computation of model probabilities for the 

collection of all possible pricing models that are based on subsets of the given factors.   

 Although our work is in the tradition of the literature on asset-pricing tests, Bayesian 

analysis has also been used to address other kinds of questions in finance.  For example, Pastor 

and Stambaugh (2000) are interested in comparing models too, but from a different perspective.  

As they note, the objective of their study “is not to choose one pricing model over another.”  

Rather, they examine the extent to which investors’ prior beliefs about alternative pricing models 

(one based on stock characteristics and another on a stock’s factor betas) impact the utility 

derived from the implied portfolio choices.  Such utility-based metrics are undoubtedly 

important, but complementary to our focus on inference about models in this paper.  

While we have analyzed the “classic” statistical specification with returns that are 

independent and identically normally distributed over time (conditional on the market), 

extensions to accommodate time-variation in parameters and conditional heteroskedasticity of 

returns would be desirable.  The factors examined in Assness and Frazzini (2013), Hou, Xue and 
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Zhang (2015a,b) and Fama and French (2015a,b) have been studied in our preliminary empirical 

exploration, but other factors related to short and long reversals, the levels of beta and 

idiosyncratic volatility, and various measures of liquidity could be considered in future work as 

well.   
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Figure 1:  Models based on the FF3 factors, sample 1927-2013, prior Shmax = 1.27 x Sh(Mkt).   
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Figure 2: Models based on 10 prominent factors, sample 1972-2013, prior Shmax = 1.5 x Sh(Mkt).   
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Figure 3: Categorical models based on 10 factors (including 2 versions of size, value, investment 
and profitability factors), sample 1972-2013, prior Shmax = 1.5 x Sh(Mkt).   
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Figure 4: HMLm is not redundant in relation to the other factors {Mkt SMB ROE IA UMD} in 
the top model.  Bayesian intercept test for HMLm.  Sample 1972-2013.  Horizontal axis: prior 
Sharpe ratio for the alternative as a multiple of the ratio under the null hypothesis (latter is 0.44 
or 3.9 times the Market Sharpe ratio). 

 

 

 

Figure 5: Bayesian intercept test for UMD on the model {Mkt SMB ROE IA}.  Sample 1972-
2013.  Horizontal axis: prior Sharpe ratio for the alternative as a multiple of the ratio under the 
null hypothesis (latter is 0.44 or 3.9 times the Market Sharpe ratio). 
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Figure 6: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 size-momentum 
portfolios (blue line) plus UMD, HMLm (red line).  Sample 1972-2013.  Horizontal axis: prior 
Sharpe ratio for the alternative as a multiple of the ratio under the null hypothesis (latter is 0.43 
or 3.8 times the Market Sharpe ratio). 

 

 

 

Figure 7: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 Book-to-
market/investment portfolios (blue line) plus UMD, HMLm (red line).  Horizontal line shows the 
conventional p-value.  Horizontal axis: prior Sharpe ratio for the alternative as a multiple of the 
ratio under the null hypothesis (latter is 0.43 or 3.8 times the Market Sharpe ratio). 
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Figure 8: Sample 1972-2013, Model = {Mkt SMB IA ROE UMD HMLm}.  Test assets: 25 
Book-to-market/investment portfolios.  Horizontal axis: prior Sharpe ratio for the alternative as a 
multiple of the ratio under the null hypothesis (latter is 0.50 or 4.8 times the Market Sharpe 
ratio). 

 

 

   

Figure 9: Sample 1972-2013, Model = {Mkt SMB IA ROE UMD HMLm}, Test assets = 25          
size-momentum portfolios.  Exact model (black dotted). σα0

 = 1% (blue line) or σα0
 =1.5% (black 

dashed) under the approximate null hypothesis.  Horizontal axis: prior Sharpe ratio for the 
alternative as a multiple of the ratio under the exact null hypothesis (latter is 0.51 or 4.5 times the 
Market Sharpe ratio). 
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Table 1 

Fama-French factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

 

Data Sample: Jan 1927 to Dec 2013   
Market Sharpe Ratio = 0.115 
3-factor Sharpe Ratio  = 0.142 or 1.23*Market Sharpe Ratio 

 

 

 

 

        *Multiple of Mkt Sharpe ratio under 3-factor alternative. 

 

 

 

Table 2 

  10 factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   
Market Sharpe Ratio = 0.113 
6-factor (best model) Sharpe Ratio = 0.51 or 4.5*Market Sharpe Ratio  

 

     Model/Prior Multiple* 1.25 1.5 2 3 
Mkt SMB ROE IA HMLm UMD 21.9 35.1 42.6 45.3 
Mkt SMB ROE CMA HMLm UMD 12.6 20.1 24.2 25.7 
Mkt ME ROE IA HMLm UMD 9.1 11.4 10.6 9.2 
Mkt ROE IA HMLm UMD 14.6 10.9 6.6 5.0 
Mkt ROE CMA HMLm UMD 9.0 7.2 4.7 3.7 
Mkt ME ROE CMA HMLm UMD 0.2 6.6 6.1 5.3 
Mkt SMB ROE IA HMLm 3.8 1.6 0.6 2.8 

 

*Multiple of Mkt Sharpe ratio under 6-factor alternative. 

Model/Prior Multiple* 1.13 1.27 1.58 2.24 
Mkt HML 44.9 51.3 58.6 65.3 
Mkt HML SMB 42.2 39.1 32.1 23.1 
Mkt 6.6 5.2 5.7 8.1 
Mkt SMB 6.3 4.5 3.6 3.4 
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Table 3: Categorical Models - Posterior Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   
Market Sharpe Ratio = 0.113 
6-factor (best model) Sharpe Ratio = 0.51 or 4.5*Market Sharpe Ratio 

 

 

    Table 4: Relative Probabilities for each Categorical Factor in the 10-factor Analysis 

Factor/Prior Multiple* 1.25 1.5 2 3 

ROE 96.0 99.5 99.9 100 
IA 63.6 63.1 63.1 63.2 

SMB 70.1 75.4 80.0 83.0 
 HMLm 93.9 99.5 99.9 100 

       *Multiple of Mkt Sharpe ratio under 6-factor alternative. 

The remaining PROF, INV, SIZE and VAL probability goes to RMW, CMA, ME and HML, 
respectively. 

     Model/Prior Multiple* 1.25 1.5 2 3 

Mkt SIZE PROF INV VAL MOM 50.8 73.4 83.6 85.6 
Mkt PROF INV VAL MOM 25.2 18.3 11.3 8.8 
Mkt SIZE PROF INV VAL 11.6 3.6 1.1 5.0 
Mkt SIZE PROF VAL MOM 2.0 2.9 3.5 4.6 
Mkt PROF VAL MOM 1.0 0.7 0.5 0.5 
Mkt SIZE PROF INV 3.4 0.5 0.1 0.0 
Mkt PROF INV VAL 3.3 0.3 0.2 0.0 
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Table 5 

Intercepts for each Factor in the Highest-Probability Model on the other Five-factors 

This table presents annualized alphas from regressions of each factor on the other factors in the 
model {Mkt SMB ROE IA UMD HMLm}.  Sample period Jan 1972 to Dec 2013. 

 

Factor SMB ROE IA UMD HMLm 

Alpha 
(t-statistic) 

5.09 
(3.14) 

6.97 
(6.08) 

1.20 
(1.50) 

6.60 
(3.96) 

6.07 
(5.26) 

 


