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Abstract 

A Bayesian asset-pricing test is developed that is easily computed in closed-form from the 

standard F-statistic.  Given a set of candidate traded factors, we show how this test can be adapted to 

permit an analysis of Bayesian model comparison, i.e., the computation of model probabilities for the 

collection of all possible pricing models that are based on subsets of the given factors.  We find that 

the recent models of Hou, Xue and Zhang (2015a,b) and Fama and French (2015a,b) are both 

dominated by five and six-factor models that include a momentum factor along with value and 

profitability factors that are updated monthly.  Thus, although the standard value factor is redundant, 

a version that incorporates more timely price information is not.  
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Beginning with the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), the 

asset pricing literature in finance has attempted to understand the determination of risk premia on 

financial securities.  The central theme of this literature is that the risk premium should depend on a 

security’s market beta or other measure(s) of systematic risk.  In a classic test of the CAPM, Black, 

Jensen and Scholes (1972), building on the earlier insight of Jensen (1968), examine the intercepts in 

time-series regressions of excess test-portfolio returns on market excess returns.  Given the CAPM 

implication that the market portfolio is efficient, these intercepts or “alphas” should be zero.  A joint 

F-test of this hypothesis is later developed by Gibbons, Ross and Shanken (1989), who also explore 

the relation of the test statistic to standard portfolio geometry.
2
  In contrast, recalling the adage, “it 

takes a model to beat a model,” our main goal in this paper is to develop a statistical procedure for 

determining which of several models is the best.   

Like other asset pricing analyses based on alphas, we require that the benchmark factors in an 

asset pricing model are traded portfolio excess returns or return spreads.  For example, in addition to 

the market excess return, Mkt, the influential three-factor model of Fama and French (1993), 

hereafter, FF3, includes a book-to-market or “value” factor HML (high-low), which is the difference 

between the returns on a portfolio of stocks with high book-to-market ratios and a portfolio with low 

ratios.  This model also includes a size factor, SMB (small-big), based on stock-market 

capitalizations.  Over the years, other traded factors have been considered as well.  Although 

consumption growth and intertemporal hedge factors are not traded, one can always substitute 

mimicking (maximally correlated) portfolios for the non-traded factors.
3
  While this introduces 

additional estimation issues, simple spread-portfolio factors are often viewed as proxies for the 

relevant mimicking portfolios, e.g., Fama and French (1996).   

Barillas and Shanken (2015) show that model comparison with traded factors only requires an 

examination of each model’s ability to price the factors in the other model(s).  It was not clear to us 

how to combine statistics from various factor regressions in a classical framework, but this turned out 

to be feasible using a Bayesian approach.  We start by analyzing the joint alpha restriction in a factor 

model for a set of test assets.  Interestingly, we show that the Bayesian summary of the evidence for 

this hypothesis, the Bayes factor, is a function of the GRS F-statistic.  For the purpose of comparing 

models, we specialize this result to the case of a single left-hand-side asset – a factor.  The heart of 

                                                       
 

2 See related work by Jobson and Korkie (1982) 
3 See Merton (1973) and Breeden (1979), especially footnote 8. 
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our approach is then the method that we use to aggregate Bayes factors for the different factor 

regressions.   

The joint alpha restriction has been analyzed previously in the Bayesian setting by Shanken 

(1987b), Harvey and Zhou (1990) and McCulloch and Rossi (1991).  The test that we develop here 

builds on one of the prior specifications considered by Harvey and Zhou.  This approach is appealing 

in that standard “diffuse” priors are used for the betas and residual covariance parameters.  Thus, the 

data dominate estimation of these parameters and the researcher is freed from the obligation to think 

about “reasonable” values.  However, an informative prior must be specified for the alphas, which 

represent deviations from the pricing model restrictions - the main focus of the analysis.  In this 

context, Harvey and Zhou observe that the Bayes factor is “extremely complicated to evaluate” and 

so numerical methods are utilized.  However, the function of the conventional   F-statistic mentioned 

above is easy to calculate and so computational issues need not be an impediment to applications.  

Henceforth, we refer to this procedure as the Bayesian GRS test or simply B-GRS.   

Asset-pricing model comparison is an area of testing that has received very little attention.  In 

fact, we know of no alpha-based statistical analysis of this problem in the finance literature.
4
  We 

start by considering the nested case in which the factors in one model are a subset of those in a larger 

model.  For example, suppose we wish to test CAPM versus FF3.  At first glance, this would appear 

to require a comparison of the one-factor alphas of the test assets with their three-factor counterparts.  

Barillas and Shanken (2015) show, however, that if the one-factor alphas of the factors, HML and 

SMB, are both zero then the usual CAPM zero-alpha restriction for the test assets is equivalent to the 

FF3 zero-alpha restriction.  Viewed in this way, the CAPM is seen to be a restricted version of the 

FF3 model.   

Since both CAPM and FF3 require that the three-factor alphas of the test assets equal zero, 

examining those alphas cannot help in distinguishing between the models, though they are, of course, 

relevant to evaluating how good the models are.  The bottom line is that for the purpose of model 

comparison, a test of CAPM versus the less restrictive FF3 model only requires an evaluation of the 

hypothesis that the alphas of HML and SMB on Mkt are both zero.  If they are, CAPM is favored, 

otherwise FF3 is judged superior.  In other words, we need only test whether the pricing of the 

                                                       
 

4 A recent paper by Kan, Robotti and Shanken (2013) provides asymptotic results for comparing model R2s in a 

cross-sectional regression framework that does not impose traded-factor constraints and allows the zero-beta rate to differ 

from the riskfree rate.  See Malatesta and Thompson (1993) for an application of Bayesian methods in comparing 

multiple hypotheses in a corporate finance event study context. 
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factors is consistent with CAPM.  Similarly, in testing non-nested models, only the pricing of factors 

excluded from each model is relevant for model comparison.   

As an illustration of our econometric approach, consider models based on the FF3 factors and 

assume the market is included in the models.  Comparing the two-factor model {Mkt HML} to FF3, 

for example, amounts to testing whether the intercept in the regression of SMB on Mkt and HML is 

zero.  Calculating the associated Bayes factor is easy enough, in that it is a special case of the B-GRS 

formula.  We will also need to compare CAPM to {Mkt HML}, which involves the HML intercept 

on Mkt.  The comparison of CAPM and FF3 then follows by standard formulas.  For the other 

nested-model comparisons, we follow the same procedure with SMB in place of HML.  In general, 

we end up considering regressions corresponding to all orderings of the non-market factors (two 

orderings here, depending on whether HML comes before or after SMB).  But what about comparing 

the two-factor models {Mkt HML} and {Mkt SMB} to each other?  The key to aggregating all of the 

nested-model evidence in a comparison of such non-nested models is simply to assign equal prior 

weights to the various orderings of the non-market factors.  This amounts to allocating prior 

probabilities not only to individual models, but also to groups of models, in a way that permits us to 

calculate posterior probabilities for all of the models (nested or non-nested).   

It is sometimes observed that all models are necessarily simplifications of reality and hence 

must be false in a literal sense.  This provides some motivation for considering whether the models 

hold approximately, rather than as sharp null hypotheses.  Additional motivation comes from 

recognizing that the factors used in asset-pricing tests are generally proxies for the relevant 

theoretical factors.
5
  With these considerations in mind, we extend our results to obtain simple 

formulas for testing whether asset-pricing models hold approximately.  Implementation of this 

approach allows us to go beyond the simple test of an exact model and to obtain insight into a 

model’s goodness of fit.   

In our main empirical application, we compare models that combine many prominent factors 

from the literature.  In addition to the FF3 factors, we consider the momentum factor, UMD (up 

minus down), introduced by Carhart (1997) and motivated by the work of Jegadeesh and Titman 

(1993).  We also include the new factors in the recently proposed five-factor model of Fama and 

French (2015a), hereafter FF5.  The additional factors are RMW (robust minus weak) based on the 

                                                       
 

5  Kandel and Stambaugh (1987) and Shanken (1987a) analyze pricing restrictions based on proxies for the 

market portfolio or other equilibrium benchmark. 
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profitability of firms, and CMA (conservative minus aggressive) related to firms’ new net 

investments.  Hou, Xue and Zhang (2015a, 2015b), henceforth HXZ, have also proposed their own 

versions of size (ME), investment (IA) and profitability (ROE) factors.  In particular, ROE 

incorporates the most recent earnings information from quarterly data.  Finally, we consider the value 

factor HML
m 

from Asness and Frazzini (2013), which is based on book-to-market rankings that use 

the most recent monthly stock price in the denominator.  This is in contrast to Fama and French 

(1993), who use annually updated lagged prices in constructing HML.  In total, we have ten factors in 

our analysis.  

Rather than mechanically apply our methodology with all nine of the non-market factors 

treated symmetrically, we structure the prior so as to recognize that several of the factors are just 

different versions of the same underlying construct.  Therefore, we only consider models that contain 

one version of the factors in each category: size (SMB or ME), profitability (RMW or ROE), value 

(HML or HML
m

) and investment (CMA or IA).  Using data from 1972 to 2013 we find that the 

individual model with highest posterior probability is {Mkt IA ROE SMB HML
m

 UMD} with six 

factors.  Thus, in contrast to previous findings by HXZ and FF5, value is no longer a redundant factor 

when the more timely version HML
m 

is considered; and whereas HXZ also found momentum 

redundant, this is no longer true with inclusion of HML
m

. 

The other top models are closely related to our best model, replacing SMB with ME, IA with 

CMA, or excluding size factors entirely.  We also conduct direct tests that compare the best six-factor 

model either to the HXZ four-factor model or FF5. There is overwhelming support for the six-factor 

model (or the five-factor model that excludes SMB) in these tests.  These and our other model-

comparison results are qualitatively similar for different prior specifications, ranging from priors 

motivated by a market-efficiency perspective to others that allow for large departures from market 

efficiency.  

The model comparison results assess the relative performance of competing models.  We also 

look at absolute performance for the top-ranked model and for the HXZ model.  These tests examine 

the extent to which the models do a good job of pricing a set of test assets, with and without any 

excluded factors.  Although various test assets were examined, results are presented for two sets: 25 

portfolios based on independent rankings for either size and momentum or for book-to-market and 

investments.  For the most part, this evidence casts strong doubt on the validity of both models. The 

“rejection” of the six-factor model is less overwhelming, however, when an approximate version is 

considered that allows for relatively small departures (average absolute value 0.8% per annum) from 
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exact pricing.  With an average absolute alpha of 1.2%, the approximate model is favored for a range 

of reasonable priors.     

The rest of the paper is organized as follows.  Section 1 considers the classic case of testing a 

pricing model against a general alternative.  Section 2 then considers the comparison of nested 

pricing mod els.  Bayesian model comparison is analyzed in Section 3 and Section 4 provides 

empirical results for various pricing models.  Section 5 concludes.  Several proofs of key results are 

provided in an appendix. 

1.  Testing a Pricing Model Against a General Alternative  

Traditional tests of factor-pricing models compare a single restricted null asset-pricing model to an 

unrestricted alternative return-generating process that nests the null model.  In the classic case 

considered by GRS, the model’s factors are traded zero-investment portfolios and the pricing 

restrictions constrain the factor model alphas to equal zero.  Bayesian tests of these restrictions have 

been developed by Shanken (1987), Harvey and Zhou (1990) and McCulloch and Rossi (1991).   

Statistical Assumptions and Portfolio Algebra 

In this section, we focus on a factor model for test asset returns in which the residual returns have a 

multivariate normal distribution and standard Jeffreys priors are assumed for the factor model betas 

and the residual covariance matrix.  The key alpha parameters have a multivariate normal conditional 

prior with mean zero and covariance matrix proportional to the residual covariance matrix.  This 

specification was considered earlier by Harvey and Zhou (1990).  Here, we derive a formula for the 

Bayes factor as a function of the standard Wald test statistic (equivalently, the GRS F-statistic) for 

testing the restricted model in a classical framework.  This allows us to avoid the computational 

difficulties that were emphasized by Harvey and Zhou. 

First, we lay out the factor model notation and assumptions. The factor model is a multivariate 

linear regression with N asset excess returns, 
t
r , and K factors, for each of T months: 

t t t tr f ~ N(0, ),        

where tr , t  and   are Nx1,   is NxK and tf  is Kx1.  The normal distribution of the t  is assumed 

to hold conditional on the factors and the t  are independent over time.  In matrix form, 

     R XB E          

where                                                                              (1.1)     
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
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

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  

  

     
                     
     
     

  
and E =  

Here, R  is TxN, X  is Tx(K+1), B  is (K+1)xN and E  is TxN.  The TxK matrix of factor data is 

denoted by F, with Fj referring to the time series for the jth factor.  

We assume that the factors are zero-investment returns like the excess return on the market or 

the spread between two portfolios, like the Fama-French value-growth factor.  Under the null 

hypothesis, 0H : 0  , we have the usual simple linear relation between expected returns and betas: 

    
t tE(r ) E(f ) ,                          (1.2) 

where tE(f )  is the Kx1 vector of factor premia.   

The GRS test of this null hypothesis is based on the F-statistic with degrees of freedom N and 

T-N-K, which equals (T-N-K)/N times the Wald statistic: 

  
 2 21

2 2

ˆ sh(F, R) sh(F)ˆ ˆ'
W T T

1 sh(F) 1 sh(F)

  
 

 
.                           (1.3) 

Here, 
12

F
ˆsh(F) F F



   is the maximum squared sample Sharpe ratio over portfolios of the factors, 

while 
2sh(F,R)  is the corresponding measure based on both factor and asset returns.  One can also 

show that W is T/(T-K-1) times the maximum squared t-statistic for the regression intercept, taken 

over all possible portfolios of the test assets.  Note that ̂  and 
ˆ

F
  are MLE’s for the covariance 

matrices   and 
f

 .  The population Sharpe ratios, 
2Sh(f )  and 

2Sh(f , r) , are based on the true 

means and covariance matrices.  

Under the alternative hypothesis, 1H : 0  , the F-statistic has a noncentral F distribution 

with noncentrality parameter   such that   

  2 1 2 2 2 21 sh(F) / T ' Sh(f , r) Sh(f ) Sh(f ) ( 1)                       (1.4) 

where the relative efficiency measure Sh(f ) / Sh( r f , )   is the correlation between the respective 

tangency portfolios and indicates the fraction of the maximum Sharpe ratio obtainable with the 

factors. The first two equalities are established in Gibbons, Ross and Shanken (1989), while the last is 
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derived in Shanken (1987b) and Kandel and Stambaugh (1987).  Under the null hypothesis,   0  and 

Sh(f ) / Sh( r f , )   = 1, so the tangency portfolio corresponding to the factor and asset returns 

 ( f , r) equals that based on the factors alone,  ( f ) .  Thus, the expected return relation in (1.2) is 

equivalent to this equality of tangency portfolios and their associated squared Sharpe ratios.  The 

larger are the alphas, the lower is the relative efficiency   of the factors. 

A Bayesian GRS Test 

Shanken (1987b) develops a Bayesian approach to testing portfolio efficiency based on (1.4), 

utilizing the likelihood function for the single parameter   (equivalently,    with ( )Sh f  treated as 

known).  Here we start with a more conventional Bayesian analysis of the multivariate linear 

regression system.  Since our primary focus is on the economically-important alpha restriction, we 

posit a standard diffuse prior for   and   as in Jeffreys (1961): 

(N 1)/2
P( , )                      (1.5) 

Asset-pricing theory provides some motivation for linking beliefs about the magnitude of 

alpha to residual variance.  For example, Dybvig (1983) and Grinblatt and Titman (1983) derive 

bounds on an individual asset’s deviation from a multifactor pricing model that are proportional to 

the asset’s residual variance.  Pastor and Stambaugh (2000) also adopt a prior for  with covariance 

matrix proportional to the residual covariance matrix.  Building on ideas in McKinlay (1995), they 

stress the desirability of a positive association between  and  in the prior in that this makes 

extreme increases in less likely, as implied by (1.4).
6
  The prior for  is 

concentrated at 0 under the null hypothesis.  Under the alternative, we assume a multivariate normal 

informative prior for  conditional on   and  : 

   P( | , ) MVN(0, k )     ,                           (1.6) 

where the parameter k > 0 reflects our belief about the potential magnitude of deviations from the 

expected return relation.   

For an individual asset, (1.6) implies that k is the prior expectation of the squared alpha 

divided by residual variance, or the square of the asset’s information ratio.  By (1.4), this is the 

                                                       
 

6 Also see related work by Pastor and Stambaugh (1999) and Pastor (2000). 



 
2 2( , ) ( )Sh f r Sh f 


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expected increment to the maximum squared Sharpe ratio from adding the asset to the given factors.  

In general, with a vector of N returns, the quadratic form 1(k )    is distributed as chi-square with 

N degrees of freedom, so the prior expected value of    1
 is k times N.  Therefore, given a target 

value 
maxSh  for the square root of the expected maximum, the required k is 

 2 2

max
k Sh Sh(f) / N                                                           (1.7) 

Alternatively, we can just think about the expected return relation and our assessment of plausible 

deviations from that relation.  This is similar to the approach in Pastor (2000).  If our subjective view 

is, say, that alphas should be less than 6% (annualized) with probability 95%, then we would want to 

choose k such that   is about 3% (annualized).  Given a residual standard deviation of 10% per 

annum, for example, the implied k would be 0.03
2

/0.10
2
 = 0.09. 

Formally, the Bayes factor BF is the ratio of the marginal likelihoods: 
0 1ML(H ) / ML(H ),  

where each ML is a weighted-average of the likelihoods for various parameter values.
7
  The 

weighting is done by the prior densities associated with the different hypotheses.  Since the 

parameters are integrated out, the ML can be viewed as a function of the data (factor and test-asset 

returns):  

         ( , ) ( , | , , ) ( | , ) ( , ) d d d            ML P F R P F R P P              (1.8) 

Here, the likelihood function is the joint density ( , | , , )  P F R  viewed as a function of the 

parameters.  The (unrestricted) 
1ML(H )  is computed using the priors given in (1.5) and (1.6); the 

(restricted) 
0ML(H )  also uses (1.5), but substitutes the zero vector for .   

 We can also view the test of 0
H : 0  vs 1

H : 0   in terms of the proportionality constant in 

the prior covariance matrix for  ; a test of the value 0 vs the value k.  More generally, the null 

hypothesis can be modified to accommodate an approximate null that allows for (small) deviations 

from the exact model, as captured by the prior parameter k0 < k.  The usual exact null is obtained 

with k0 = 0.  We can now state our main result. 

                                                       
 

7 Use of improper (diffuse) priors for “nuisance parameters” like β and Σ, that appear in both null and alternative 

models, but proper (informative) priors for parameters like α that are of interest in testing, is in keeping with Jeffreys 

(1961) and others.  See the discussion in Kass and Raftery (1995).  Also see our discussion of Bartlett’s paradox in 

section 4.2. 


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Proposition 1.  Given the factor model in (1.1) and the prior in (1.5)-(1.6), the Bayes factor for 

0
H : 0  vs 1

H : 0   equals  

(T K)/2

R

S1
BF

Q S


 

   
 

                             (1.9) 

where S and SR are the NxN cross-product matrices of the OLS residuals with   unconstrained or 

constrained to equal zero, respectively.  , the density for , is given in the appendix, and  

        

1

(T K)/2 N/2

1
ˆ ˆQ exp ( ) ( ) P( | )P( | F,R) d d

2a

a k
1 (W / T) 1 ,

(a k) a

     

  

        
 

           

 
             (1.10)  

where   2a 1 sh(F) / T  , W is given in  (1.3) and equals the GRS F-statistic times NT/(T-N-K).  

Letting Qk0 be the value of Q obtained with prior value k0, the BF for k0 vs k is  

      
0k ,k k 0BF Q / Q                                       (1.11) 

Proof.  See the Appendix.
8, 9

 

 It is easy to verify that BF is a decreasing function of W; the larger the test statistic, the 

stronger is the evidence against the null that   is (approximately) zero.  When N = 1, W equals     

T/(T-K-1) times the squared t-statistic for the intercept in the factor model.  Other things equal, the 

greater the magnitude and precision of the intercept estimate, the bigger is that statistic, the lower is 

BF and the weaker is the support for the null.  For N > 1, the same conclusion applies to the 

maximum squared t-statistic over all portfolios of the test assets.   

In terms of the representation in (1.9), the BF decreases as the determinant of the matrix of 

restricted OLS sums of squared residuals increases relative to that for unrestricted OLS, suggesting 

that the zero-alpha restriction does not fit the data.  BF also decreases as Q increases, where a large Q 

indicates a relatively small distance between the alpha estimate and the values of alpha anticipated 

under the prior for the unrestricted model.   Q is always less than one since the exponent in (1.10) is 

                                                       
 

8 Harvey and Zhou derive (1.9) and the integral expression for Q.  The function of W in (1.10) is our 

simplification, while (1.11) is both a simplification and generalization of (1.9). 
9 The formula is identical, apart from minor differences in notation, to the Bayes factor that Shanken (1987b) 

derives by conditioning directly on the F-statistic, rather than all the data.  Thus, it turns out that this simplification entails 

no loss of information under the diffuse prior assumptions made here. 

( | , )P F R
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uniformly negative.   As the ratio of determinants is likewise less than 1, a BF favoring the null (BF > 

1) occurs when Q is sufficiently low, i.e., the prior for alpha is “inconsistent” with the estimate. 

2.  Comparing Nested Pricing Models 

In the previous section, we considered a test of a factor-pricing model against a general alternative.  

In this section, we address the testing of one factor-pricing model against another model that includes 

additional factors.  For example, CAPM is nested in FF3 in this sense.  This scenario, though clearly 

one of great interest for asset pricing has not, to our knowledge, been treated formally in the 

traditional time-series alpha-based framework.
10

   

Barillas and Shanken (2015) establish a basic equivalence that greatly simplifies the task of 

comparing nested models. Consider the CAPM as nested in the Fama-French (1993) three-factor 

model (FF3), for example.  In this case, the usual alpha restriction of the single-factor CAPM can be 

reformulated in terms of the one-factor intercept restriction for the excluded-factor returns (HML and 

SMB) and the FF3 intercept restriction for the test-asset returns.  Since the models differ only with 

respect to the excluded-factor restrictions, this yields the surprising conclusion that the test-asset 

returns do not play any role in comparing CAPM and FF3.  

More generally, as in the previous section, let f  denote a K-vector of traded factors (we omit 

the time subscript here) and r an N-vector of test-asset excess returns.  M is the corresponding pricing 

model.  Assume that 
1 2f (f , f ),  where 

1f  consists of the first J factors in f , with J < K.  The pricing 

model with factors 
1f is denoted M1.  In this context, Barillas and Shanken (2015) show that the nested 

model M1 holds for both the test asset returns r and the excluded-factor returns 2f  if and only if those 

excluded-factor returns satisfy M1 and the larger model M holds for the test asset returns.  Although a 

purely statistical proof is given, they note that this has a parallel interpretation in portfolio analysis: if 

the factors 
1f  already span the tangency portfolio for the investment universe that includes both sets 

of factors and the test-asset returns, then adding the 
2f  factors will not improve on this tangency 

portfolio, nor will adding test assets to the factors (and conversely).   

Thus, a model M1 that is nested in a larger model M, in the sense that its factors are all 

included in M, is nested in the statistical sense that M1 may be obtained by imposing restrictions on 

the parameterization of M.  As noted above, it follows that the only condition relevant in 

                                                       
 

10 In a cross-sectional regression framework, Chen, Roll and Ross (1986) nest the CAPM in a multifactor model 

with betas on macro-related factors included as well. 
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distinguishing between M1 and M is the requirement that M1 hold for the excluded-factor returns 
2f .  

The test-asset restriction 0   is common to both models and, therefore, cannot help in deciding 

which model performs better.  Hence, the test asset returns are not relevant in comparing M1 and M 

though they are, of course, important for assessing model validity.  Barillas and Shanken (2015) 

further show that the irrelevance of test assets extends to the comparison of a pair of non-nested 

models, M1a and M1b, since both models can be nested in the model M (their union).  As a result, we 

need only consider the pricing of the factors in each model relative to the factors in the other model 

(the common factors will automatically be priced).  In Section 3, we go further and show how to 

aggregate this regression evidence to obtain posterior probabilities for each model. 

Three asset-pricing tests (classical or Bayesian) naturally present themselves in connection 

with the nested model equivalence.   We can conduct a test of M with factors f  and test-asset returns 

r.  Or, we can test M1 with factors 
1f  and test-asset returns r plus the excluded factors 

2f .  Finally, we 

can test M1 vs M with factors 
1f  and “test-asset returns” 

2f .  The first two absolute tests pit the 

models (M or M1) against unrestricted alternatives for the distribution of the test-asset returns.  The 

third relative test compares M1 to M.  There is an interesting relation between the B-GRS versions of 

these tests.  We denote the Bayes factor for M in the first test as 
abs

MBF , for M1 in the second test as 

1

abs

MBF , and for M1 in the third test as 
relBF .  Given some additional assumptions similar to those made 

earlier, we then have 

Proposition 2.  In addition to the assumptions of Section 1, suppose the regression of 
2f  on 

1f  has 

normally distributed errors independent over time.  The prior for these regression parameters is of the 

form in (1.6), but independent of that prior.  Then the BFs are related as follows: 

1

abs rel abs

M MBF BF BF                               (2.1) 

Proof.  The ML is the expectation under the prior of the likelihood function.  Factor the joint density 

(likelihood function) of factor and test-asset returns into the marginal density for f1, times the 

conditional density for f2 given f1, times the conditional density for R given f.  By the prior 

independence assumptions, the prior expectation of the product is the product of the expectations. 

Under M, the density for f2 is unrestricted while that for R is restricted (zero intercepts).  Under M1, 

both densities are restricted while under the alternative, both are unrestricted.  Equation (2.1) now 
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follows from the fact that 
1

abs

MBF  is the ratio of MLs, with restrictions imposed in the numerator, but 

not in the denominator. □ 

The proposition tells us that the support for the nested model M1 equals that for the larger 

model M times the relative support for M1 in comparison with M.  Equivalently, the relative support 

for M1 vs M can be backed out from the absolute B-GRS tests, as 
1

abs abs

M MBF / BF .  Thus, whether we 

compare the models directly or relate the B-GRS outcomes for each model, the result is the same.  

This reflects the fact that, as shown by Barillas-Shanken (2015), the impact of the original test-asset 

returns r on the absolute tests is the same for each model (equal to 
abs

MBF ) and so cancels out in the 

model comparison (the ratio). 

A Three-Factor Nested-Models Example  

To illustrate these ideas, suppose we want to test whether the FF3 model is superior to the CAPM.  In 

this case,  f Mkt,  HML,  SMB ,  1f MKT  and  2f HML SMB .  The relevant restriction is 

that the CAPM alphas of SMB and HML are both 0.  We evaluate this hypothesis from both the 

classical and Bayesian perspectives, using factor data for the period 1927 to 2013 obtained from Ken 

French’s website.  The GRS statistic is 4.56 with associated p-value 0.01, statistically significant in 

the conventional sense.   

 To implement the Bayesian approach, we need to specify the value of k in the prior.  

Assuming the full model M includes K factors and the nested model M1 consists of the market factor 

only, adaptation of the earlier formula for k in (1.7) gives 

 2 2

max
k Sh Sh(Mkt) / (K 1)   .               (2.2) 

The divisor is K-1 here since K-1 factors are added to the market factor.  In practice, since Sh(Mkt) is 

unknown, in its place we use the posterior expected value based on the Mkt time series.  The time 

series is assumed to be independent and identically normally distributed in this context, with the 

usual diffuse priors on the Mkt mean and variance parameters.  The resulting posterior expectation is 

slightly smaller than the sample estimate.
11

 

                                                       
 

11 The dependence of the prior for alpha on the posterior expected value of Sh(Mkt) may at first seem odd, but it 

makes sense when we recall that the entire analysis, including the prior is conditioned on the Mkt returns. This is possible 
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 In our current example, the question is, how big do we think the Sharpe ratio increase might 

be as a result of adding HML and SMB to the market portfolio?  We allow for a 25% increase in this 

illustration, i.e., max
Sh 1.25 Sh(Mkt)  .  More precisely, the square root of the prior expected squared 

Sharpe ratio is 1.25 time the market’s squared ratio.  With K = 3 and an estimated value of 0.115 for 

Sh(Mkt) , (2.5) gives k = 0.0037.  This value of k translates into prior standard deviations of 2.51% 

and a 2.23% for the HML and SMB CAPM alphas, respectively.  The latter is smaller since the SMB 

residual variance in the Mkt model is lower than that of HML over the full period. 

Given this prior specification, the BF for the null (CAPM) vs the alternative (FF3) is 0.13.   

Thus the data (viewed through the lens of the prior), strongly favor the conclusion that the two alphas 

are not both zero by odds of more than 7 to 1.  Using the fact that the probability for the alternative is 

one minus the probability for the null, it follows that the posterior probability that the null is true is 

BF/(1 + BF) when the prior probabilities for both models are 0.5.  This gives a posterior probability 

of 11.6% for CAPM with the BF of 0.13.  As the p-value calculation does not even consider the 

alternative hypothesis, the 1% p-value cannot meaningfully be compared to this posterior probability.  

Shanken (1987b) discusses this issue in detail.  Later, we provide an example in which the posterior 

probability favors the null, even though the p-value is low by conventional standards. 

3.  Bayesian Model Comparison 

Orderings and Joint Densities 

In the previous section, we saw how to compare two nested factor-pricing models.  Now suppose we 

wish to simultaneously compare a sequence of nested models like {Mkt}, {Mkt HML} and {Mkt 

HML SMB}.  We use braces to denote models, which correspond to subsets of the given factors.  

This particular sequence of nested models is associated with a factor ordering in which Mkt comes 

first, HML next and SMB last.  We use parentheses to refer to an ordering: (Mkt HML SMB).   

As in this example, we will assume from now on that Mkt is the first factor in each ordering, 

which amounts to a prior belief that the market factor is necessarily in the true model.  This is 

motivated by the fact that the market portfolio represents the aggregate supply of securities and, 

therefore, holds a unique place in portfolio analysis and the equilibrium pricing of assets, e.g., the 

Sharpe-Lintner CAPM and the Merton (1973) intertemporal CAPM.
12

  Beyond this economic 

                                                                                                                                                                                       
because Mkt, as the first factor in each ordering, always plays the role of an explanatory variable in the time-series 

regressions. 
12 See Fama (1996) for an analysis of the role of the market portfolio in the ICAPM. 



  15

motivation, the assumption that Mkt is first will simplify the specification of our prior for the alphas, 

which can be conditioned on the observed Mkt returns and the corresponding Mkt Sharpe ratio (see 

below).  In particular, the fact that the average market excess return has historically been around 6-

8% per year can be used as a reference point in thinking about plausible alphas. 

We will soon see that different orderings of the factors allow for different ways of 

parameterizing the joint density of the factor returns.  This will permit a simple representation of all 

the models that can be formed from a given set of factors and will facilitate their comparison.  

Anticipating that, we introduce notation that allows for probabilities that are conditional on an 

ordering.  Given a single ordering and the corresponding sequence of nested models, the analysis 

reduces to a standard problem in Bayesian model comparison.  We need only introduce prior 

probabilities  for each model in a given ordering w.  The posterior model probabilities are 

then given in terms of the prior probabilities and pairwise BFs as: 

 

 where                                      (3.1) 

. 

We see that the factor data F influence the conditional posterior probabilities through the conditional 

marginal likelihoods .  These MLs average the likelihood function for a given model 

over the various parameter values according to the prior for that model, conditional on the given 

ordering.  The higher is  or the lower is , the lower is  and the 

higher is .  
  
 

 Next, we discuss the computation of the conditional MLs, .  The formal details 

are given in the appendix.  The idea is the same as that in (1.8) except that the data now consist of 

factor returns only.  Therefore, we work with the joint density of the factors, assumed to be 

multivariate normal, and priors for the parameters in the joint density.  It turns out to be useful to 

factor the joint density in accordance with the ordering.  For example, if we consider the factors in 

FF3, there are two orderings with Mkt first: (Mkt HML SMB) and (Mkt SMB HML).   

For the ordering (Mkt HML SMB), we factor the joint density by starting with the marginal 

density for Mkt, multiplying by the conditional density of HML given Mkt, and then by the 

 P M| w

       i ji j i

-1

j

P M w, F   B w P M w / P M w        |     |  |
 
 
 

   

     ji j i
B w   P F M ,  w /  P F| | M ,  w

( |F )P M , w   

 iP F| M , w  j
P F| M ,  w

ji
B (w)

 iP M  | w,  F

( |F )P M , w  
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conditional density of SMB given Mkt and HML.
13

  Given joint normality of the factors, the 

conditional densities correspond to linear regressions with normally distributed disturbances.  

HML = a + b*Mkt + e                (3.2a) 

and  

SMB = c + d*Mkt + g*HML + u.                         (3.2b) 

Thus, the parameter space for this characterization of the joint density consists of the Mkt mean and 

variance, the “alphas” a and c, the “betas” b, d and g, and the residual variances of e and u.   

Each regression is a special case of the multivariate regression in Proposition 1, with the 

dependent variable now a single factor return, rather than a vector of test-asset returns.  We have a 

single residual variance parameter for each regression and the diffuse prior for the betas and residual 

variance in each is given by (1.6) with N=1.  As earlier, the regression intercept is either constrained 

to equal 0 or assumed, under the prior, to be a draw from a normal distribution with mean 0 and 

variance equal to k times the residual variance.  Under  CAPM = {Mkt}, the intercepts a and c are 

both 0.  For the model {Mkt HML}, c is 0 but a is unconstrained.  Finally, under the “full” model 

FF3 = {Mkt HML SMB}, both intercepts are unrestricted.   

Test-asset constraints on the full model can be evaluated in the B-GRS framework, but as 

discussed in the previous section, the test assets are not relevant for model comparison.  Therefore, 

FF3 is simply treated as an unconstrained model in this context.  From a portfolio perspective, it is 

clear that the squared Sharpe ratio will always be maximized with all factors included.  The question 

that is being addressed when we consider the various nested models is whether that maximum can 

still be attained with a proper subset of the factors.  In other words, are some of the original factors 

unneeded?  Fama (1998) considers a related hypothesis in identifying the number of priced state 

variables in an intertemporal CAPM setting. 

  The value of k in the prior for the intercepts is determined as in (2.2).  It follows from the 

discussion below (1.6) that, in the context of a factor ordering, k is the expected increment (under the 

alternative) to the squared Sharpe ratio at each step from the addition of one more factor.  By 

concavity, therefore, the expected increment to the Sharpe ratio declines as more factors are included 

in the model.  This seems like a reasonable property to impose a priori - a kind of diminishing returns 

to “active” investment condition.  Likewise, for a given dependent factor, since the residual variance 

                                                       
 

13 Assuming independence of the factor returns over time, the density for each factor is a product of the densities 

for each month of the sample period. 
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declines as we include more factors, the expected squared values of the intercepts decline with 

constant k.  It bears noting that, while we think this is a reasonable way of specifying the prior, the 

results are not sensitive to alternative methods for distributing the total increase in the squared Sharpe 

ratio. 

The prior specification is completed by assuming sequential independence, i.e., the Mkt 

parameters ϴ1 are independent of the regression parameters ϴ2 in (3.2a) and ϴ3 in (3.2b), which are 

independent of each other.  This implies factorization of the joint prior as P(ϴ) = P(ϴ1)P(ϴ2)P(ϴ3).  

The factorization of the joint density and the prior are shown in the appendix to imply factorization of 

the MLs and BFs as well.  Thus, the BF comparing CAPM vs FF3 equals the BF comparing {Mkt} 

vs {Mkt HML}, times the BF comparing {Mkt HML} vs  {Mkt HML SMB}.   

More generally, assume there are K factors and consider the standard ordering, w = 

.  Each model  associated with this ordering consists of the factors , for 

some J between 1 and K.  The density under model  is a product of densities for each factor j from 

1 to K, with the jth conditional density (regression of  on ) equal to 

              (3.3) 

Here, restricted means that the intercept is 0 in that regression.  The corresponding ML is then
14

 

     .          (3.4) 

As in (3.3), the jth term in this product involves restricted densities (prior and data) for j > J and 

unrestricted densities for j ≤ J. 

We’ve described the procedure for the standard ordering.  Any other ordering, for example 

w* =  with K=3, will correspond to a permutation of the factor indices.  Here, the indices 

ordering for w* is (1 3 2).  The implied permutation function Ф satisfies 

                                                       
 

14 The first (Mkt) term in each ML is always the same and, therefore, cancels out in the resulting BFs and 

posterior model probabilities. 
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. To determine the associated marginal likelihood , we proceed as above, 

everywhere substituting  for ,  for  and  for .
15

   

Model Priors and Aggregation of Probabilities over Orderings 

Given a prior over the models in each ordering, the conditional BFs can be combined, as in (3.1), to 

obtain conditional model probabilities.  Beyond that, there is also the issue of how to derive a single 

overall model probability, given that models are generally associated with multiple orderings.  

Toward this end, suppose the decision as to which non-market factor comes first and which follows is 

considered a matter of indifference, a priori.  Formally, then, we can treat the various possible 

orderings as indexed by a hyperparameter, over which there is a uniform prior distribution.  Not only 

will this technical device provide a means of aggregating the probabilities for a given model over the 

different orderings, but it will also permit us to include non-nested models in the model comparison!   

As discussed above, with the three Fama-French factors (two non-market factors) there two 

orderings: w1 = (Mkt HML SMB) and w2 = (Mkt SMB HML).  There are four models (sets of 

factors) included in these orderings: Mkt = CAPM in both orderings, {Mkt HML} in ordering 1, 

{Mkt SMB} in ordering 2 and {Mkt HML SMB} = {Mkt SMB HML} = FF3 in both orderings.  

Therefore, we would like each model to have prior probability 1/4.  The two orderings have prior 

probability 0.5 each.  Since CAPM and FF3 are associated with both orderings, their conditional 

probabilities need to be 1/4 as well (0.5*1/4 + 0.5*1/4 = 1/4).  The remaining probability of 1/2 in 

each ordering goes to the 2-factor model, either {Mkt SMB} or {Mkt HML}, yielding unconditional 

probabilities equal to 0.5*1/2 + 0.5*0 = 1/4.  The general case is treated in the appendix. 

To summarize, our prior specification starts with equal probabilities for each ordering, i.e., all 

parameterizations of the joint density of factor returns receive the same weight, apart from the special 

role of the market.  The number of orderings that contain a given model depends on the number of 

factors in the model, however.  Therefore, the conditional model probabilities for each ordering are 

selected in such a way that all models have the same unconditional prior probability.  Consequently, 

other than the market, all factors are treated symmetrically and all models start with the same chance 

of being chosen, regardless of the number of factors in the model.   

                                                       
 

15 Note that the model MJ depends on the ordering.  An additional subscript for w is implicit and should be clear 

from the context. 

 and Ф 3 2 JP(F | M , w*)

)Ф (1F 1F
)Ф (2F 2F

)Ф (3F 3F
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In the general case of K factors, there are (K-1)! orderings of the non-market factors, so the 

prior probability is 1/(K-1)! for each ordering.  Consider a model M with L non-market factors, 0 ≤ L 

≤ K-1.  Given that these factors can be arranged in L! ways after the market factor, and the remaining    

K-1-L factors can be arranged in (K-1-L)! ways after that, the number of orderings that contain M is  

L! x (K-1-L)!  Hence, the fraction of orderings that contain M is one over the binomial coefficient 

     = (K-1)/{L! x (K-1-L)/!}. 

Since the total number of models is 2
K-1

, the unconditional prior probability for each model 

should be 1/2
K-1

.  Therefore, assuming the prior probability for M is the same in each ordering w that 

contains it (zero otherwise), the product of this probability and the fraction of all orderings that 

contain M must equal 1/2
K-1 or, equivalently, 

 .                (3.5)  

Note that these numbers can indeed be viewed as conditional probabilities since the sum over all 

models contained in a given ordering w, i.e., the sum over L, is one (the binomial coefficients sum to 

2
K-1

).  Having fully specified the prior over orderings and for models in each ordering, we can now 

state a key result. 

Proposition 3.  The unconditional (not conditional on an ordering) posterior model probabilities are 

given by  

P(Mi | F) = Ew|F{P(Mi  | w, F)},                (3.6) 

where the expectation is taken with respect to the posterior over the orderings w: 

   P(w|F) = P(F|w)P(w)/P(F) 

with                                                                                                             

    P(F|w) =  EM|w{P(F | M, w)}                             (3.7) 

and 

    P(F) = Ew{P(F|w)}, 

where the first expectation in (3.7) is taken with respect to the conditional prior over the models 

included in the given ordering and the second expectation is with respect to the prior over the 

orderings.   

Proof.  A general principle that we use repeatedly is P(Y) = EX{P(Y|X)}.  In (3.6), we condition on F 

throughout in the “background.”  Hence the expectation is taken with respect to the distribution of w, 

 K 1
L


  K 1K 1
P(M | w) / 2

L

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conditioned on the data.  This is the posterior for the hyperparameter w, given in (3.7).  The first part 

of (3.7) is just Bayes theorem.  In the second part, we again apply the general principle, but now 

condition on w in the background.  Since we do not condition on the data here, the relevant 

distribution is the conditional prior for the models given the ordering w.  The expression for P(F) is a 

direct application of the principle.   

Corollary 1.  Test assets are irrelevant in our Bayesian model comparison procedure in the sense that 

the posterior model probabilities are unchanged if we condition on the test asset returns R, as well as 

the factor returns F. 

Proof.  The BF between a pair of models in the same ordering is the ratio of the corresponding 

absolute BFs in (2.1).  The term that reflects the impact of R is , which cancels out in each 

ratio.  Similarly, the prior (conditional on w) for the parameters in the restricted conditional 

distribution of r given f is the same for all models and orderings and cancels out in (3.1).  Therefore, 

the conditional posterior model probabilities P(F | M, w) in (3.1) and (3.7) do not depend on R either.  

Similarly, the R-related term in the conditional model priors cancels out in the ratio of P(F|w) to P(F).  

It follows that the ordering posterior in (3.7) and the unconditional posterior model probabilities in 

(3.6) are independent of R. □ 

In our standard model-comparison procedure, the prior over the orderings will be uniform and 

P(F) is then a simple average of the conditional MLs, P(F|w).  As in the three-factor example, the 

conditional prior probabilities will be specified so as to induce a uniform (unconditional) prior over 

the models as well.  The uniform approach ensures that differences in posterior probabilities are 

driven by the data, which seems desirable in this sort of research setting.  Nonetheless, Proposition 3 

is more general and accommodates situations in which the orderings are not weighted uniformly 

and/or the prior model probabilities are not all equal.  This will be relevant later when we consider a 

direct comparison of one model against another non-nested model, or a situation in which there are 

different ways of measuring some of the factors.   

We noted earlier that the data influence the conditional posterior model probabilities through 

the marginal likelihoods (MLs).  The equations in (3.7) show that these MLs, the P(F|M, w) terms, 

determine the ordering posterior probabilities as well.  For a given model M, we can divide the 

competing models into two groups.  In the first group are those models that either nest or are nested 

in M.  The second group consists of models that are non-nested with respect to M.  By (3.6), the MLs 

of models in the first group influence the posterior probability for M through both channels, the 

abs

MBF
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conditional model posterior as well as the ordering posterior.  Interestingly, the MLs of competing 

non-nested models exert their influence on P(M|F) only through the orderings posterior. 

Posterior Model Probabilities for the Three Fama-French Factors  

Before we examine the posterior probabilities, it will be informative to look over the annualized 

alpha estimates (with t-statistics in parentheses).  Recall that the BF in favor of the zero-null 

hypothesis is a decreasing function of the conventional t-statistic for the zero-intercept restriction.  

For the first ordering, w1 = (Mkt HML SMB), the alpha of HML on Mkt is a large 3.65% (2.85), 

while for SMB on Mkt and HML it is just 1.18% (1.04).  The large HML alpha is evidence against 

CAPM, but is consistent with both the two-factor model {Mkt HML} and FF3.  In this context, the 

modest SMB alpha is reasonably consistent with the two-factor model.  Given these observations, the 

conditional posterior probabilities make sense:  P({Mkt HML} | w1, F) = 72%,  P(FF3 | w1, F) = 25%,  

P(CAPM | w1, F) = 3%. 

For the second ordering, w2 = (Mkt SMB HML), the alpha of SMB on Mkt is 1.34% (1.18) 

and for HML on Mkt and SMB it is 3.57% (2.79).  This latter large alpha at the end of the sequence is 

evidence against both of the nested models in w2, CAPM and {Mkt SMB}.  Accordingly, the 

conditional posterior probabilities favor FF3:  P(FF3 | w2, F) = 75%,  P({Mkt SMB} | w2, F) = 16%,  

P(CAPM | w2, F) = 9%.  The higher probability for {Mkt SMB} as compared to CAPM, despite the 

modest SMB alpha, is partly a reflection of the higher conditional prior probabilities assigned to the 

two-factor models (which occur in just one ordering each).   

Now let us turn to the posterior probabilities for the orderings, w1 and w2. These depend on 

the MLs for models in each ordering relative to those for models in the other ordering.  Since CAPM 

and FF3 are common to both orderings, the much stronger evidence for {Mkt HML}, as compared to 

{Mkt SMB}, explains the higher probability for the first ordering: P(w1 | F) = 70% versus P(w2 | F) = 

30%.  By Proposition 3, the overall (conditional only on F) posterior model probabilities can now be 

obtained as weighted averages of the posterior probabilities within each ordering.  For FF3, which 

occurs in both orderings, this probability is P(FF3 | F) = 0.70 x 25% + 0.30 x 75% = 40%.  The lower 

conditional posterior probability for FF3 in w1, 25% vs. 75% in w2, is due to the stiffer model 

competition in w1, but the final probability of 40% reflects the model’s competitiveness overall.  

Since {Mkt HML} occurs only in w1, P({Mkt HML} | F) = 0.70 x 72% + 0.30 x 0 = 50%.  The 

corresponding probabilities for CAPM and {Mkt SMB}, obtained similarly, both happen to be about 

5%. 
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In general, distinct orderings will always have some models in common, but other models that 

differ.  Thus, the set of restrictions considered differs with the given ordering.  As a result, evidence 

for the same model can vary substantially across orderings, as we saw for FF3.  In this example, the 

restricted model {Mkt HML} came out on top, but in other situations the (unrestricted) model that 

includes all of the factors can dominate the competition.   

Perspective on the Methodology 

There is a literature on employing Bayesian model selection to determine which subset of a given 

vector X of exogenous explanatory variables to include in the regression equation for a dependent 

variable, Y.  An example in finance is Avramov (2002), who analyzes which variables should be used 

to track expected return predictability over time.  In our cross-sectional asset-pricing context, the 

challenge is to decide which factors to include in the pricing model.  This involves a multivariate 

system, with a time-series regression equation for each left-hand-side return.  But what makes our 

experimental design fundamentally different from the more typical statistical problem is the 

following: the factors that are not included as right-hand-side explanatory variables for a given model 

necessarily play the role of left-hand-side dependent returns whose pricing must be explained by the 

model’s factors.
16

  While this is essentially dictated by economic considerations, it also plays an 

important role in the Bayesian posterior analysis:  all models are evaluated conditional on the same 

data, consisting of “test asset” returns  and factor returns, whether the latter are on the left  side or  the  

right.  Given this feature of the problem, the model-comparison procedure that we develop, while 

perhaps complicated in some respects, almost seems inevitable. 

 The approach of assigning probabilities to orderings may not be very intuitive, but an ordering 

here simply amounts to a grouping of models.  The groups are formed in such a way that 

(conditional) posterior probabilities can readily be obtained for the models within each group.  A 

given model can be included in several groups, however, so an important feature of our methodology 

is keeping track of model-group combinations throughout.  The prior over these combinations is 

determined by treating all the groups (orderings) symmetrically and requiring that the sum of prior 

probabilities across groups be the same for each model.  Proposition 3 is then the essential tool for 

backing out posterior model probabilities from the model-group probabilities and marginal 

likelihoods, leaning heavily on a version of the law of iterated expectations. 

                                                       
 

16 The phrase, “either you’re part of the problem or part of the solution” comes to mind. 
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It might seem, however, that a more straightforward method of extrapolating from the 

analytically easier nested case could have been used.  Consider again the task of comparing two non-

nested models like {Mkt HML} and {Mkt SMB}.  Let the associated BFs for comparing the 

“reference model” CAPM to each model (CAPM in numerator) be BF1 and BF2, respectively.  It is 

tempting to take the product (1/BF1) x BF2 as the BF for {Mkt HML} vs. {Mkt SMB} in order to 

back out the ratio of MLs for these two models, but this does not work.
17

  As we have seen, the 

intercept restrictions common to CAPM and each two-factor model cancel out in BF1 and BF2.  For 

example, the SMB intercept on Mkt and HML is restricted under both the CAPM and {Mkt SMB} 

models and so cancels out in BF1.  Consequently, the intercept evidence for SMB on {Mkt HML} 

and, similarly, for HML on {Mkt SMB}, essential for comparing the fit of the non-nested two-factor 

models, is not reflected in BF1 or BF2.  Our procedure of placing a prior on the different factor 

orderings enables us to get around this problem.
18

    

4. Empirical Results  

In this section, we present model-comparison evidence and B-GRS test results.  The model 

probabilities are shown at each point in time to provide an historical perspective on how posterior 

beliefs would have evolved as the series of available returns has lengthened.  Examining different 

sets of factors provides additional perspective, as the collection of factors considered in the research 

community has expanded over time.  Thus it is interesting to see how this affects posterior beliefs 

about the models. 

A total of ten candidate factors are considered.  First, there are the traditional FF3 factors Mkt, 

HML and SMB plus the momentum factor UMD.  To these, we add the investment factor CMA and 

the profitability factor RMW of Fama and French (2015a).  Finally, we also include the size ME, 

investment IA and profitability ROE factors in Hou, Xue and Zhang (2015a, 2015b), as well as the 

value factor HML
m

 from Asness and Frazzini (2013). The size factors SMB and ME, profitability 

factors RMW and ROE, and investment factors CMA and IA differ based on the type of stock sorts 

used in their construction.  Fama and French create factors in three different ways.  We use what they 

refer to as their “benchmark” factors.  Similar to the construction of HML, these are based on 

independent (2x3) sorts, interacting size with operating profitability for the construction of RMW, 

                                                       
 

17 Technically, the problem is that we would be ignoring the fact that we have a different prior on the joint 

distribution of factor returns when comparing CAPM to the different two-factor models. 
18  A frequentist approach to asset-pricing model comparison might be developed along the lines of Vuong 

(1989), but we leave that to future work. 
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and separately with investments to create CMA.  RMW is the average of the two high profitability 

portfolio returns minus the average of the two low profitability portfolio returns.  Similarly, CMA is 

the average of the two low investment portfolio returns minus the average of the two high investment 

portfolio returns. Finally, SMB is the average of the returns on the nine small-stock portfolios from 

the three separate 2x3 sorts minus the average of the returns on the nine big-stock portfolios.  

Hou, Xue and Zhang (2015a) construct their size, investment and profitability factors from a 

triple (2 x 3 x 3) sort on size, investment-to-assets, and ROE.  More importantly, the HXZ factors use 

different measures of investment and profitability.  Fama and French (2015a) measure operating 

profitability as NIt-1/BEt-1, where NIt-1 is earnings for the fiscal year ending in calendar year t-1, and 

BEt-1 is the corresponding book equity.  HXZ use a more timely measure of profitability, ROE, which 

is income before extraordinary items taken from the most recent public quarterly earnings 

announcement divided by one-quarter-lagged book equity.  IA is the annual change in total assets 

divided by one-year-lagged total assets, whereas investment used by Fama and French is the same 

change in total assets from the fiscal year ending in year t-2 to the fiscal year in t-1, divided by total 

assets from the fiscal year ending in t-1, rather than t-2.  In terms of value factors, HML
m

 is based on 

book-to-market rankings that use the most recent monthly stock price in the denominator.  This is in 

contrast to Fama and French (1993), who use annually updated lagged prices in constructing HML.  

The sample period for our data is January 1972 to December 2013.  Some factors are available at an 

earlier date, but the HXZ factors start in January of 1972 due to the limited coverage of earnings 

announcement dates and book equity in the Compustat quarterly files. 

4.1 Model Comparison Results 

Now we present model comparison results.  First, we simultaneously compare all the models that can 

be formed using the FF3 factors Mkt, SMB and HML.  This small example extends the results shown 

in Section 3 and serves as a good illustration of our methodology.  We then conduct our main model 

empirical analysis, which compares models that can be formed from the ten factors mentioned at the 

beginning of the section.  As will be explained in greater detail below, we consider models containing 

up to six factors, with at most one factor in each of the categories: size, value, investment and 

profitability.   

 Regarding priors, our benchmark scenario assumes that max
Sh 1.5 Sh(Mkt)   in (2.2), i.e., the 

square root of the prior expected squared Sharpe ratio for the tangency portfolio based on all six 

factors is 50% higher than the Sharpe ratio for the market.  Here, we refer to the prior for the 
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unrestricted six-factor model.  Given the discussion in Section 2, this is sufficient to determine the 

sequence of implied Sharpe ratios as we expand the set of included factors from one to all six.  For a 

three-factor model, the corresponding multiple of Sh(Mkt) is 1.27, with four factors it is 1.35, it is 

1.43 for five factors and 1.5 for six.  We think of the 1.5 choice as a prior with a risk-based 

orientation, assigning little probability to extremely large Sharpe ratios.  Later, we examine the 

sensitivity of posterior beliefs to this assumption, as we also explore multiples corresponding to a 

more behavioral perspective. 

Relative Model Probabilities with the Three Fama-French (1993) Factors 

In previous sections, we presented results using these three factors to illustrate our methodology.  

Recall that there are four models in all: CAPM, FF3 and the two-factor models {Mkt HML} and 

{Mkt SMB}. We now report results of the formal model comparison among these four competing 

models over time.  As noted above, our prior incorporates a 1.27 multiple of the Mkt Sharpe ratio, 

just slightly larger than that used earlier.  We employ data from January 1927 to December 2013.  

Figure 1 presents the results of this exercise.  The top panel shows the model probabilities 

while the bottom panel gives cumulative factor probabilities, i.e., the probability that each factor is 

included in the true model.  Since we start with equal prior probabilities for each model, it is not 

surprising that it takes a while to see a substantial spread in the posterior probabilities.  The best-

performing model since the mid-1980s has been {Mkt HML}, followed closely by FF3.  The 

probabilities for these models are 51.3% and 39.1%, respectively, at the end of the sample.  It is also 

of interest to note that the full model (FF3) need not have the highest probability.  The CAPM and 

{Mkt SMB} probabilities generally decline after 1980 and are quite low at the end.  However, CAPM 

would have been perceived as the best-performing model in the 1950s and 1960s, which interestingly 

was a time when the Fama-French model ranked last.  In related evidence, Ang and Chen (2007) and 

Fama and French (2006) find that CAPM works well for B/M-sorted portfolios before 1963.  

The cumulative factor probabilities are shown in the bottom panel.  For each factor, this is the 

sum of the posterior probabilities for models that include that factor.  The probabilities at the end of 

our sample are 90.4% for HML, reflecting its inclusion in the two top models, and 43.5% for SMB.  

Of course, the probability is one for Mkt by assumption. 

 

[Figure 1] 
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          The empirical analysis above was based on the prior assumption 
max

Sh 1.5 Sh(Mkt)   in (2.2) 

when working with all six factors.  Now we explore the sensitivity of our full-sample results to 

different prior assumptions.  Specifically, we let the Sharpe multiple take on the values 1.25, 1.5, 2, 

and 3 once five additional factors have been added to the market.  The 1.25 multiple is consistent 

with a view that CAPM is a fairly good model and the financial market is informationally efficient.  

At the other end of the spectrum, a large multiple like 3 is suggestive of informational inefficiency 

that is more in line with behavioral perspectives.
19

   

Table 1 presents the full-sample results for the three Fama-French factors.  The sample Sharpe 

ratio for the market is 0.115 over the 1927-2013 period, while the FF3 Sharpe multiple is 1.23, close 

to the 1.27 under our baseline prior scenario (a 1.5 multiple for adding five more factors, but only 

1.27 when adding two additional factors).  With the three Fama-French factors, the top model is 

always {Mkt HML}, the posterior probabilities rising from 44.9% to 65.2% as Shmax increases.  At 

the same time, the probabilities for FF3 decline from 42.3% to 23.3%.  Overall, although we see 

some variation in the model probabilities for different priors, the rankings of the models are 

consistent.  

 

[Table 1] 

 

Model Probabilities with Ten Prominent Factors 

For our main empirical application we consider ten factors.  Rather than mechanically apply our 

methodology with all nine of the non-market factors treated symmetrically, it seemed to us more 

natural to structure the prior so as to recognize that several of the factors are just different versions of 

the same underlying concept.  Therefore, we only consider models that contain one version of the 

factors in each category: size (SMB or ME), profitability (RMW or ROE), value (HML or HML
m

) 

and investment (CMA or IA).  We refer to size, profitability, value and investment as categorical 

factors, in this context, in contrast to the actual factors employed in the various models.  Similarly, 

models in which some of the factors are categorical and the rest are standard factors are termed 

categorical models.   

                                                       
 

19 MacKinlay (1995) analyzes Sharpe ratios under risk-based and non-risk-based alternatives to the CAPM. 
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To illustrate the basic idea, consider categorical models based on the standard factors Mkt, 

HML and the categorical factor Size.  As with the three-factor example of Section 3, there are two 

categorical orderings: (Mkt HML Size) and (Mkt Size HML), and four categorical models: {Mkt}, 

{Mkt HML}, {Mkt Size}, and {Mkt HML Size} based on these factors.  The difference now is that 

we have two versions, SMB and ME, of the Size factor.  Thus, we split the prior probability of ¼ for 

the categorical model {Mkt Size} equally between the two versions of that model, ⅛ each for {Mkt 

SMB} and {Mkt ME}.  Likewise for the two versions of the three-factor categorical model {Mkt 

HML Size}.  In our actual application, there are four categorical factors, as described above.  A 

categorical model like {Mkt Size HML Profitability}, which contains two of the categorical factors, 

will have four (2
2
) versions, while models that include all four have sixteen (2

4
).  The uniform prior 

probabilities over categorical models are then split four or sixteen ways, respectively.  The details of 

how we implement the splits are presented in the Appendix. 

Our empirical analysis involves ten factors: Mkt, UMD and eight other non-market factors, 

two in each of the four categories: size, value, profitability and investment.  Since each categorical 

model has up to six factors and Mkt is always included, there are 32 (2
5
) possible categorical models. 

Given all the possible combinations of UMD and the different types of size, profitability, value and 

investment factors, we have a total of 162 models under consideration. 

The top panel in Figure 2 shows posterior probabilities for the individual models, which were 

obtained under our baseline prior that allows for a multiple of 1.5 times the market Sharpe ratio.  We 

find that quite a few of the individual models receive non-trivial probability, the best (highest 

probability) model being {Mkt IA ROE SMB HML
m

 UMD}.  The second-best individual model 

replaces IA with CMA, the fourth-best uses ME instead of SMB and the sixth one uses both CMA 

and ME, as opposed to IA and SMB.  Both the third and fifth best models are five-factor models that 

do not have a size factor and differ only in their investment factor choice.  The top six models all 

include UMD, while the seventh-best model does not.  All of these models fare better than FF5 and 

the four-factor model of HXZ.   

Figure 3 provides another perspective on the evidence, aggregating posterior results over the 

different versions of each categorical model.  Similar to the findings in the previous figure, by the end 

of the sample, the six-factor categorical model {Mkt Value Size Profitability Investment UMD} 

comes in first with posterior probability close to 60% and the five-factor model that excludes size is 

next, but with probability only slightly over 20%.  The third best categorical model consists of the 

same five categories as in FF5, while the fourth best contains the same four categories as the four-
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factor model.  However, it is essential that the more timely versions of value and profitability are 

employed in these models.  Specifically, in untabulated calculations, the probability share for HML
m

 

in the FF5 categorical model is 76.1%.  Similarly, the shares for ROE are 98.9% in the categorical 

FF5 model and 96.5% in the categorical four-factor model. 

In terms of cumulative probabilities aggregated over all models, we see from the bottom panel 

of Figure 3 that the recently proposed categories, profitability and investment, rank highest.   

Interestingly, value is third with over 90% cumulative probability.  Consistent with the findings in 

Figure 2, the categorical share for HML
m

, i.e., the proportion of the cumulative probability for value 

from models that include HML
m

, as opposed to
 
HML, is 95%.  Similarly, the categorical share of 

profitability is 97% for ROE.  There is less dominance in the size and investment categories, with 

shares of 68% for SMB and 62% for IA.  

While the analysis above simultaneously considered all 162 possible models, we have also 

conducted direct tests that compare one model to another.  In particular, we test the superiority of our 

six-factor model to the recently proposed models of HXZ and Fama and French.  Such a test can 

easily be computed with our methodology by assigning zero prior probability to the excluded models.  

Comparing the top individual model found above, {Mkt IA ROE SMB HML
m

 UMD}, to the four-

factor model of HXZ, the direct test assigns 98.6% probability to the six-factor model.  The six-factor 

model probability is greater than 99% when compared to FF5.  With the size factor deleted from the 

six-factor model, the probabilities still exceed 95%. 

The model comparison above was based on a prior assumption that Shmax = 1.5*Sh(Mkt) in 

(2.5) when working with six factors.  We next compute results in which we let the Sharpe multiple 

take on the values 1.25, 1.5, 2, and 3 once five additional factors have been added to the market.  The 

1.25 multiple is consistent with a view that the CAPM is a fairly good model and the financial market 

is informationally efficient.  At the other end of the spectrum, a large multiple like 3 is suggestive of 

an informational inefficiency that is more in line with behavioral perspectives. 

Tables 2 and 3 presents the results for the individual and categorical models, respectively.  

Both tables show the probabilities for the top seven models under the 1.5 multiple specification.  The 

two best models, {Mkt SMB ROE IA HML
m

 UMD} and {Mkt SMB ROE CMA HML
m

 UMD}, are 

also the two best under the more behavioral priors that allow for increases in the Sharpe ratio of 2 and 

3 times the market ratio.  These two models are among the top four under the lower-multiple 

specification, though the posterior probabilities are more diffuse in this case.  It is also worth noting 

that the probabilities for the two best models rise from 23% to 42% and from 14.4% to 25.7% as the 
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multiple increases from 1.5.  The top model rankings for the categorical models are also stable across 

the different priors.  The six-factor categorical model {Mkt SIZE PROF INV VAL MOM} is always 

at the top regardless of the prior and its posterior probability increases substantially as the multiple 

increases.  The categorical model that excludes size comes in second for all but the lowest multiple, 

where it trails the model that excludes momentum just slightly. 

We also conduct prior sensitivity analysis with regard to which versions of the factors should 

be chosen for a given category - what we have referred to as the categorical shares.  We noted above, 

that the more timely HML
m

 accounts for 95% of the cumulative probability for the value category.  

Table 4 shows that timely value remains responsible for the lion’s share of the cumulative value 

probability across the different priors, especially at higher multiples.  Varying the prior also yields 

fairly similar results for timely profitability (ROE), IA and SMB.  

4.2 Relative Tests: Are Value and Momentum Redundant? 

Barillas and Shanken (2015) show that when comparing two asset-pricing models, all that matters is 

the extent to which each model prices the factors in the other model.  Hou, Xue and Zhang (2015b) 

and Fama and French (2015a) regress HML on their models that exclude value and cannot reject the 

hypothesis that HML’s alpha is zero, thus concluding that HML is redundant.  In addition, HXZ show 

that their model renders the momentum factor, UMD, redundant.  On the other hand, our results 

above show that the model {Mkt, SMB ROE IA UMD HML
m

}, which receives highest posterior 

probability, contains both a value (HML
m

) and a momentum factor (UMD).   

To shed further light on this finding, Table 5 shows the annualized intercept estimates for 

each factor in the top model when it is regressed on the other five factors.  We observe that the 

intercepts for HML
m

 and UMD are large and statistically significant, rejecting the hypothesis of 

redundancy.  HML
m

 has an alpha of 6.1% (t-stat 5.26) and UMD has an alpha of 6.7% (t-stat 3.96).  

When we regress the standard value factor, HML, on the non-value factors {Mkt, SMB ROE IA 

UMD} in our top model we find, as in the earlier studies, that it is redundant.  The intercept is 0.99% 

with a t-stat of 0.81.  The different results for the two value factors is largely driven by the fact that 

HML
m

 is strongly negatively correlated (-0.65) with UMD, whereas the correlation is only -0.15 for 

HML
20

.  The negative loading for HML
m

 when UMD is included lowers the model expected return 

and raises the HML
m

 alpha, so that this timely value factor is not redundant. 

                                                       
 

20 Asness and Frazzini (2013) argue that the use of less timely price information in HML “reduces the natural 

negative correlation of value and momentum.” 
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We now evaluate the hypothesis that HML
m

 is redundant from a Bayesian perspective.  

Figure 4 shows the results for the Bayesian intercept test on the other factors.  As discussed above, 

the prior under the alternative follows a normal distribution with zero mean and standard deviation 

σα.  The larger the value of σα, the higher the increase in the Sharpe ratio that one can expect to 

achieve by adding a position in HML
m

 to investment in the other factors.  The horizontal axis in each 

panel of the figure shows the prior multiple.  This is a multiple of the Sharpe ratio for the factors in 

the null model that excludes HML
m

.  The Bayes factor in favor of the null is plotted in the top left 

panel, while the top right panel gives the posterior probability.  Both quickly decrease to zero as the 

prior Sharpe multiple under the alternative increases, strongly supporting the conclusion that HML
m

 

is not redundant.  

Although the inference is not sensitive to the prior here, in other cases it may well be.  The 

lower panels of Figure 4 provide information about the prior that should be helpful in identifying the 

range of multiples that correspond to one’s own belief.  The bottom left panel shows σα, which gives 

an idea of the likely magnitude of α’s envisioned under the alternative.
21

  For example, to get an 

increase in the Sharpe ratio of 25% we would need a very large σα of about 7.5% per year.  Finally, 

for additional perspective, the bottom right panel gives the prior Sharpe ratio expressed as a multiple 

of the market’s ratio.  A multiple of one corresponds to the Sharpe ratio under the null model {Mkt 

SMB ROE IA UMD}, which in this case is around 4.1 times the market’s ratio.     

 

[Figure 4] 

 

The Bayesian analysis for UMD redundancy (not shown) looks much the same as Figure 4.  

To highlight the role of HML
m

 in this finding, we exclude that factor and show that the evidence then 

favors the conclusion that UMD is redundant with respect to the remaining factors {Mkt SMB IA 

ROE}.  This essentially confirms the earlier finding of Hou, Xue and Zhang (2015b), but with SMB 

as the size factor, rather than ME.  In Figure 5, we observe that for any value of the prior, the BF is 

above one, representing support for the null hypothesis.  Accordingly, the posterior probability that 

the null hypothesis (UMD alpha is zero) is true is always above 50%, with values over 80% for 

Sharpe ratio multiples around 1.15 (see top right panel).  The conventional p-value also exceeds 50% 

here, as indicated by the horizontal line in the figure.  

                                                       
 

21 In general, the plot of σα is based on the average residual variance estimate for the left-hand-side assets. 
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[Figure 5] 

 

4.3 Absolute Test Results 

We saw above that over the sample period 1972-2013, the model with the highest posterior 

probability is the six-factor model {Mkt IA ROE SMB HML
m

 UMD}.  Now we will evaluate this 

model, as well as the four-factor model of HXZ, from the absolute perspective by challenging them 

to explain the average returns on test assets.  The horizontal axis in the B-GRS absolute test figures 

show the multiple of the Sharpe ratio for the factors in the given model.  This is the multiple under 

the alternative that the left-hand-side assets are not priced by the model. 

Although a wide variety of test-asset portfolios have been examined, we present results for 

two representative sets that serve to illustrate some interesting findings.  The first set of portfolios is 

based on independent stock sorts on size and momentum, whereas the second set is constructed by 

sorting stocks on book-to-market and investment.  Strictly speaking, the two models considered in 

this section are not nested because the HXZ model uses ME, whereas our top model uses SMB.  

However, the results are nearly identical whether one uses ME or SMB in the models.   

To test the HXZ model, we initially follow common practice and only employ the test-asset 

portfolios.  Then we add in the excluded factors UMD and HML
m

 as left-hand-side assets.  Using the 

25-size/momentum portfolios from January 1972 to December 2013, the GRS statistic for the HXZ 

model is 2.72 with a p-value of 2e-5, rejecting the model.  A descriptive statistic that has also been 

used to judge model performance is the average of the absolute values of the test-asset alphas, e.g., 

Fama and French (2015a).  The HXZ model produces average absolute alpha estimates of 1.42% per 

annum.  When we add the excluded factors UMD and HML
m

 as left-hand-side assets, the GRS 

statistic is 10.5 with p-value virtually zero, but the average absolute alpha estimate increases only 

slightly to 1.45%.   

The B-GRS results with size/momentum portfolios are given in Figure 6.  The blue line in 

each panel shows the results without the excluded factors UMD and HML
m

, whereas the red dashed 

line adds those factors as left-hand-side assets.  We see in the top right panel that the probability for 

the HXZ model is close to zero for Sharpe multiples in the range of 1.1 to 1.6 (blue), but when UMD 

and HML
m

 are added, there is even stronger evidence against the model, with the probability close to 

zero for a much wider range of priors (red). 
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[Figure 6] 

 

Next, we examine the absolute performance of the six-factor model with the same 25-

size/momentum portfolios. The GRS statistic is 3.5, the corresponding p-value of 5e-8 strongly 

rejecting the model in a classical sense.  The B-GRS results also provide strong evidence (not shown) 

against the null hypothesis.  The probability of null curve looks very similar to the red line in Figure 

6, quickly declining to an extended zero-probability range.  Interestingly, in this case the average 

absolute alpha is 1.93% per annum, which is much higher than the 1.42%/1.45% under the HXZ 

model (with/without UMD and HML
m

).  Yet, we know from our model comparison analysis that the 

six-factor model is strongly preferred to the HXZ model.  This is an example of the sort of conflict 

discussed in Barillas and Shanken (2015), who show that model comparison must be based on 

excluded-factor restrictions and that test-asset metrics can be misleading.    

According to Proposition 2, however, we should be able to back out the relevant information 

about excluded-factor constraints by taking the ratio of Bayes factors (BFs) for the absolute tests of 

the HXZ model and the six-factor model.  In this context, the appropriate version of the BF for HXZ 

includes the restrictions for UMD and HML
m

.  We have verified that 
abs abs

HXZ 6-factor
BF / BF  is indeed very 

small, strongly favoring the six-factor model, except for Sharpe multiples close to one.  While this 

calculation is strictly justified only for nested models, it should provide a good approximation here, 

given the lack of sensitivity to which size factor is employed in the models.   

Now we turn to the results for the 25 portfolios formed on sorts by book-to-market and 

investment.  For the HXZ model, the GRS statistic is 1.53 with a p-value of 0.05. The average 

absolute alpha is 1.44% per annum.  Adding the excluded factors UMD and HML
m

 increases the 

GRS statistic to 1.94. The p-value is now much smaller, 0.004, but the average absolute alphas are 

only slightly higher and equal to 1.47%.  The Bayesian results are plotted in Figure 7.  For all but the 

tightest priors, the probability for the null is close to zero with HML
m

 and UMD considered (red 

line), whereas the probability based solely on test assets (blue line) is substantial and never below 

20%.   

[Figure 7] 

 

 Next, we use the same 25 book-to-market and investment portfolios to evaluate the six-factor 

model.  The GRS statistic is 2.89 with a p-value of 5e-6.  More interestingly, the average absolute 
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alpha is 2.88% in this case, which is double the value under the HXZ model.  As with the 

size/momentum test portfolios, focusing on this test-asset metric would incorrectly give the 

impression that the six-factor model is inferior to the HXZ model.  Figure 8 plots the Bayesian GRS 

results.  Both the BF and the probability of the null for this model look better (for the null) than the 

red lines in the top two panels of Figure 7 and worse than the blue lines in that figure.  Again, this 

shows that when the excluded factors are incorporated in the analysis, the absolute tests are consistent 

with the results of the relative test and favor the six-factor model. 

[Figure 8] 

We conclude this section with some additional observations about the Bayesian analysis.  

First, note that the probability for the models in Figures 7 and 8 rebounds from zero in each case and 

becomes substantial, approaching one (apparent for blue line in Figure 7) as the Sharpe multiple and 

prior standard deviation for alpha get large.  This is an example of Bartlett’s paradox.  Understanding 

what drives this result is a useful exercise in “looking under the hood” of the Bayesian approach.
22

  

When the Sharpe multiple is very large, substantial prior probability under the alternative is assigned 

to very large alphas.  Now suppose the OLS estimate of alpha is 4% (annualized) with a standard 

error of 1.5%, and think about the likelihood for alphas that exceed, say, 50% in magnitude.  This 

will be much lower than the likelihood for α = 0, even though the estimate is “significantly” different 

from 0.  The result is a Bayes factor that strongly favors the null hypothesis.  Thus, in evaluating 

pricing hypotheses of this sort, it is essential to form a “reasonable” a priori judgment about the 

magnitude of plausible alphas (reflected in the choice of the parameter k).   

The differing classical and Bayesian views about model validity that emerge in Figure 7 also 

deserve further comment.  The p-value of 5% in the evaluation based solely on test assets (blue line) 

would typically be interpreted as evidence against the null.  However, the posterior probability for the 

null is substantially higher than 5% for all priors, exceeding 50% for some more behavioral priors.  

This finding is consistent with Lindley’s paradox: in sufficiently large samples, the posterior 

probability corresponding to a fixed p-value will be close to one, even if the p-value is small.
23

  This 

divergence reflects the fact that posterior probabilities and p-values are fundamentally different 

                                                       
 

22 The likelihoods are averaged over values of beta and the residual covariance parameters as well as alpha. 
23 Intuitively, an alpha estimate with a t-statistic of two, say, will be close to zero when the sample is very large.  

The likelihood for α = 0 will be quite high in this case, whereas the likelihood for alternative values that still have 

substantial prior probability but are further from zero, will be much lower.  As a result, the Bayes factor (ratio of marginal 

likelihoods) will strongly favor the null.   
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measures.  Whereas the former reflects likelihoods under both the null and alternatives, the latter is a 

tail probability under the null that makes no reference to the distribution under the alternative.  

Nonetheless, p-values are often treated in practice as if they are posterior probabilities.   The findings 

in Figure 7 serve as a reminder that this can lead to less than sensible conclusions and highlights what 

some perceive as an advantage of the Bayesian approach.
24

 

4.4 Results for an Approximate Model 

We have learned that for priors moderate to fairly large Sharpe multiples, the evidence favors an 

unrestricted model over the restricted pricing model {Mkt SMB ROE IA UMD HML
m

}, the “winner” 

in our model comparison contest.  But perhaps the model, nonetheless, provides a good 

approximation to the data.  After all, one might argue that models, by their nature, always leave out 

some features of reality and so cannot plausibly be expected to hold exactly.
25

  We address these 

issues in the Bayesian framework by modifying the prior for a model to accommodate relatively 

small deviations from the exact specification.  The modified BF was given earlier in Proposition 1. 

 The blue line in Figure 9 shows the results of an analysis in which the prior under the null 

assumes that σα = 1% (annualized).  This allows for deviations from the exact version of {Mkt SMB 

ROE IA UMD HML
m

} that, on average, have expected value of about 0.8% in magnitude.  These 

deviations give rise to a higher Sharpe ratio under the approximate null hypothesis, about 10% larger 

than that for the exact null.  Thus, whereas the starting point earlier was at a Sharpe ratio multiple of 

1, the blue line now starts at a ratio just over 1.1.  The test assets are the 25 size/momentum 

portfolios.  Not surprisingly, the posterior probabilities in Figure 9 for the less restrictive model are 

higher than the probabilities obtained earlier for the exact model.  There is no longer a “zero 

probability range” for the approximate null, but the model probabilities are still less than 0.5 over 

what we would consider the relevant range of prior Sharpe multiples. Thus, the unrestricted 

alternative is still favored.   

 To further explore the fit of the six-factor model, we increase σα to 1.5% (expected alpha 

about 1.2%), which corresponds to a Sharpe multiple just over 1.2.  The probability for this level of 

approximation, shown by the black dashed curve is now greater than 0.5 over most of the prior range.   

                                                       
 

24 Sample size is automatically incorporated in the BF.  While it is sometimes recognized that the significance 

level in a classical test should be adjusted to reflect sample size, this can be difficult to operationalize and is generally 

ignored. 
25 In the case of exact models, BFs still provide an indication of the “relative success” of the models at predicting 

the data, e.g., Kass and Raftery (1995), or the “comparative support” the data provide for the models, e.g., Berger and 

Pericchi (1996).   
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This sort of sensitivity analysis provides a computationally simple and conceptually appealing 

Bayesian complement to the descriptive statistics employed by Fama and French (2015a) to evaluate 

“goodness of fit” for a misspecified model.  An advantage of this extension of the B-GRS framework 

over the conventional F test is that it allows more subtle and informative inferences to be obtained in 

situations where the sample size is large and models are routinely rejected at conventional levels as 

above or, e.g., in Fama and French (2015b). 

5. Conclusion 

We have developed a Bayesian asset-pricing test that requires a prior judgment about the magnitude 

of plausible model deviations or "alphas" and is easily calculated from the GRS F-statistic.  Given a 

set of candidate traded factors, we show how this test can be adapted to permit an analysis of 

Bayesian model comparison, i.e., the computation of model probabilities for the collection of all 

possible pricing models that are based on subsets of the given factors.   

 Our work is clearly in the tradition of the literature on asset-pricing tests.  However, Bayesian 

analysis has also been used to address other kinds of questions in finance.  For example, Pastor and 

Stambaugh (2000) are interested in comparing models too, but from a different perspective.  As they 

note, the objective of their study “is not to choose one pricing model over another.”  Rather, they 

examine the extent to which investors’ prior beliefs about alternative pricing models (one based on 

stock characteristics and another on a stock’s factor betas) impact the utility derived from the implied 

portfolio choices.  Utility-based metrics are undoubtedly important, but complementary to our focus 

on inference about models in this paper, and we hope to turn our attention to them in future work.  

While we have analyzed the “classic” statistical specification with returns that are 

independent and identically normally distributed over time (conditional on the market), extensions to 

accommodate time-variation in parameters and conditional heteroskedasticity of returns would be 

desirable.  The factors examined in Assness and Frazzini (2013), Hou, Xue and Zhang (2015a,b) and 

Fama and French (2015a,b) have been studied in our preliminary empirical exploration, but other 

factors related to short and long reversals, the levels of beta and idiosyncratic volatility, and various 

measures of liquidity could be considered in future work as well.   
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Appendix 

Derivation of the formula for Q. 

Let x = 
1ˆ ˆ( ) (k ) ( )      .  We treat ̂  as a fixed vector in this analysis.  The inner integral in 

the definition of Q in (1.10) can be viewed as the expectation of exp(tx), a function of the random 

variable  , with t = -k/(2a).  Given the prior P( | , ) MVN(0, k )     , it follows that the 

conditional distribution of  x given  is noncentral chi-square  with N degrees of freedom and 

noncentrality parameter 
1 1ˆ ˆk     .  Thus, the inner integral is equal to the moment-generating 

function of this noncentral chi-square evaluated at t:
26

 

  

1 1

N/2 N/2 N/2

ˆ ˆ ˆ ˆt / (2a)
exp exp exp

1 2t 1 k / a 2(a k)

(1 2t) (1 k / a) (1 k / a)

              
             
  

                            (A.1) 

Next, we need to evaluate the integral of the product of (A.1) and the posterior density for .  

Given the distributional assumptions and the prior in Section 1, the posterior distribution of  is 

inverted Wishart, 
1W (S,T K)  , and so the posterior for 1  is 

1W(S ,T K)  .  Therefore, by the 

result on p.535 of Rao (1973), 
1ˆ ˆ   is distributed as 

1ˆ ˆS   times a chi-square variable with N-K 

degrees of freedom.  Thus the desired integral is 
N/2(1 k / a)  times the expectation of exp(tx), where 

x now refers to the chi-square variable and 
1ˆ ˆt S / [2(a k)]    .  Hence we need to evaluate the 

moment-generating function of the (central) chi-square:
27

 

  (T K)/2
(T K)/2 1ˆ ˆ(1 2t) 1 S / (a k) 

               

Since 
1ˆ ˆW (S / T) / a   by (1.3),  it follows that  

  

(T K)/2 N/2
a k

Q 1 (W / T) 1
(a k) a

             
                               (A.2) 

Proof of (1.11) when k0 = 0 

                                                       
 

26 http://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution#Moment_generating_function 

 
27 http://en.wikipedia.org/wiki/Chi-squared_distribution 
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It remains to evaluate the ratio of determinants, R| S | / | S |  in (1.9).  It is a standard result in the 

multivariate literature that the likelihood ratio test statistic is RLR T ln(| S | / | S |) .  Gibbons, Ross 

and Shanken (1989) further note that LR = Tln(1 + W/T) so that exp(LR/T) = 1 + W/T = R| S | / | S | .28
  

Therefore,   

    (T K)/2 (T K)/2

R 0| S | / | S | (1 W / T) Q
                                         (A.3) 

and (1.11) follows from (A.2) and (A.3). 

Allowing for k0 ≠ 0 

Let BF and BFk0 be the Bayes factors for comparing the prior value 0 with the values k and k0, 

respectively.  The Bayes factor for the approximate null is the ratio of MLs based on the prior values 

k0 and k.  This is (1/BF0)/(1/BF) = BF/BF0, where the ML for the exact null cancels out since it is in 

the numerators of both BF and BF0.  By (1.9), this is Qk0/Q.  as given in equation (1.11).  

 

 

 

 

 

                                                       
 

28 This also follows from Stewart (1995) by formulating the zero-alpha restriction in terms of his equation (7) 

with q=1.  Let C be a 1xK vector with 1 in the (1,1) position and zeroes elsewhere, M an NxN identity matrix and D a 

1xN zero vector.   
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Figure 1:  FF3 factors 1927-2013, Shmax = 1.27 x Sh(Mkt).   
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Figure 2: Sample 1972-2013, Shmax = 1.5 x Sh(Mkt).   
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Figure 3: Sample 1972-2013, Shmax = 1.5 x Sh(Mkt).   
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Figure 4: HML
m

 is not redundant in relation to the other factors {Mkt SMB ROE IA UMD} in the 

top model.  Bayesian GRS intercept test for HML
m

.    Sharpe ratio for alternative as multiple of ratio 

under null hypothesis. 
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Figure 5: UMD is redundant in relation to the model {Mkt SMB ROE IA}.  Bayesian GRS intercept 

test for UMD.  Sharpe ratio for alternative as multiple of ratio under null hypothesis. 

 



  46

 

 

Figure 6: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 size-momentum 

portfolios (blue line) plus UMD, HML
m

 (red line).   Sharpe ratio for alternative as multiple of ratio 

under null hypothesis. 
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Figure 7: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 Book-to-

market/investment portfolios (blue line) plus UMD, HML
m

 (red line).  Sharpe ratio for alternative as 

multiple of ratio under null hypothesis. 
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Figure 8: Sample 1972-2013,  Model = {Mkt SMB IA ROE UMD HML
m

}.  Test assets: 25 Book-to-

market/investment portfolios.  Sharpe ratio for alternative as multiple of ratio under null hypothesis. 
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Figure 9: Sample 1972-2013, Model = {Mkt SMB IA ROE UMD HML
m

}, Test assets = 25 size-

momentum portfolios.  σα 
= 1% (blue line) or 1.5% (black dashed) under the approximate null 

hypothesis.  Sharpe ratio for alternative as multiple of ratio under null hypothesis. 
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Table 1  

Fama-French factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

 

Data Sample: Jan 1927 to Dec 2013   

Market Sharpe Ratio = 0.115 

3-factor Sharpe Ratio  = 0.142 or 1.23*Market Sharpe Ratio 

 

 

 

 

        *
Multiple of Mkt Sharpe ratio under 3-factor alternative. 

 

 

 

 

Table 2 

  10 factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   

Market Sharpe Ratio = 0.113 

6-factor (best model) Sharpe Ratio = 0.51 or 4.5*Market Sharpe Ratio  

 

Model/Prior Multiple
* 

1.25 1.5 2 3 

Mkt SMB ROE IA HML
m

 UMD 7.8 23.0 35.7 42.0 

Mkt SMB ROE CMA HML
m

 UMD 5.0 14.4 22.1 25.7 

Mkt ROE IA HML
m

 UMD 8.3 12.4 8.4 5.2 

Mkt ME ROE IA HML
m

 UMD 4.5 10.8 12.6 11.4 

Mkt ROE CMA HML
m

 UMD 5.5 8.6 6.2 4.1 

Mkt ME ROE CMA HML
m

 UMD 2.9 6.8 7.9 7.0 

Mkt SMB ROE IA HML
m

 3.9 3.7 1.3 0.5 
 

*
Multiple of Mkt Sharpe ratio under 6-factor alternative. 

 

 

 

Model/Prior Multiple
* 

1.13 1.27 1.58 2.24 

Mkt HML 44.9 51.3 58.5 65.2 

Mkt HML SMB 42.3 39.1 32.2 23.3 

Mkt 6.5 5.2 5.7 8.2 

Mkt SMB 6.3 4.4 3.6 3.4 
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Table 3: Categorical Models - Posterior Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   

Market Sharpe Ratio = 0.113 

6-factor (best model) Sharpe Ratio = 0.51 or 4.5 *Market Sharpe Ratio 

 

 

 

 

    Table 4: Relative Probabilities for each Categorical Factor in the 10-factor Analysis 

 

Factor/Prior Multiple
*
 1.25 1.5 2 3 

ROE 83.8 97.1 99.7 100 

IA 62.3 61.7 61.2 61.4 

SMB 61.8 67.8 73.9 78.6 

 HML
m

 70.9 95.2 99.7 100 

       
*
Multiple of Mkt Sharpe ratio under 6-factor alternative. 

Remaining PROF, INV, SIZE and VAL probability goes to RMW, CMA, ME and HML, 

respectively. 

 

 

 

 

 

Model/Prior Multiple
* 

1.25 1.5 2 3 

Mkt SIZE PROF INV VAL MOM 26.8 57.0 78.6 86.2 

Mkt PROF INV VAL MOM 18.4 22.2 14.8 9.3 

Mkt SIZE PROF INV VAL 19.9 11.0 3.0 0.9 

Mkt SIZE PROF INV 9.4 2.8 0.3 0.0 

Mkt PROF INV VAL 10.1 2.1 0.2 0.0 

Mkt SIZE PROF VAL MOM 0.0 1.7 2.4 3.0 

Mkt PROF VAL MOM 0.8 1.0 0.7 0.5 
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Table 5 

Intercepts for each Factor in the Highest-Probability Model on the other Five-factors 

This table presents annualized alphas from regressions of each factor on the other factors in the 

model {Mkt SMB ROE IA UMD HML
m

}.  Sample period Jan 1972 to Dec 2013 

 

Factor SMB ROE IA UMD HML
m

 

Alpha 

(t-statistic) 

5.09 

(3.14) 

6.97 

(6.08) 

1.20 

(1.50) 

6.60 

(3.96) 

6.07 

(5.26) 
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