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ABSTRACT

Motivation: Inferring a gene regulatory network exclusively from

microarray expression profiles is a difficult but important task. The

aim of this work is to compare the predictive power of some of the

most popular algorithms in different conditions (like data taken at

equilibrium or time courses) and on both synthetic and real

microarray data. We are in particular interested in comparing

similarity measures both of linear type (like correlations and partial

correlations) and of non-linear type (mutual information and condi-

tional mutual information), and in investigating the underdetermined

case (less samples than genes).

Results: In our simulations we see that all network inference

algorithms obtain better performances from data produced with

‘structural’ perturbations, like gene knockouts at steady state, than

with any dynamical perturbation. The predictive power of all

algorithms is confirmed on a reverse engineering problem from

Escherichia coli gene profiling data: the edges of the ‘physical’

network of transcription factor–binding sites are significantly over-

represented among the highest weighting edges of the graph that we

infer directly from the data without any structure supervision.

Comparing synthetic and in vivo data on the same network graph

allows us to give an indication of how much more complex a real

transcriptional regulation program is with respect to an

artificial model.

Availability: Software is freely available at the URL http://people.-

sissa.it/�altafini/papers/SoBiAl07/

Contact: altafini@sissa.it

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Of the various problems one can encounter in Systems Biology,

that of reverse engineering gene regulatory networks from high-

throughput microarray expression profiles is certainly one of

the most challenging for a number of reasons. First, the number

of variables that come into play is very high, of the order of the

thousands or tens of thousands at least, and there is normally

no sufficient biological knowledge to restrict the analysis to a

subset of core variables for a given biological process. Second,

the number of gene expression profiles available is typically

much less than the number of variables, thus making the

problem underdetermined. Third, there is no standard model of

the regulatory mechanisms for the genes, except for a generic

cause–effect relationship between transcription factors and

corresponding binding sites. Fourth, little is known (and no

high-throughput measure is available) about the

post-transcriptional modification and on how they influence

the regulatory pattern we see on the microarray experiments. In

spite of all these difficulties, the topic of reverse engineering of

gene regulatory networks is worth pursuing, as it provides the

biologist with phenomenologically predicted gene–gene

interactions.

Many are the methods that have been proposed for this

scope in the last few years, like Bayesian networks (Friedman

et al., 2000), linear ordinary differential equations (ODEs)

models (Yeung et al., 2002), relevance networks (Butte and

Kohane, 1999; D’haeseleer et al., 1998) and graphical models

(Kishino and Waddell, 2000; de la Fuente et al., 2004 ;

Magwene and Kim, 2004; Schäfer and Strimmer, 2005).

The aim of this work is to compare a few of these methods,

focusing in particular on the last two classes of algorithms, that

reconstruct weighted graphs of gene–gene interactions.

Relevance networks look for pairs of genes that have similar

expression profiles throughout a set of different conditions, and

associate them through edges in a graph. The reconstruction

changes with the ‘similarity measure’ adopted: popular choices

for gene networks are covariance-based measures like the

Pearson correlation (PC) (Butte and Kohane, 1999; D’haeseleer

et al., 1998), or entropy-based like the mutual information (MI)

(Butte and Kohane, 2000; D’haeseleer et al., 1998). While PC is

a linear measure, MI is non-linear. These simple pairwise

similarity methods are computationally tractable, but fail to

take into account the typical patterns of interaction of multi-

variate datasets. The consequence is that they suffer from a

high false discovery rate, i.e. genes are erroneously associated

while in truth they only indirectly interact through one or more

other genes.*To whom correspondence should be addressed.
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In order to prune the reconstructed network of such false

positives, one can use the notion of conditional independence

from the theory of graphical modeling (Edwards, 2000), i.e. look

for residual PC orMI after conditioning over one or more genes.

These concepts are denoted as partial Pearson correlation (PPC)

and conditional mutual information (CMI). First and second

order PPC were used for this purposes in de la Fuente et al.

(2004). If n is the number of genes, the exhaustive conditioning

over n� 2 genes is instead used in Schäfer and Strimmer (2005)

under the name of graphical Gaussian models (GGM). As for

MI, conceptually the CMI plays the same role of the first order

PPC. In our knowledge, CMI has never been used before for

gene network inference, although an alternative method for

pruning the MI graph proposed in Margolin et al. (2006), based

on the so-called Data Processing Inequality (DPI), relies on the

same idea of conditioning, namely on searching for triplets of

genes forming a Markov chain.
Since we miss a realistic large-scale model of a gene

regulatory network, it is not even clear how to fairly evaluate

and compare these different methods for reverse engineering.

A few biologically inspired (small-size) benchmark problems

have been proposed, like the songbird brain model (Smith et al.,

2002) or the Raf pathway (Werhli et al., 2006), or completely

artificial networks, typically modeled as systems of non-linear

differential equations (Mendes et al., 2003; Zak et al., 2001).

Since we are interested in large-scale gene networks, we shall

focus on the artificial network of Mendes et al., (2003), in which

the genes represent the state variables and the mechanisms of

gene–gene inhibition and activation are modeled using sigmoi-

dal-like functions as in the reaction kinetics formalism. This

network has several features that are useful for our purposes:

(i) its size can be chosen arbitrarily; (ii) realistic (non-linear)

effects like state saturation or joint regulatory action of several

genes are encoded in the model; (iii) perturbation experiments

like gene knockout or different initial conditions or measure-

ment noise are easily included.

Similar comparative studies have appeared recently in the

literature (Margolin et al., 2006; Werhli et al., 2006). However,

Werhli et al. (2006) evaluates Bayesian networks, GGM and PC

relevance networks on one specific, very small (11 genes)

network. Margolin et al. (2006) instead compares Bayesian

networks, MI relevance networks and DPI using a number of

expression profiles m much larger than the number of genes n,

while we are also interested in more realistic scenarios. Our

investigation aims at:

� comparing conditional similarity measures (like PPCs,

GGM and CMI) with ‘static’ measures (like PC and MI);

� comparing linear measures (PC and PPCs) with non-linear

ones (MI, CMI, DPI).

In particular, for the different reconstruction algorithms we

are interested in the following questions:

� what is the predictive power for a number of measurements

m � n? How does it grow with m?

� do the algorithms scale with size?

� what is the most useful type of experiment for the purposes

of network inference?

In order to investigate a more realistic setting, the afore-

mentioned methods were applied to a publicly available dataset

of 445 gene expression profiles for 4345 genes of Escherichia

coli. Since a benchmark graph in this case is obviously

unknown, in order to evaluate the algorithms we used the

network of transcription factors–binding sites (TrF-BS) avail-

able in Salgado et al. (2006). Needless to say, due to the

complexity of the transcriptional and post-transcriptional

regulatory mechanisms of a living organism, we expect the

TrF-BS network to be only partially reflected in the inferred

network. Quite remarkably, though, we find that for all

algorithms the 3071 edges of the TrF-BS graph are markedly

over-represented among the highest weighting edges of the

reconstructed network, thus showing that (i) transcription

factors indeed contribute to the regulation of gene expression;

(ii) the inference algorithms have some predictive power also in

real systems (although the number of false positives remains

unavoidably very high).

Furthermore, if we create an artificial dataset starting from

the TrF-BS graph of E.coli, we can also compare the predictive

power on an in silico model with that on the in vivo system with

equal amount of information. We will see that in the regime of

much less measurements than variables the differences are not

so large. As a byproduct, we also have an indicative estimate of

how much our artificial model is a simplification of a real

transcriptional regulatory network.

2 METHODS

2.1 The artificial network

The model we used to generate artificial gene expression datasets is the

reaction kinetics-based system of coupled non-linear continuous time

ODEs introduced in Mendes et al. (2003). The expression levels of the

gene mRNAs are taken as state variables, call them xi, i ¼ 1, . . . , n.

The influence on the transcription of each gene due to the other genes

is described by a (sparse) matrix of adjacencies A ¼ ðai, jÞ and the rate

law for the mRNA synthesis of a gene is obtained by multiplying

together the sigmoidal-like contributions of the genes identified as

its inhibitors and activators. Consider the i-th row of A, i ¼ 1, . . . , n and

choose randomly a sign to its non-zero indexes. Denote by j1, . . . , ja
the indexes with assigned positive values (activators of the gene xi) and

with k1, . . . , kb the negative ones (inhibitors of xi). The ODE for xi
is then

dxi
dt

¼Vi

Y
j2fj1;...;jag

1þ
x
vi;j
j

x
vi;j
j þ �

vi;j
i;j

 ! Y
k2fk1;...;kbg

�
vi;k
i;k

x
vi;k
k þ �

vi;k
i;k

� �ixi; ð1Þ

where Vi represent the basal rate of transcription, �i, j (respectively �i, k)

the activation (resp. inhibition) half-life, �i, j (resp. �i, k) the

activation (resp. inhibition) Hill coefficients (in our simulations: �i, j,

�i, k 2 f1, 2, 3, 4g) and �i the degradation rate constants. The ODE (1)

always tends to a steady state, which could be 0 or a (positive)

saturation value. When xið0Þ � 0, the abundance xiðtÞ remains positive

during the entire time course, hence the solution is biologically

consistent.

As for the topology of A, we shall consider two classes of directed

networks widely used in literature as models for regulatory networks:

scale-free (Barabási and Albert, 1999) and random (Erdös and

Rényi, 1959).
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2.1.1 Data generated For the artificial network (1), a gene

expression profile experiment at time t corresponds to a state vector

½x1ðtÞ . . .xnðtÞ� obtained by numerically integrating (1). For the purpose

of reconstructing the network of gene–gene interactions from expres-

sion profiles, one needs to carry out multiple experiments, in different

conditions, typically performed perturbing the system in many different

ways. We shall consider the following cases of perturbations:

1. randomly chosen initial conditions in the integration of (1), plus

gene knockout obtained setting to 0 the parameter Vi of the

respective differential equation, as in Mendes et al. (2003).

2. only randomly chosen initial conditions in the integration of (1);

and the following types of measurements:

1. steady state measurements;

2. time-course experiments, in which the solution of the ODE is

supposed to be measured at a certain (low) sampling rate.

The numerical integration of (1) is carried out in MATLAB.

In all cases, a Gaussian measurement noise is added to corrupt

the output.

2.2 Pearson correlation and partial Pearson correlation

Methods based on PC relevance networks were proposed already in

D’haeseleer et al. (1998). If to each gene i we associate a random

variable Xi, whose measured values we denote as xið‘Þ for ‘ ¼ 1, . . . ,m,

the PC between the random variables Xi and Xj is

RðXi,XjÞ ¼

Pm
‘¼1ðxið‘Þ � �xiÞðxjð‘Þ � �xjÞ

ðn� 1Þ
ffiffiffiffiffiffiffi
vivj

p ,

where �xi, vi and �xj, vj are sample means and variances of xið‘Þ and xjð‘Þ

over the m measurements.

Since correlation alone is a weak concept and cannot distinguish

between direct and indirect interactions, (e.g. mediated by a common

regulator gene), an algorithm for network inference can be improved by

the use of partial correlations (de la Fuente et al., 2004). The minimum

first order partial correlation between Xi and Xj is obtained by

exhaustively conditioning the pair Xi, Xj over all Xk. If exists k 6¼ i, j

which explains all of the correlation between Xi and Xj, then the partial

correlation between Xi and Xj becomes 0 and the pair Xi, Xj is

conditionally independent given Xk. When this happens, following

Edwards (2000) we say that the triple Xi,Xj,Xk has a Markov property:

on an undirected graph genes i and j are not adjacent but separated

by k. This is denoted in Edwards (2000) as Xi �Xj jXk. In formulas, the

minimum first order PPC is

RC1
ðXi,XjÞ ¼ min

k6¼i, j
jRðXi,Xj jXkÞj,

where

RðXi,Xj jXkÞ ¼
RðXi,XjÞ � RðXi,XkÞRðXj,XkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R2ðXi,XkÞÞð1� R2ðXj,XkÞÞ

p :

If RC1
ðXi,XjÞ ’ 0 then exists k such that Xi �Xj jXk. Sometimes

conditioning over a single variable may not be enough, and one would

like to explore higher order PPCs. The minimum second order PPC for

example is given by

RC2
ðXi,XjÞ ¼ min

k, ‘6¼i, j
jRðXi,Xj jXk,X‘Þj,

with

RðXi,Xj jXk,X‘Þ ¼
RðXi,Xj jXkÞ � RðXi,X‘ jXkÞRðXj,X‘ jXkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R2ðXi,X‘ jXkÞÞð1� R2ðXj,X‘ jXkÞÞ

p

and so on for higher order PPCs. Since the computation is

exhaustive over all n genes, the computational cost of the

algorithm for the k-th order minimum PPC is of the order of OðnkÞ,

and it becomes quickly prohibitive for k � 2, if n is of the order of the

thousands.

The weight matrix R can be used to rank the ðn2 � nÞ=2 possible

(undirected) edges of the graph. The use of PPC allows to prune

the graph of many false positives computed by PC alone. However, the

information provided by PC and PPC is one of independence or

conditional independence, i.e. a low value of PC and PPC for a pair

Xi, Xj guarantees that an edge between the two nodes is missing. A high

value of the quantities RðXi,XjÞ and RC1
ðXi,XjÞ does not guarantee

that i and j are truly connected by an edge, as RC2
ðXi,XjÞ may be small

or vanish.

In de la Fuente et al. (2004) it is shown how to choose a cutoff

threshold for the weight matrices and how to combine together the

effect of R, RC1
and RC2

.

2.3 Graphical Gaussian models

When the n� n matrix R of elements RðXi,XjÞ is invertible, and we can

assume that the data are drawn from a multivariate normal distribu-

tion, then the exhaustive conditioning over n� 2 genes can be expressed

explicitly. Denote � ¼ R�1 the concentration matrix of elements

� ¼ ð!i, jÞ. Then the partial correlation between Xi and Xj is

RCall
ðXi,XjÞ ¼ �

!i, jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!i, i!j, j

p :

When R is not full rank, then the small-sample stable estimation

procedure of Schäfer and Strimmer (2005) can be used. To compute

RCall
, we used the R package GeneNet version 1.0.1, available from

CRAN (http://cran.r-project.org).

2.4 Mutual information and conditional mutual

information

In an association network, alternatively to PC and PPC, one can use

the information-theoretic concept of MI (Butte and Kohane, 2000;

Gardner and Faith, 2005; Margolin et al., 2006), together with

the notion of conditional independence to discern direct from

indirect interdependencies. Given a discrete random variable Xi,

taking values in the set Hi, its entropy (Shannon, 1948) is

defined as HðXiÞ ¼ �
P

�2Hi
pð�Þ log pð�Þ, where pð�Þ is the

probability mass function pð�Þ ¼ PrðXi ¼ �Þ, � 2 Hi. The joint

entropy of a pair of variables Xi, Xj, taking values in the sets Hi, Hj

respectively, is

HðXi,XjÞ ¼ �
X

�2Hi ,  2Hj

pð�, Þ log pð�, Þ,

while the conditional entropy of Xj given Xi is defined as

HðXj jXiÞ ¼ HðXi,XjÞ �HðXiÞ. The MI of Xi, Xj is defined as

IðXi;XjÞ ¼ HðXiÞ �HðXi jXjÞ and can be explicitly expressed as

IðXi;XjÞ ¼
X

�2Hi ,  2Hj

pð�, Þ log
pð�, Þ

pð�Þpð Þ
� 0:

When the joint probability distribution factorizes, the MI vanishes:

pð�; Þ ¼ pð�Þpð Þ¼)IðXi;XjÞ ¼ 0: ð2Þ

The MI conditioned with respect to a third variable Xk is:

IðXi;Xj jXkÞ ¼ HðXi jXkÞ �HðXi jXj,XkÞ

or, equivalently,

IðXi;Xj jXkÞ ¼ HðXi,XkÞ þHðXj,XkÞ �HðXkÞ �HðXi,Xj,XkÞ:

N.Soranzo et al.
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All pairs of nodes can be conditioned exhaustively on each of the

remaining n� 2 nodes and the minimum of such CMIs

ICðXi;XjÞ ¼ min
k6¼i, j

IðXi;Xj jXkÞ

can be taken as a measure of conditional independence.

When there exists a Xk that explains the whole MI between

Xi and Xj, then the triplet has the Markov property

IðXi;XjjXkÞ ¼ 0()Xi �XJjXk; ð3Þ

implying ICðXi;XjÞ ¼ 0, otherwise ICðXi;XjÞ > 0.

Just like for the PC and PPC case, the two conditions (2) and (3) can

be used to construct the graph of the gene network. I and IC can also be

combined together, and possibly with a cutoff threshold (computed e.g.

through a bootstrapping method). An alternative algorithm to

implement the Markov property Xi �Xj jXk is proposed in Margolin

et al. (2006). It is based on the so-called DPI and consists in dropping

the edge corresponding to the minimum of the triplet IðXi,XjÞ, IðXj,XkÞ

and IðXi,XkÞ for all possible triplets i 6¼ j 6¼ k. This method is shown in

Margolin et al. (2006) to prune the graph of many false positives.

Denote IDPI the matrix obtained by applying the DPI. Although IDPI

and IC derive from the same notion, the information they provide is not

completely redundant. In the computation of I and IC we used the

B-spline algorithm of Daub et al. (2004). The matrix I obtained in this

way is quite similar to the MI one gets from the Gaussian Kernel

method used in Margolin et al. (2006), see Supplementary Material.

While the definition of CMI can be extended to higher number of

conditioning variables, from a computational point of view this

becomes unfeasible for n of the order of thousands: the time complexity

of our algorithm for complete data matrices is Oðn3ðmp3 þ q3ÞÞ, where

p is the spline order and q is the number of bins used.

3 RESULTS

3.1 Synthetic data

In order to evaluate the algorithms, we compare each

(symmetric) weight matrix with the corresponding adjacency

matrix A and calculate the (standard) quantities listed in

Table 1.
The Receiver Operating Characteristic (ROC) and the

Precision versus Recall (PvsR) curves measure the quality of

the reconstruction. To give a compact description for varying

m, the Area Under the Curve (AUC) of both quantities will be

used. The ROC curve describes the trade-off between sensitivity

and the false positive rate (1-specificity). An AUC(ROC) close

to 0.5 corresponds to a random forecast, AUC(ROC) < 0:7
is considered poor, 0:7 � AUCðROCÞ < 0:8 fair and

AUCðROCÞ � 0:8 good. For gene networks, as A is generally

sparse, the ROC curve suffers from the high number of false

positives. The PvsR curve instead is based only on comparing

true edges and inferred edges, and therefore highlights the
precision of the reconstruction (Margolin et al., 2006). All the
quantities we consider as well as the ROC and the PvsR curves

are based on sorting the edge weights (in absolute values for
PC, PPCs and GGM) and on growing the network starting
from the highest weight down to the lowest one. Fixing a cutoff

threshold only means altering the tail of the curves, thus we
shall not make any such choice, but explore the entire range of
values for the edge weights.

In Figure 1, the results for reconstructions of random and
scale-free networks of 100 genes with the different similarity
measures (R, RC1

, RC2
, RCall

, I, IC and IDPI) are shown for

different numbers m of measurements. AUC(ROC),
AUC(PvsR) and the number of TP for a fixed value of
acceptable FP (here 20) are displayed in the three columns.

By comparing the first two rows of Figure 1 it is possible to
examine the influence of the network topology on the
reconstruction. Under equal conditions (type and amount of

experiments), all the algorithms performed better for random
networks, confirming that they are easier to infer than scale-
free ones (de la Fuente et al., 2004). Also another network

parameter, the average degree, is influencing the performance
of the algorithms: the predictive power is higher for sparser
networks than for less sparse ones (see Section 2 of the

Supplementary Material).
If we now focus the attention on the scale-free topology

(the most similar to known regulatory networks), it can be seen

from the graphs that the performances of the reconstructions
are much higher with knockout perturbations (rows 2–3) than
for data produced without knockouts (row 4). This suggests

that knockouts [i.e. node suppression on (1)] help in exploring
the network structure, while perturbing only the initial
conditions contributes very little predictive information.
Moreover, when perturbing the system with knockouts,

steady state measurements (row 2) are able to generate good
reconstructions with much less samples than time-course
experiments (row 3), in agreement with the results of Bansal

et al. (2007). For steady states, the performances of the
algorithms improve increasing m up to n, then stabilize (for
some, like GGM, even decrease). For time-course data, instead,

the graphs tend to level off only when each gene has been
knocked out once, regardless of the number of samples taken

during the time series. This can be seen on the third row of
Figure 1, where the AUCs keep growing until 1000 samples
(corresponding to 100 time series each contributing 10 samples)

and only then tend to stabilize (data beyond 1000 samples are
not shown in Fig. 1). The same trend can be observed
increasing the number of samples per series (data not shown).

Learning a network by means of time series alone (without any
knockout) is very difficult as can be deduced from the low
values of AUCs achieved in the fourth row of Figure 1. Notice,

however, that these values get much worse (essentially random)
if we consider no-knockout and steady state samples.
As for the different algorithms, the PPCs perform well in all

conditions, and are significantly improving performances with

respect to PC for both AUC(PvsR) and TP for fixed FP. On the
contrary, applying the DPI to MI [with a tolerance of 0.1, see
Margolin et al. (2006)] only slightly improves the precision of

the MI. Since the DPI simply puts to zero the weights of the

Table 1. Quantities of interest in the evaluation of the algorithms

TP (true positives) ¼ correctly identified true edges

FP (false positives) ¼ spurious edges

TN (true negatives) ¼ correctly identified zero edges

FN (false negatives) ¼ not recognized true edges

recall (or sensitivity) ¼ TP=ðTPþ FNÞ

specificity ¼ TN=ðTNþ FPÞ

precision ¼ TP=ðTPþ FPÞ

Comparing association network algorithms
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Fig. 1. Evaluating the reconstructions via R, RC1
, RC2

, RCall
, I, IC and IDPI algorithms on 100 gene artificial networks for increasing numbers of

measurements. Top row: random topology, knockout perturbations and steady state measurements. Second row: scale-free topology, knockout

perturbations and steady state measurements. Third row: scale-free, knockout and time-course experiments. Fourth row: scale-free, only initial

conditions perturbations and time-course experiments. On the two time courses 10 (equispaced) samples are taken on each time course. The x-axis

label ‘N. of measurements’ refers to the total number of samples taken (for example 200 means 200 experiments of steady state type, but only 20

experiments on the two time courses). Left column: AUC(ROC). Central column: AUC(PvsR). Right column: number of TP for a number of FP

equal to 20. Values shown are means over 10 repetitions.
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edges it considers false positives, one should not forget that

DPI is penalized with respect to the other measures when

computing AUC(ROC). Like PPCs, GGM gives good average

results, but looks promising especially for time-course experi-

ments, where also CMI is far superior than MI and DPI.
Finally, it is important to remark that the results we obtained

for a network of 100 genes are qualitatively and quantitatively

similar to those for larger gene networks: as an example in the

Supplementary Material a scale-free network of 1000 genes

yields AUCs that are comparable to those shown in Figure 1

for an equal ratio m / n.

3.2 E.coli network inference

We downloaded the E.coli gene expression database M3D

‘Many Microbe Microarrays Database’ (build

E_coli_v3_Build_1 from http://m3d.bu.edu, T. Gardner Lab,

Boston University). This dataset consists of 445 arrays from 13

different collections corresponding to various conditions, like

different media, environmental stresses (e.g. DNA damaging

drugs, pH changes), genetic perturbations (upregulations and

knockouts) and growth phases. The experiments were all

carried out on Affymetrix GeneChip E.coli Antisense

Genome arrays, containing 4345 gene probes. A global RMA

normalization was performed on the data prior to network

inference. All methods described above were applied, except

RC2
, which is computationally very heavy for thousands of

genes and behaves in much the same way as RC1
. Calculating

CMI took us �12 days on a 3 GHz processor. IDPI was

computed from I with a tolerance equal to 0.3 (the tolerance

suggested in Margolin et al. (2006), 0.1, prunes 95.75% of the

TrF-BS edges).

As mentioned before, we chose as ‘true’ matrix the E.coli K12

transcriptional network compiled in the RegulonDB database,

version 5.6 (Salgado et al., 2006), from which we derived a

direct graph of 3071 interactions. As the number of possible

undirected edges is 9 437 340, this matrix is too sparse for any of

the previous statistics to be meaningful, e.g. AUCs(ROC) are

all around 0.6. Furthermore, biologically the transcription

regulation cannot be expected to be manifestly dominant over

all other processes that determine the gene expression levels in a

living organism. Nevertheless, if we look at the weights assigned

to the TrF–BS edges (‘true’ edges) by the reconstruction

algorithms, we see that they are significantly overrepresented in

the highest weighting region (right part of the graph in Fig. 2)

that in the medium/low weight ones (center/left in Fig. 2),

regardless of the similarity measure adopted. To confirm the

validity of our approach, we applied a randomization to the

M3D dataset and then inferred the network with the best

reconstruction algorithm (GGM). In this case, as one would

expect, the TrF–BS edges are uniformly distributed on the bins

(rand RCall
in Fig. 2).

If we focus only on the highest weighting bin of each

reconstruction algorithm, the concordances on the identified

edges (i.e. the intersection of TP) among the algorithms are

shown in Table 2. Notice the high degree of concordance

between correlation and MI.
In absolute terms, of course, there is a huge number of edges

with high weights not corresponding to any TrF-BS interaction

(i.e. FP), reflecting the complexity of the gene expression

regulation program.

3.3 Artificial versus in vivo data, given a network

Starting from the E.coli TrF–BS direct graph, it is possible to

create an artificial dataset using the model (1) and compare the

predictive power of the algorithms on synthetic data with the

previous real expression profiles. For this scope we generated

the same amount of synthetic data (445 measurements),

describing experiments of steady state knockout type.

The same type of score based on coarse grain binning

shown in Figure 2 is shown in Figure 3 for these synthetic

data. Clearly the predictive power has grown in average,

although the difference is not so drastic as one could have

expected. Similarly, the concordances of TP in the top bins
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Fig. 2. Histograms showing the percentage of TrF-BS edges in each of

the 100 bins in which the values of the similarity matrix (corresponding

to calculated edge weights) is subdivided for the different reconstruction

algorithms. The binning is according to the inferred edge weights, and

each bin contains 94 373 edges, and the bin weights (taken as the

median of the weights of the edges in each bin) are normalized to 1.

Overrepresentation towards the heaviest weighted edges is clearly

visible for all the reconstruction algorithms. On the contrary, a

randomization of the dataset, applied before the network reconstruc-

tion with the GGM algorithm, produces a uniform distribution of the

TrF-BS edges, corresponding to a value of �1% on each bin.

Table 2. TP concordances between similarity measures for the TrF-BS

network with real and synthetic data

Algorithms in vivo in silico

R,RC1
,RCall

40 83

I, IC, IDPI 63 146

R, I 156 185

RC1
,RCall

, IC, IDPI 29 47

all 27 47

Comparing association network algorithms

1645

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/1640/223940 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://m3d.bu.edu


(Table 2) are better than on the real data for all the
intersections. As expected, all these indexes agree in saying

that our artificial network is simpler than the real network,
although the difference that emerges from the data is not so

dramatic. Finally notice that also here concordances between

unconditioned similarity measures (PC, MI) alone are very
high. This confirms that conditioning allows to identify edges

otherwise not detectable.

4 DISCUSSION

For the networks generated with the model (1), we find that
steady state systematic gene knockout experiments are the most

informative for the purpose of reconstructing this type of
networks, yielding an AUC(ROC) > 0:7 even with m � n. In

particular for this class of perturbations the linear similarity

measures are enough. The non-linear measures MI and CMI
instead are less precise. For time series, the situation is

different: relevance networks perform poorly even when
m 	 n. In this context, conditioned measures are relatively

good. The marked difference between inference on steady state

þ knockouts and the more ‘classical’ dynamical inference from
time series alone without knockouts, is probably due to the

highly non-linear content of the transient evolution of (1).
Reverse engineering non-linear dynamical systems is notor-

iously a very difficult problem, and not even the use of non-

linear similarity measures is enough to attain a decent
predictive power. At steady state, such non-linear behavior

has collapsed into a set of algebraic relations (corresponding
to dxi=dt ¼ 0), which become sufficiently informative if

‘structurally’ perturbed, e.g. by means of node suppressions.

In short, structural perturbations are more efficient than
dynamical perturbations for the purposes of (non-linear)

network inference.

For a real network like the one of E.coli, under the

(biologically plausible) assumption that gene expression

reflects transcriptional regulation through the TrF-BS interac-

tions, we find that the predictive power of essentially all

algorithms is certainly non-zero, and that GGM ‘guesses’ a

remarkably high number of edges, with respect to the other

similarity measures, but also in absolute value, taking into

account that in this case m=n � 1=10. Using the same graph to

compare our artificial network and the ‘true’ network of the

in vivo system we do not see a dramatic difference in the

predictive power between the two. This could be simply due to

the above-mentioned low ratio m=n.
Other interesting observations are the following:

� After a certain threshold m0 � n the inference ratio of all

algorithms tends to stabilize. To improve the predictive

capabilities, other types of perturbations should probably

be used (like e.g. simultaneous multiple knockouts,

external stimuli, etc.).

� AUC(ROC) around 0.9 are reached only by MI, PC and

GGM in the steady state knockout simulations.

� Conditioning is useful to improve the false discovery rate,

and the TP it identifies are to a large extent different from

those detected without conditioning.

� Of all algorithms tested only second order PPC and CMI

are too computationally intensive to be used in a truly large

network (tens to hundreds of thousands of genes).

� MI, CMI and DPI depend heavily on the imple-

mentation algorithm, and, at least in our B-spline

implementation, on the underlying model of probability

distribution (for time-course experiments the quality of

the reconstruction improves considerably with the

pre-application of a rank transform to the data).

Correlations instead, are much less sensitive. For example

replacing PC with Spearman correlation yields no sub-

stantial difference.

� The best performances versus runtime are achieved by the

GGM algorithm.

� Sparse networks are easier to identify than dense

(or less sparse) ones, regardless of the algorithms used,

see Supplementary Material.

� Even with m � n (realistic situation), using steady state

knockout experiments all algorithms have a decent

predictive power.

5 CONCLUSION

If unsupervised graph-learning problems are notoriously

difficult (Edwards, 2000; Pearl, 2000), the conditions

under which these problems must be studied for large-scale

gene regulatory network inference (less data than nodes)

are even more challenging. Nevertheless, we can see

through simulation and through reasonable biological assump-

tions on real data that the predictive power of current

methods is indeed non-zero, and that a certain amount of

structural information can be extracted even in this regime

by means of computationally tractable algorithms, although
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Fig. 3. Percentage of TrF-BS edges in the 100 bins in which the values

of the similarity matrix is subdivided for an artificial dataset with the

same graph as the E.coli TrF-BS. Binning is done as described in

Figure 2. Overrepresentation towards the heaviest weighting edges is on

average higher than in Figure 2.
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the precision is very low and the number of false positives
unavoidably very high.
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