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Abstract

Humans can meaningfully report their confidence in a perceptual or cognitive decision. It is

widely believed that these reports reflect the Bayesian probability that the decision is cor-

rect, but this hypothesis has not been rigorously tested against non-Bayesian alternatives.

We use two perceptual categorization tasks in which Bayesian confidence reporting

requires subjects to take sensory uncertainty into account in a specific way. We find that

subjects do take sensory uncertainty into account when reporting confidence, suggesting

that brain areas involved in reporting confidence can access low-level representations of

sensory uncertainty, a prerequisite of Bayesian inference. However, behavior is not fully

consistent with the Bayesian hypothesis and is better described by simple heuristic models

that use uncertainty in a non-Bayesian way. Both conclusions are robust to changes in the

uncertainty manipulation, task, response modality, model comparison metric, and additional

flexibility in the Bayesian model. Our results suggest that adhering to a rational account of

confidence behavior may require incorporating implementational constraints.

Author summary

Humans are able to report a sense of confidence in decisions that we make. It is widely

hypothesized that confidence reflects the computed probability that a decision is accurate;

however, this hypothesis has not been fully explored. We use several human behavioral

experiments to test a variety of models that may be considered to be distinct hypotheses

about the computational underpinnings of confidence. We find that reported confidence

does not appear to reflect the probability that a decision is correct, but instead emerges

from a heuristic approximation of this probability.

Introduction

People often have a sense of a level of confidence about their decisions. Such a “feeling of

knowing” [1, 2] may serve to improve performance in subsequent decisions [3], learning [1],

and group decision-making [4]. Much recent work has focused on identifying brain regions

and neural mechanisms responsible for the computation of confidence in humans [5–7],
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nonhuman primates [8–10], and rodents [11]. In the search for the neural correlates of confi-

dence, the leading premise has been that confidence is Bayesian, i.e., the observer’s estimated

probability that a choice is correct [1, 12–14]. In human studies, however, naïve subjects can

give a meaningful answer when you ask them to rate their confidence about a decision [15];

thus, “confidence” intrinsically means something to people, and it is not a foregone conclusion

that this intrinsic sense corresponds to the Bayesian definition. Therefore, we regard the above

“definition” as a testable hypothesis about the way the brain computes explicit confidence

reports; we use Bayesian decision theory to formalize this hypothesis.

Bayesian decision theory provides a general and often quantitatively accurate account of

perceptual decisions in a wide variety of tasks [16–18]. According to this theory, the decision-

maker combines knowledge about the statistical structure of the world with the present sen-

sory input to compute a posterior probability distribution over possible states of the world. In

principle, a confidence report might be derived from the same posterior distribution; this is

the hypothesis described above, which we will call the Bayesian confidence hypothesis (BCH).

The main goal of this paper is to test that hypothesis. Recent studies have attempted to test the

BCH [19, 20] but, because of their experimental designs, are unable to meaningfully distin-

guish the Bayesian model from any other model of confidence.

Recent work has proposed possible qualitative signatures of Bayesian confidence [21].

However, the observation (or lack thereof) of these signatures provides an uncertain amount

of evidence in favor of (or against) the Bayesian model, and the signatures are therefore not

useful for determining which computations underlie confidence reports [22]. To objectively

and quantitatively determine whether confidence ratings appear to be Bayesian, we use a for-

mal model comparison approach. We test the predictions of the BCH as we vary the quality of

the sensory evidence and the task structure within individuals. We compare Bayesian models

against a variety of alternative models, something that is important for the epistemological

standing of Bayesian claims [23, 24]. We find that the BCH qualitatively describes human

behavior but that quantitatively, even the most flexible Bayesian model is outperformed by

models that take uncertainty into account in a non-Bayesian way.

Results

Experiment 1

During each session, each subject completed two orientation categorization tasks, Tasks A and

B. On each trial, a category C was selected randomly (both categories were equally probable),

and a stimulus s was drawn from the corresponding stimulus distribution and displayed. The

subject categorized the stimulus and simultaneously reported their confidence on a 4-point

scale, with a single button press (Fig 1a). Using a single button press for choice and confidence

may prevent post-choice influences on the confidence judgment ([25], but see [26]) and

emphasized that confidence should reflect the observer’s perception rather than a preceding

motor response. The categories were defined by normal distributions on orientation, which

differed by task (Fig 1b). In Task A, the distributions had different means (±μC) and the same

standard deviation (σC); leftward-tilting stimuli were more likely to be from category 1. Vari-

ants of Task A are common in decision-making studies [27]. In Task B, the distributions had

the same mean (0˚) and different standard deviations (σ1, σ2); stimuli around the horizontal

were more likely to be from category 1. Variants of Task B are less common [28–30] but have

some properties of perceptual organization tasks; for example, a subject may have to detect

when a stimulus belongs to a narrow category (e.g., in which two line segments are collinear)

that is embedded in a a broader category (e.g., in which two line segments are unrelated).

Computational models of human confidence
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Subjects were highly trained on the categories; during training, we only used highest-reli-

ability stimuli, and we provided trial-to-trial category correctness feedback. Subjects were then

tested with 6 different reliability levels, which were chosen randomly on each trial. During test-

ing, correctness feedback was withheld to avoid the possibility that confidence simply reflects a

learned mapping between stimulus orientation and reliability and the probability of being cor-

rect [30–33].

Because we are interested in subjects’ intrinsic computation of confidence, we did not

instruct or incentivize them to assign probability ranges to each button (e.g., by using a scoring

rule [34–36]). If we had, we would have essentially been training subjects to use a specific

model of confidence.

To ensure that our results were independent of stimulus type, we used two kinds of stimuli.

Some subjects saw oriented drifting Gabors; for these subjects, stimulus reliability was manip-

ulated through contrast. Other subjects saw oriented ellipses; for these subjects, stimulus

Fig 1. Task design. (a) Schematic of a test block trial. After stimulus offset, subjects reported category and confidence level with a single button
press. (b) Stimulus distributions for Tasks A and B. (c) Examples of low and high reliability stimuli. Six (out of eleven) subjects saw drifting
Gabors, and five subjects saw ellipses. (d) Generative model. (e) Example measurement distributions at different reliability levels. In all models
(except Linear Neural), the measurement is assumed to be drawn from a Gaussian distribution centered on the true stimulus, with s.d.
dependent on reliability.

https://doi.org/10.1371/journal.pcbi.1006572.g001
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reliability was manipulated through ellipse elongation (Fig 1c). We found no major differences

in model rankings between Gabor and ellipse subjects, therefore we will make no distinctions

between the groups.

For modeling purposes, we assume that the observer’s internal representation of the stimu-

lus is a noisy measurement x, drawn from a Gaussian distribution with mean s and s.d. σ (Fig

1d and 1e). In the model, σ (i.e., uncertainty) is a fitted function of stimulus reliability.

Bayesian model

A Bayes-optimal observer uses knowledge of the generative model to make a decision that

maximizes the probability of being correct. Here, when the measurement on a given trial is x,

this strategy amounts to choosing the category C for which the posterior probability p(C j x) is

highest. This is equivalent to reporting category 1 when the log posterior ratio, d ¼ log pðC¼1jxÞ

pðC¼2jxÞ
,

is positive.

In Task A, d is dA ¼ 2xmC
s2þs2

C

. Therefore, the ideal observer reports category 1 when x is posi-

tive; this is the structure of many psychophysical tasks [37]. In Task B, however, d is

dB ¼
1

2
log

s2þs2
2

s2þs2
1

�
s2
2
�s2

1

2ðs2þs2
1
Þðs2þs2

2
Þ
x2; the observer needs both x and σ in order to make an optimal

decision.

From the point of view of the observer, σ is the trial-to-trial level of sensory uncertainty

associated with the measurement [38]. In a minor variation of the optimal observer, we allow

for the possibility that the observer’s prior belief over category, p(C), is different from the true

value of (0.5, 0.5); this adds a constant to dA and dB.

We introduce the Bayesian confidence hypothesis (BCH), stating that confidence reports

depend on the internal representation of the stimulus (here x) only via d. In the BCH, the

observer chooses a response by comparing d to a set of category and confidence boundaries.

For example, whenever d falls within a certain range, the observer presses the “medium-low

confidence, category 2” button. The BCH is thus an extension of the choice model described

above, wherein the value of d is used to compute confidence as well as chosen category. There

is another way of thinking about this. Bayesian models assume that subjects compute d in

order to make an optimal choice. Assuming people compute d at all, are they able to use it to

report confidence as well? We refer to the Bayesian model here as simply “Bayes.” We also

tested several more constrained versions of this model.

The observer’s decision can be summarized as a mapping from a combination of a mea-

surement and an uncertainty level (x, σ) to a response that indicates both category and confi-

dence. We can visualize this mapping as in Fig 2, first column. It is clear that the pattern of

decision boundaries in the BCH is qualitatively very different between Task A and Task B. In

Task A, the decision boundaries are quadratic functions of uncertainty; confidence decreases

monotonically with uncertainty and increases with the distance of the measurement from 0. In

Task B, the decision boundaries are neither linear nor quadratic.

Alternative models

At first glance, it seems obvious that sensory uncertainty is relevant to the computation of con-

fidence. However, this is by no means a given; in fact, a prominent proposal is that confidence

is based on the distance between the measurement and the decision boundary, without any

role for sensory uncertainty [10, 11, 39]. Therefore, we tested a model (Fixed) in which the

response is a function of the measurement alone (equivalent to a maximum likelihood estimate

of the stimulus orientation), and not of the uncertainty of that measurement (Fig 2, second

column).

Computational models of human confidence
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We also tested heuristic models in which the subject uses their knowledge of their sensory

uncertainty but does not compute a posterior distribution over category. We have previously

classified such models as probabilistic non-Bayesian [40]. In the Orientation Estimation model,

subjects base their response on a maximum a posteriori estimate of orientation (rather than

category), using the mixture of the two stimulus distributions as a prior distribution. In the

Linear Neural model, subjects base their response on a linear function of the output of a hypo-

thetical population of neurons.

We derived two additional probabilistic non-Bayesian models, Lin and Quad, from the

observation that the Bayesian decision criteria are an approximately linear function of uncer-

tainty in some measurement regimes and approximately quadratic in others. These models are

able to produce approximately Bayesian behavior without actually performing any computa-

tion of the posterior. In Lin and Quad, subjects base their response on a linear or a quadratic

function of x and σ, respectively. A comparison of the Lin and Quad columns to the Bayes col-

umn in Fig 2 demonstrates that Lin and Quad can approximate the Bayesian mapping from

(x, σ) to response despite not being based on the Bayesian decision variable. All of the models

we tested were variants of the six models described so far (Bayes, Fixed, Orientation Estima-

tion, Linear Neural, Lin, Quad).

Each trial consists of the experimentally determined orientation and reliability level and the

subject’s category and confidence response (an integer between 1 and 8). This is a very rich

data set, which we summarize in Fig 3. We find the following effects: performance and confi-

dence increase as a function of reliability (Fig 3a, 3b, 3h and 3i), and high-confidence reports

are less frequent than low-confidence reports (Fig 3e and 3f). Note Fig 3c and 3d especially;

this is the projection of the data that we will use to demonstrate model fits for the rest of this

paper. We use this projection because the vertical axis (mean button press) most closely

approximates the form of the raw data. Additionally, because our models are differentiated by

how they use uncertainty, it is informative to plot how response changes as a function of reli-

ability, in addition to category and task.

Recently, a measure of the degree of association between accuracy and confidence, meta-d0,

has been developed [41, 42]. While it can be useful for characterizing individual differences,

we do not include it in our analyses or display it in Fig 3. That is because one strength of our

experimental design is that we parametrically vary stimulus strength and stimulus reliability;

Fig 2. Decision rules/mappings in four models. Each model corresponds to a different mapping from a measurement and uncertainty level to
a category and confidence response. Colors correspond to category and confidence response, as in Fig 1a. Plots were generated using parameter
values that were roughly similar to those found after fitting subject data but were chosen primarily to illustrate the different features of the
models.

https://doi.org/10.1371/journal.pcbi.1006572.g002
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this differs from papers in which meta-d0 plays a central role because, in those papers, the stim-

ulus is often only a binary category.

Model comparison

We used Markov Chain Monte Carlo (MCMC) sampling to fit models to raw individual-

subject data. To account for overfitting, we compared models using leave-one-out cross-vali-

dated log likelihood scores (LOO) computed with the full posteriors obtained through MCMC

[43]. A model recovery analysis ensured that our models are meaningfully distinguishable

(Methods). Unless otherwise noted, models were fit jointly to Task A and B category and con-

fidence responses.

Use of sensory uncertainty. We first compared Bayes to the Fixed model, in which the

observer does not take trial-to-trial sensory uncertainty into account (Fig 4). Fixed provides a

Fig 3. Behavioral data and fits from best model (Quad), experiment 1. Error bars represent ±1 s.e.m. across 11 subjects. Shaded regions
represent ±1 s.e.m. on model fits. (a,b) Proportion “category 1” reports as a function of stimulus reliability and true category. (c,d) Mean button
press as a function of stimulus reliability and true category. (e,f) Normalized histogram of confidence reports for both true categories. (g)
Proportion correct category reports as a function of confidence report and task. (h,i) Mean confidence as a function of stimulus reliability and
correctness. (j,k) Mean confidence as a function of stimulus orientation and reliability. (l,m) Proportion “category 1” reports as a function of
stimulus orientation and reliability. (n,o) Mean button press as a function of stimulus orientation and reliability. (c,d,n,o) Vertical axis label
colors correspond to button presses, as in Fig 1a. (l–o) For clarity, only 3 of 6 reliability levels are shown, although models were fit to all
reliability levels.

https://doi.org/10.1371/journal.pcbi.1006572.g003
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poor fit to the data, indicating that observers use not only a point estimate of their measure-

ment, but also their uncertainty about that measurement. Bayes outperforms Fixed by a

summed LOO difference (median and 95% CI of bootstrapped sums across subjects) of 2265

[498, 4253]. For the rest of this paper, we will report model comparison results using this

format.

Although Bayes fits better than Fixed, it still shows systematic deviations from the data,

especially at high reliabilities. (Because we fit our models to all of the raw data and because

boundary parameters are shared across all reliability levels, the fit to high-reliability trials is

constrained by the fit to low-reliability trials).

Noisy log posterior ratio. To see if we could improve Bayes’s fit, we tried a version that

included decision noise, i.e. noise on the log posterior ratio d. We assumed that this noise

takes the form of additive zero-mean Gaussian noise with s.d. σd. This is almost equivalent to

the probability of a response being a logistic (softmax) function of d [44]. Adding d noise

improves the Bayesian model fit by 804 [510, 1134] (S1 Table).

For the rest of the reported fits to behavior, we will only consider this version of Bayes with

d noise, and will refer to this model as Bayes-dN. We will refer to Bayes-dN, Fixed, Orientation

Fig 4. Model fits and model comparison for models Fixed and Bayes. Bayes provides a better fit, but both models have large deviations from
the data. Left and middle columns: model fits to mean button press as a function of reliability, true category, and task. Error bars represent ±1 s.
e.m. across 11 subjects. Shaded regions represent ±1 s.e.m. on model fits, with each model on a separate row. Right column: LOOmodel
comparison. Bars represent individual subject LOO scores for Bayes, relative to Fixed. Negative (leftward) values indicate that, for that subject,
Bayes had a higher (better) LOO score than Fixed. Blue lines and shaded regions represent, respectively, medians and 95% CI of bootstrapped
mean LOO differences across subjects. These values are equal to the summed LOO differences reported in the text divided by the number of
subjects. Although we plot data as a function of the true category here, the model only takes in measurement and reliability as an input; it is not
free to treat individual trials from each true category differently.

https://doi.org/10.1371/journal.pcbi.1006572.g004
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Estimation, Linear Neural, Lin, and Quad, when fitted jointly to category and confidence data

from Tasks A and B, as our core models.

Heuristic models. Orientation Estimation performs worse than Bayes-dN by 2041 [385,

3623] (Fig 5, second row). The intuition for one way that this model fails is as follows: at low

levels of reliability, the MAP estimate is heavily influenced by the prior and tends to be very

close to the prior mean (0˚). This explains why, in Task B, there is a bias towards reporting

“high confidence, category 1” at low reliability. Linear Neural performs about as well as Bayes-

dN, with summed LOO differences of 1188 [-588, 2704], and the fits to the summary statistics

are qualitatively poor (Fig 5, third row).

Finally, Lin and Quad outperform Bayes-dN by 1398 [571, 2644] and 1167 [858, 2698],

respectively. Both models provide qualitatively better fits, especially at high reliabilities (com-

pare Fig 5, first row, to Fig 5, fourth and fifth rows), and strongly tilted orientations (compare

S10n and S10o Fig to S14n and S14o Fig and Fig 3n and 3o).

We summarize the performance of our core models in Fig 6. Noting that a LOO difference

of more than 5 is considered to be very strong evidence [45], the heuristic models Lin and

Quad perform much better than Bayes-dN. Furthermore, we can decisively rule out Fixed. We

will now describe variants of our core models.

Non-parametric relationship between reliability and σ. One potential criticism of our

fitting procedure is that we assumed a parameterized relationship between reliability and σ. To

see if our results were dependent on that assumption, we modified the models such that σ was

non-parametric (i.e., there was a free parameter for σ at each level of reliability). With this fea-

ture added to our core models, Quad still fits better than Bayes-dN by 1676 [839, 2730] and it

fits better than Fixed by 6097 [4323, 7901] (S1 Table). This feature improved Quad’s perfor-

mance by 325 [141, 535]. For the rest of this paper, we will only report the fits of Bayes-dN, the

best-fitting non-Bayesian model, and Fixed. See supplementary figures and tables for all other

model fits.

Incorrect assumptions about the generative model. Suboptimal behavior can be pro-

duced by optimal inference using incorrect generative models, a phenomenon known as

“model mismatch” [46–48]. Up to now, Bayes-dN has assumed that observers have accurate

knowledge of the parameters of the generative model. To test whether this assumption pre-

vents Bayes-dN from fitting the data well, we tested a series of Bayesian models in which the

observer has inaccurate knowledge of the generative model.

Bayes-dN assumed that, because subjects were well trained, they knew the true values of σC,

σ1, and σ2, the standard deviations of the stimulus distributions. We tested a model in which

these values were free parameters, rather than fixed to the true value. We would expect these

free parameters to improve the fit of Bayes-dN in the case where subjects were not trained

enough to sufficiently learn the stimulus distributions. This feature improves Bayes-dN’s fit by

908 [318, 1661], but it still underperforms Quad by 768 [399, 1144] (S1 Table).

Previous models also assumed that subjects had accurate knowledge of their own measure-

ment noise; their perceptual uncertainty, used in the computation of d, was identical to their

measurement noise, used to generate measurements x, with both uncertainty and measure-

ment noise equal to σ. We tested models in which we fit σmeasurement and σinference as two inde-

pendent functions of reliability [46]. This feature improves Bayes-dN’s fit by 1310 [580, 2175],

but it still underperforms Quad by 362 [162, 602] (S1 Table).

Weighted average of precision and perceived probability of being correct. A recent

paper ([49]; although see [22]) proposed that confidence is a weighted average of a function of

variance, such as 1

s2
, and the perceived probability of being correct (incidentally, under a non-

Bayesian decision rule). We tested such a model (using a Bayesian decision rule), which fits

Computational models of human confidence
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Fig 5. Model fits and model comparison for Bayes-dN and heuristic models. In both tasks, Bayes-dN fails to describe
the data at high reliabilities; Lin and Quad provides a good fit at most reliabilities. Left and middle columns: as in Fig 4.
Right column: bars represent individual subject LOO scores for each model, relative to Bayes-dN. Negative (leftward)
values indicate that, for that subject, the model in the corresponding row had a higher (better) LOO score than Bayes-dN.
Blue lines and shaded regions: as in Fig 4.

https://doi.org/10.1371/journal.pcbi.1006572.g005
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better than Fixed by 3059 [758, 5528] but still underperforms Lin by 3478 [2211, 5020] (S1

Table).

Separate fits to Tasks A and B. In order to determine whether model rankings were pri-

marily due to differences in one of the two tasks, we fit our models to each task individually. In

Task A, Quad fits better than Bayes-dN by 581 [278, 938], and better than Fixed by 3534 [2529,

4552] (S2 Fig and S2 Table). In Task B, Quad fits better than Bayes-dN by 978 [406, 1756] and

fits better than Fixed by 3234 [2099, 4390] (S3 Fig and S3 Table). [41]

Fits to category choice data only. In order to see whether our results were peculiar to

combined category and confidence responses, we fit our models to the category choices only.

Lin fits better than Bayes-dN by 595 [311, 927] and fits better than Fixed by 1690 [976, 2534]

(S4 Fig and S4 Table).

Fits to Task B only, with noise parameters fitted from Task A. To confirm that the fitted

values of sensory uncertainty in the probabilistic models are meaningful, we treated Task A as

an independent experiment to measure subjects’ sensory noise. The category choice data from

Task A can be used to determine the four uncertainty parameters. We fit Fixed with a decision

boundary of 0˚ (equivalent to a Bayesian choice model with no prior), using maximum likeli-

hood estimation. We fixed these parameters and used them to fit our models to Task B cate-

gory and confidence responses. Lin fits better than Bayes-dN by 1773 [451, 2845] and fits

better than Fixed by 5016 [3090, 6727] (S5 Fig and S5 Table).

Separate category and confidence responses (experiment 2). There has been some

recent debate as to whether it is more appropriate to collect choice and confidence with a sin-

gle motor response (as described above) or with separate responses [20, 25, 50, 51]. Aitchison

et al. [19] found that confidence appears more Bayesian when subjects use separate responses.

Fig 6. Comparison of core models, experiment 1.Models were fit jointly to Task A and B category and confidence
responses. Blue lines and shaded regions represent, respectively, medians and 95% CI of bootstrapped summed LOO
differences across subjects. LOO differences for these and other models are shown in S1a Fig.

https://doi.org/10.1371/journal.pcbi.1006572.g006
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To confirm this, we ran a second experiment in which subjects chose a category by pressing

one of two buttons, then reported confidence by pressing one of four buttons. Aitchison et al.

[19] also provided correctness feedback on every trial; in order to ensure that we could com-

pare our results to theirs, we also provided correctness feedback in this experiment, even

though this manipulation was not of primary interest. After fitting our core models, our results

did not differ substantially from experiment 1: Lin fits better than Bayes-dN by 396 [186, 622]

and fits better than Fixed by 2095 [1344, 2889] (S6 Fig and S6 Table).

Task B only (experiment 3). It is possible that subjects behave suboptimally when they

have to do multiple tasks in a session; in other words, perhaps one task “corrupts” the other.

To explore this possibility, we ran an an experiment in which subjects completed Task B only.

We chose Task B over Task A for this experiment because Task B has the desirable characteris-

tic that uncertainty is required for optimal categorization. Quad fits better than Bayes-dN by

1361 [777, 2022] and fits better than Fixed by 7326 [4905, 9955] (S7 Fig and S7 Table). In

experiments 2 and 3, subjects only saw drifting Gabors; we did not use ellipses.

We also fit only the choice data, and found that Lin fits about as well as Bayes-dN, with

summed LOO differences of 117 [-76, 436] and fits better than Fixed by 1084 [619, 1675] (S8

Fig and S8 Table). This approximately replicates our previously published results [30].

Model comparison metric. None of our model comparison results depend on our choice

of metric: in all three experiments, model rankings changed negligibly if we used AIC, BIC,

AICc, or WAIC instead of LOO.

Discussion

Although people can report subjective feelings of confidence, the computations that produce

this feeling are not well understood. It has been proposed that confidence is the observer’s

computed posterior probability that a decision is correct [1, 12–14]. However, this hypothesis

has not been fully tested. We carried out a strong test of human confidence reports, using over-

lapping categories [52], withholding feedback on testing trials, and varying experimental com-

ponents such as task, stimulus type, and stimulus reliability [32]. We used model comparison

to investigate the computational underpinnings of confidence, fitting a total of 75 models from

6 distinct model families.

Our first finding is that, like the optimal observer, subjects use knowledge of their sensory

uncertainty when reporting confidence in a categorical decision; models in which the observer

ignores their sensory uncertainty provide a poor fit to the data (Fig 4). Our second finding is

that subjects do not appear to use knowledge of their sensory uncertainty in a way that is fully

consistent with the Bayesian confidence hypothesis. Instead, heuristic models that approxi-

mate Bayesian computation—but do not compute a posterior probability over category—out-

perform the Bayesian models in two tasks (Fig 5, compare top row to bottom two rows). This

result continued to hold after we relaxed assumptions about the relationship between reliabil-

ity and noise, and about the subject’s knowledge of the generating model. We accounted for

the fact that our models had different amounts of flexibility by using a wide array of model

comparison metrics and by showing that our models are meaningfully distinguishable.

Limitations

Our study has several limitations. For instance, because of our short presentation time, we

cannot say much about how our results generalize to tasks that require integration of evi-

dence over time [8, 53–55]. Additionally, because our stimuli are very low-level, we cannot

say much about high-level stimuli like faces [56]. Also, we only considered explicit confi-

dence ratings, which differ from the implicit confidence that can be gathered from humans
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(e.g., by presenting two tasks and asking the subject to choose which one they feel more con-

fident about completing correctly [57, 58]) or from nonhuman animals [13] (e.g., by measur-

ing how frequently they decline to make a difficult choice [8], or how long they will wait for

a reward [11]). It is possible that implicit confidence might be more Bayesian than explicit

confidence; Barthelmé and Mamassian [58] conduct an implicit confidence experiment and

rule out some heuristic models. However, their experimental task is substantially different

from the one presented here. In their experiment, the stimulus feature of interest (orienta-

tion) only takes on two values rather than varying parametrically, so it requires a different

class of heuristic models. Future studies of the difference between implicit and explicit confi-

dence should use experiments that are able to distinguish the models presented here, which

has not been done.

Other investigations of deviations from Bayesian confidence

Like the present study, Aitchison et al. [19] found evidence that confidence reports may

emerge from heuristic computations. However, they sampled stimuli from only a small region

of their two-dimensional space, where model predictions may not vary greatly. Therefore,

their stimulus set did not allow for the models to be strongly distinguished. Furthermore,

although they tested for Bayesian computation, they did not test for probabilistic computation

(whether observers take sensory uncertainty into account on a trial-to-trial basis [40]) as we do

here. Such a test requires that the experimenter vary the reliability, not only the value, of the

stimulus feature of interest.

Navajas et al. [49] suggested that confidence reports are best described as a weighted aver-

age of precision and the probability of being correct. However, their model uses the estimated

probability of being correct under a non-Bayesian decision rule [22]. They did not show the fit

of a Bayesian model, and therefore their study does not constitute a true test of whether confi-

dence is Bayesian. Here, we tested and rejected the hypothesis that confidence is a weighted

average of precision and the posterior probability of being correct under a Bayesian decision

rule.

Sanders et al. [20] reported that confidence has a “statistical” nature. However, their experi-

ment was unable to determine whether confidence is Bayesian or not [17], because the stimuli

varied along only one dimension. Aitchison et al. [19] note that, to distinguish models of confi-

dence, the experimenter must use stimuli that are characterized by two dimensions (e.g., con-

trast and orientation as in this experiment, or contrast and crowding as in Barthelmé and

Mamassian [58]). This is because, when fitting models that map from an internal variable to

an integer confidence rating, it is impossible to distinguish between two internal variables that

are monotonically related (in the case of Sanders et al. [20], the measurement and the posterior

probability of being correct). Therefore, the only alternative model proposed by Sanders et al.

[20] is based on reaction time, rather than on the presented stimuli.

In detection and coarse discrimination tasks, Lau, Rahnev, and colleagues report that sub-

jects overestimate their confidence in the periphery and for unattended stimuli. The authors

have proposed a signal detection theory model in which high eccentricity or lower attention

induces higher noise, and the confidence criterion may not change at all [39, 59–63]. As a

result, more probability mass will “spill over” the criterion to the high-confidence regime.

How do these findings relate to ours? At a qualitative level, they are consistent in that confi-

dence does not seem Bayesian. However, in detection and coarse discrimination tasks, it is

not possible to distinguish between fixed-criterion and probabilistic models [64], and their

data cannot be used to infer that the criterion is fixed. The paradigms in the present paper are

able to distinguish such models because of the parametric manipulation of orientation, the
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stimulus feature of interest; indeed, we find strong evidence against the Fixed criterion

model. It remains to be seen whether claims that confidence can be systematically dissociated

from perceptual performance [1, 51, 65–69] are consistent with the account presented here,

in which the brain adjusts confidence criteria based on uncertainty but in a non-Bayesian

manner.

Another form of non-Bayesian confidence ratings is the recent proposal that, in confidence

judgments, only the “positive evidence” in favor of the chosen option matters, instead of the

“balance of evidence” between two options [31, 53, 56, 70, 71]. In our tasks, this form of subop-

timality would entail that confidence is derived from the (log) likelihood of the chosen cate-

gory, instead of from the (log) likelihood ratio. This does not seem consistent with our data;

for example, the likelihood of category 2 decreases as the absolute value of the stimulus and,

correspondingly, the measurement, increases (Fig 7b). However, confidence for a category 2

decision steadily increases with the absolute value of the stimulus (Fig 7a). More work is

needed to understand whether alternative models could explain the “positive evidence” data,

and if not, what causes the difference with our results.

Status of Bayesian models

What do our findings tell us about the neural basis of confidence? Previous studies have found

that neural activity in some brain areas (e.g., human medial temporal lobe [7] and prefrontal

cortex [72], monkey lateral intraparietal cortex [8] and pulvinar [10], rodent orbitofrontal cor-

tex [11]) is associated with behavioral indicators of confidence, and/or with the distance of a

Fig 7. (a) In experiment 1, Task B, on trials in which the subject chose category 2, mean confidence increases with the
absolute value of stimulus orientation. (b) The “positive evidence” in favor of category 2, however, decreases with the
absolute value of stimulus orientation. This plot depicts the category-conditioned stimulus distribution p(s j C = 2);
positive evidence in this experiment is equivalent to the likelihood p(x j C = 2), which is just p(s j C = 2) convolved with
the subject’s measurement noise.

https://doi.org/10.1371/journal.pcbi.1006572.g007
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stimulus to a decision boundary. However, such studies mostly used stimuli that vary along a

single dimension (e.g., net retinal dot motion energy, mixture of two odors). Because measure-

ment is indistinguishable from the probability of being correct in these classes of tasks, neural

activity associated with confidence may represent either the measurement or the probability of

being correct [19]. In addition to the recommendation of Aitchison et al. [19] to distinguish

between these possibilities by varying stimuli along two dimensions, we recommend fitting

both Bayesian and non-Bayesian probabilistic models to behavior. In view of the relatively

poor performance of the Bayesian models in the present study, the proposal [12] to correlate

behavior and neural activity with predictions of the Bayesian confidence model should be

viewed with skepticism.

Our results raise general issues about the status of Bayesian models as descriptions of

behavior. First, because it is impossible to exhaustively test all models that might be consid-

ered “Bayesian,” we cannot rule out the entire class of models. However, we have tried to alle-

viate this issue as much as possible by testing a large number of Bayesian models—far more

than the number of Bayesian and non-Bayesian models tested in other studies of confidence.

Second, Bayesian models are often held in favor for their generalizability; one can determine

the performance-maximizing strategy for any task. Although generalizability indeed makes

Bayesian models attractive and powerful, we do not believe that this property should override

a bad fit.

One could take two different views of our heuristic model results. The first view is that

the heuristics should be taken seriously as principled models [73]; here, the challenge is to

demonstrate that they describe behavior in a variety of tasks and can be motivated based on

underlying principles. The second view is that these are descriptive models simply meant to

demonstrate that a simple model can provide a good fit to the data; here, the heuristics are

benchmarks for more principled models, and the challenge is to find a principled model that

fits the data as well as the heuristics. We lean towards the second view and interpret our results

as demonstrating that the purest form of the Bayesian confidence hypothesis does not describe

human confidence reports particularly well.

However, one might still conclude, after examining the fits of the Bayesian model, that the

behavior is “approximately Bayesian” rather than “non-Bayesian.” As written, this is a seman-

tic distinction because it relies on one’s definition of “approximate.” However, it can be turned

into a more meaningful question: Are the differences between human behavior and Bayesian

models accounted for by an unknown principle, such as an ecologically relevant objective

function that includes both task performance and biological constraints?

Although there are benefits associated with veridical explicit representations of confidence

[74–76], there are also neural constraints that may give rise to non-Bayesian behavior [23, 24].

Such constraints include the kinds of operations that neurons can perform, the high energy

cost of spiking [77, 78], and the cost of neural wiring length [79, 80]. A search for ecologically

rational constraints on Bayesian computation benefits from a positive characterization of the

deviations from Bayesian computation, in the form of heuristic models such as Lin and Quad.

Specifically, one could define neural networks with various combinations of constraints, and

train them as if they were psychophysical subjects in our tasks. After training, one could fit

behavioral models to them; this approach has already shown that the output from such neural

networks is sometimes best described by heuristic models [81]. Using model ranking as a mea-

sure of similarity, one could determine which network architecture and training procedure

produces confidence behavior that is most similar to that of humans. This could reveal which

constraints are responsible for the specific deviations from Bayesian computation that we have

observed.
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Methods

Ethics statement

The experiments were approved by the University Committee on Activities Involving Human

Subjects of New York University. Informed consent was given by each subject before the

experiment.

Experiment 1

Subjects. 11 subjects (2 male), aged 20–42, participated in the experiment. Subjects

received $10 per 40-60 minute session, plus a completion bonus of $15. All subjects were naïve

to the purpose of the experiment. No subjects were fellow scientists.

Apparatus and stimuli. Apparatus. Subjects were seated in a dark room, at a viewing dis-

tance of 32 cm from the screen, with their chin in a chinrest. Stimuli were presented on a

gamma-corrected 60 Hz 9.7-inch 2048-by-1536 display. The display (LG LP097QX1-SPA2)

was the same as that used in the 2013 iPad Air (Apple); we chose it for its high pixel density

(264 pixels/inch). The display was connected to a Windows desktop PC using the Psychophys-

ics Toolbox extensions [82, 83] for MATLAB (Mathworks).

Stimuli. The background was mid-level gray (199 cd/m2). The stimulus was either a drifting

Gabor (Subjects 3, 6, 8, 9, 10, and 11) or an ellipse (Subjects 1, 2, 4, 5, and 7). The Gabor had a

peak luminance of 398 cd/m2 at 100% contrast, a spatial frequency of 0.5 cycles per degrees of

visual angle (dva), a speed of 6 cycles per second, a Gaussian envelope with a standard devia-

tion of 1.2 dva, and a randomized starting phase. Each ellipse had a total area of 2.4 dva2, and

was black (0.01 cd/m2). We varied the contrast of the Gabor and the elongation (eccentricity)

of the ellipse.

Categories. In Task A, stimulus orientations were drawn from Gaussian distributions with

means μ1 = −4˚ (category 1) and μ2 = 4˚ (category 2) and standard deviations σ1 = σ2 = 5˚. In

Task B, stimulus orientations were drawn from Gaussian distributions with means μ1 = μ2 =

0˚, and standard deviations σ1 = 3˚ (category 1) and σ2 = 12˚ (category 2) (Fig 1b). We chose

these category means and standard deviations such that the accuracy of an optimal observer

would be around 80%.

Procedure. Each subject completed 5 sessions. Each session consisted of two parts; the

subject did Task A in the first part, followed by Task B in the second part, or vice versa (chosen

randomly each session). Each part started with instruction and was followed by alternating

blocks of 96 category training trials and 144 testing trials, for a total of three blocks of each

type, with a block of 24 confidence training trials immediately after the first category training

block. Combining all sessions and both tasks, each subject completed 2880 category training

trials, 240 confidence training trials, and 4320 testing trials; we did not analyze category train-

ing or confidence training trials.

Instruction. At the start of each part of a session, subjects were shown 30 (72 in the first ses-

sion) exemplar stimuli from each category. Additionally, we provided them with a printed

graphic similar to Fig 1b, and explained how the stimuli were generated from distributions.

We answered any questions.

Category training. To ensure that subjects knew the stimulus distributions well, we gave

them extensive category training. Each trial proceeded as follows (Fig 1a): Subjects fixated on a

central cross for 1 s. Category 1 or category 2 was selected with equal probability. The stimulus

orientation was drawn from the corresponding stimulus distribution (Fig 1b). Gabors had

100% contrast, and ellipses had 0.95 eccentricity (elongation). The stimulus appeared at fixa-

tion for 300 ms, replacing the fixation cross. Subjects were asked to report category 1 or
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category 2 by pressing a button with their left or right index finger, respectively. Subjects were

able to respond immediately after the offset of the stimulus, at which point verbal correctness

feedback was displayed for 1.1 s. The fixation cross then reappeared.

Confidence training. To familiarize subjects with the button mappings, they completed a

short confidence training block at the start of every task. We told subjects that in this block, it

would be harder to tell what the stimulus orientation was, there would be no correctness feed-

back, and they would be reporting their confidence on each trial in addition to their category

choice. We provided them with a printed graphic similar to the buttons pictured in Fig 1a,

indicating that they had to press one of eight buttons to indicate both category choice and con-

fidence level, the latter on a 4-point scale. The confidence levels were labeled as “very high,”

“somewhat high,” “somewhat low,” and “very low.” Gabors had 0.4%, 0.8%, 1.7%, 3.3%, 6.7%,

or 13.5% contrast, and ellipses had 0.15, 0.28, 0.41, 0.54, 0.67, or 0.8 eccentricity, chosen ran-

domly with equal probability on each trial (Fig 1c). Stimuli were only displayed for 50 ms.

Trial-to-trial feedback consisted only of a message telling them which category and confidence

level they had reported. Other than these changes, the trial procedure was the same as in cate-

gory training.

Subjects were not instructed to use the full range of confidence reports [20], as that might

have biased them away from reporting what felt most natural. Instead, they were simply asked

to be “as accurate as possible in reporting their confidence” on each trial.

Testing. The trial procedure in testing blocks was the same as in confidence training blocks,

except that trial-to-trial feedback was completely withheld. At the end of each block, subjects

were required to take at least a 30 s break. During the break, they were shown the percentage

of trials that they had correctly categorized. Subjects were also shown a list of the top 10 block

scores (across all subjects, indicated by initials) for the task they had just done. This was

intended to motivate subjects to score highly, and to reassure them that their scores were nor-

mal, since it is rare to score above 80% on a block.

Descriptive statistics. Since our models do not include any learning effects, we wanted

to ensure that task performance was stable. For all tasks and experiments, we found no evi-

dence that performance changed significantly as a function of the number of trials. For each

experiment and task (the 5 lines in Fig 8), we fit a logistic regression to the binary correctness

data for each subject, obtaining a set of slope coefficients. We then used a t-test to determine

whether these sets of coefficients differed significantly from zero. In no group did the slopes

differ significantly from zero; across all 5 groupings the minimum p-value was 0.077 (Task

Fig 8. Performance as a function of number of trials, for both tasks and for all experiments. Performance was
computed as a moving average over test trials (200 trials wide). Shaded regions represent ±1 s.e.m. over subjects.
Performance did not change significantly over the course of each experiment.

https://doi.org/10.1371/journal.pcbi.1006572.g008
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A, experiment 2), which would not be significant even before correcting for multiple

comparisons.

Experiment 1. The following statistical differences were assessed using repeated-measures

ANOVA.

In Task A, there was a significant effect of true category on category choice (F1,10 = 285,

p< 10−7). There was no main effect of reliability, which took 6 levels of contrast or ellipse elon-

gation, on category choice (F5,50 = 0.27, p = 0.88). In other words, subjects were not signifi-

cantly biased to respond with a particular category at low reliabilities. There was a significant

interaction between reliability and true category, which is to be expected (F5,50 = 59.6,

p< 10−15) (Fig 3a).

In Task B, there was again a significant effect of true category on category choice (F1,10 =

78.3, p< 10−5). There was no main effect of reliability (F5,50 = 2.93, p = 0.051). There was again

a significant interaction between reliability and true category (F5,50 = 28, p< 10−12) (Fig 3b).

In Task A, there was a significant effect of true category on response (F1,10 = 136, p< 10−6).

There was no main effect of reliability (F5,50 = 0.61, p = 0.642). There was a significant interac-

tion between reliability and true category (F5,50 = 58.7, p< 10−13) (Fig 3c).

In Task B, there was a significant effect of true category on response (F1,10 = 54.2, p< 10−6).

There was a significant effect of reliability (F5,50 = 4.84, p = 0.0128). There was a significant

interaction between reliability and true category (F5,50 = 29.2, p< 10−8) (Fig 3d).

In Task A, there was a main effect of confidence on the proportion of reports (F3,30 = 7.75,

p< 10−3); low-confidence reports were more frequent than high-confidence reports. There

was no significant effect of true category (F1,10 = 0.784, p = 0.397) and no interaction between

confidence and category on proportion of responses (F3,30 = 1.45, p = 0.25) (Fig 3e).

In Task B, there was a main effect of confidence on the proportion of reports (F3,30 = 4.36,

p = 0.012). There was no significant effect of category (F1,10 = 0.22, p = 0.64), although there

was an interaction between confidence and category (F3,30 = 8.37, p = 0.003). This is likely

because for task B, category 2 has a higher proportion of “easy” stimuli (Fig 3f).

In both tasks, reported confidence had a significant effect on performance (F3,30 = 36.9,

p< 10−3). Task also had a significant effect on performance (F1,10 = 20.1, p = 0.001); although

we chose the category parameters such that the performance of the optimal observer is

matched, subjects were significantly better at Task A. There was no interaction between task

and confidence (F3,30 = 0.878, p = 0.436) (Fig 3g).

Fig 3l and 3m shows psychometric choice curves for both tasks, at all 6 levels of reliability.

Each point represents roughly the same number of trials.

Fig 3n and 3o shows a similar set of psychometric curves. These curves differ from Fig 3l

and 3m in that they represent the mean button press rather than mean category choice.

In Task A (Fig 3l and 3n), mean category choice and mean button press depend monotoni-

cally on orientation, with a slope that increases with reliability. In Task B (Fig 3m and 3o), the

mean category choice and mean button press tends towards category 1 when stimulus orienta-

tion is near horizontal, and tends towards category 2 when orientation is strongly tilted; this

reflects the stimulus distributions.

Effect of stimulus type on results: Gabor vs. ellipse. Since some subjects only saw Gabors and

some only saw ellipses, we used Spearman’s rank correlation coefficient to measure the simi-

larity of the two groups’ model rankings. Spearman’s rank correlation coefficient between

Gabor and ellipse subjects for the summed LOO scores of the model groupings in Fig 6 and S1

Fig was 0.952 and 0.944, respectively (a value of 1 would indicate identical rankings). In both

model groupings, the identities of the lowest- and highest-ranked models were the same for

both Gabor and ellipse subjects. This indicates that the choice of stimulus type did not have a

systematic effect on model rankings.
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Experiment 2: Separate category and confidence responses and testing
feedback

This control experiment was identical to experiment 1 except for the following modifications:

• Subjects first reported choice by pressing one of two buttons with their left hand, and then

reported confidence by pressing one of four buttons with their right hand.

• Subjects reported confidence in category training blocks, and received correctness feedback

after reporting confidence.

• There were no confidence training blocks.

• In testing blocks, subjects received correctness feedback after each trial.

• Subjects completed a total of 3240 testing trials.

• 8 subjects (0 male), aged 19–23, participated. None were participants in experiment 1, and

again, none were fellow scientists.

• Drifting Gabors were used; no subjects saw ellipses.

Experiment 3: Task B only

This experiment was identical to experiment 1 except for the following modifications:

• Subjects completed blocks of Task B only.

• Subjects completed a total of 3240 testing trials.

• 15 subjects (8 male), aged 19–30, participated. None were participants in experiments 1 or 2.

• Drifting Gabors were used; no subjects saw ellipses.

Modeling

Measurement noise. For models (such as our core models) where the relationship

between reliability (i.e., contrast or ellipse eccentricity) and noise was parametric, we assumed

a power law relationship between reliability c and measurement noise variance σ2: σ2(c) = γ +
αc−β. We have previously [30] used this power law relationship because it encompasses a large

family of monotonically decreasing relationships using only three parameters. The relationship

is also consistent with a form of the Naka-Rushton function [84, 85] commonly used to

describe the mapping from reliability to neural gain g: g ¼ gcb

cbþa
. The power law relationship

then holds under the assumption that measurement noise variance is inversely proportional to

gain [86].

For all models except the Bayesian model with additive precision, we assumed additive ori-

entation-dependent noise in the form of a rectified 2-cycle sinusoid, accounting for the finding

that measurement noise is higher at non-cardinal orientations [87]. The measurement noise s.

d. comes out to

sðc; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gþ ac�b
p

þ c sin
ps

90

�

�

�

�

�

�: ð1Þ
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Response probability. We coded all responses as r 2 {1, 2, . . ., 8}, with each value

indicating category and confidence. For all models except the Linear Neural model, the proba-

bility of a single trial i is equal to the probability mass of the measurement distribution

pðx j siÞ ¼ N ðx; si; s
2
i Þ (i.e., a normal distribution over x with mean si and variance s

2
i ) in a

range corresponding to the subject’s response ri. Because we only use a small range of orienta-

tions, we can safely approximate measurement noise as a normal distribution rather than a

VonMises distribution. We find the boundaries ðbri�1ðsiÞ; briðsiÞÞ in measurement space, as

defined by the fitting model and parameters θ, and then compute the probability mass of the

measurement distribution between the boundaries. For Task A, this quantity is

Z bri

bri�1

N ðx; si; s
2

i Þdx; ð2Þ

where b0 = −1˚ and b8 =1˚. For Task B, this quantity is

pm;yðri j si; siÞ ¼

Z �bri�1

�bri

N ðx; si; s
2

i Þdxþ

Z bri

bri�1

N ðx; si; s
2

i Þdx; ð3Þ

where b0 = 0˚ and b8 =1˚.

To obtain the log likelihood of the dataset, given a model with parameters θ, we compute

the sum of the log probability for every trial i, where t is the total number of trials:

log pðdata j yÞ ¼
X

t

i¼1

log pðri j yÞ ¼
X

t

i¼1

log pyðri j si; siÞ: ð4Þ

Model specification. Bayesian. Derivation of dA and dB: The log posterior ratio d is equiv-

alent to the log likelihood ratio plus the log prior ratio:

d ¼ log
pðC ¼ 1 j xÞ

pðC ¼ 2 j xÞ
¼ log

pðx j C ¼ 1Þ

pðx j C ¼ 2Þ
þ log

pðC ¼ 1Þ

pðC ¼ 2Þ
: ð5Þ

To get dA and dB, we need to find the task-specific expressions for p(x j C). The observer

knows that the measurement x is caused by the stimulus s, but has no knowledge of s. There-

fore, the optimal observer marginalizes over s:

pðx j CÞ ¼

Z

pðx j sÞpðs j CÞds: ð6Þ

We substitute the expressions for the noise distribution and the stimulus distribution, and

evaluate the integral:

pðx j CÞ ¼

Z

N ðs; x; s2ÞN ðs; mC; s
2

CÞds ¼ N ðx; mC; s
2 þ s2

CÞ: ð7Þ

Plugging the task- and category-specific μC and σC into Eq (7), and substituting the resulting
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expression back into Eq (5), we get:

dA ¼
2xm1

s2 þ s2
1

þ log
pðC ¼ 1Þ

pðC ¼ 2Þ
ð8Þ

dB ¼
1

2
log

s2 þ s2
2

s2 þ s2
1

�
s2
2
� s2

1

2ðs2 þ s2
1
Þðs2 þ s2

2
Þ
x2 þ log

pðC ¼ 1Þ

pðC ¼ 2Þ
: ð9Þ

The 8 possible category and confidence responses are determined by comparing the log

posterior ratio d to a set of decision boundaries k = (k0, k1, . . ., k8). k4 is equal to the log prior

ratio log pðC¼1Þ

pðC¼2Þ
, which functions as the boundary on d between the 4 category 1 responses and

the 4 category 2 responses; k4 is the only boundary parameter in models of category choice

(and not confidence). k0 is fixed at −1 and k8 is fixed at1. In all models, the observer chooses

category 1 when d is positive.

Because the decision boundaries are free parameters, our models effectively include a large

family of possible cost functions. A different cost function would be equivalent to a rescaling

of the confidence boundaries k. To see this, it is probably easiest to consider category choice

alone; there, asymmetric costs for getting either category wrong would translate into a differ-

ent value of k4, the category decision boundary (i.e., the observer’s prior over category). For us,

this boundary (like all other boundaries) is a free parameter.

The posterior probability of category 1 can be written as as pðC ¼ 1 j xÞ ¼ 1

1þexpð�dÞ
.

Levels of strength: The Bayesian model is unique in that it is possible to formulate a princi-

pled version with relatively few boundary parameters. In principle, it is possible that such a

model could perform better than more flexible models, if those models are overfitting. We for-

mulated several levels of strength of the BCH, with weaker versions having fewer assumptions

and more sets of mappings between the posterior probability of being correct and the confi-

dence report (Fig 9). In the ultrastrong BCH, confidence is a function solely of the posterior

Fig 9. Distributions of posterior probabilities of being correct, with confidence criteria for Bayesian models with three different levels of
strength. Solid lines represent the distributions of posterior probabilities for each category and task in the absence of measurement noise and
sensory uncertainty. Dashed lines represent confidence criteria, generated from the mean of subject 4’s posterior distribution over parameters.
Each model has a different number of sets of mappings between posterior probability and confidence report. In BayesUltrastrong, there is one set
of mappings. In BayesStrong, there is one set for Task A, and another for Task B. In BayesWeak, as in the non-Bayesian models, there is one set for
Task A, and one set for each reported category in Task B. Plots were generated from the mean of subject 4’s posterior distribution over
parameters as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006572.g009
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probability of the chosen category. In the strong BCH, it is additionally a function of the cur-

rent task.

Most studies cannot distinguish between the ultrastrong and strong BCH because they test

subjects in only one task. Furthermore, the weak BCH is only justifiable in tasks where the cat-

egories have different distributions of the posterior probability of being correct; the subject

may then rescale their mappings between the posterior and their confidence. Here, one can see

that Task B has this feature by observing that, in the bottom row of Fig 9, the distributions of

posterior probabilities are different for the two categories). Most experimental tasks are like

Task A, where the distributions are identical. We compared Bayesian models (BayesUltrastrong,

BayesStrong) corresponding to each of these versions of the BCH.

In BayesUltrastrong, k is symmetric across k4: k4+j − k4 = k4 − k4−j for j 2 {1, 2, 3}. Further-

more, in BayesUltrastrong, kA = kB. So BayesUltrastrong has a total of 4 free boundary parameters:

k1, k2, k3, k4. BayesUltrastrong consists of the observer determining the response by comparing

dA and dB to a single symmetric set of boundaries (Fig 9, left column).

BayesStrong is identical to BayesUltrastrong except that kA is allowed to differ from kB. So

BayesStrong has a total of 8 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B.

BayesStrong consists of the observer determining the response by comparing dA to a symmetric

set of boundaries, and dB to a different symmetric set of boundaries (Fig 9, middle column).

BayesWeak is identical to BayesStrong except that symmetry is not enforced for kB. So

BayesWeak has a total of 11 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B, k5B,

k6B, k7B. BayesWeak consists of the observer comparing dA to a symmetric set of boundaries,

and dB to a different non-symmetric set of boundaries (Fig 9, right column).

We did not include BayesStrong and BayesUltrastrong in the core models reported in the main

text, because BayesWeak provided a much better fit to the data. Because it was not necessary in

the main text to distinguish the three strengths of Bayesian models, we refer to BayesWeak there

simply as Bayes. However, we do include BayesStrong and BayesUltrastrong in our model recovery

analysis (described below) and in our supplemental model comparison tables.

Decision boundaries: In the Bayesian models without d noise, we translate boundary

parameters k to measurement boundaries b corresponding to fitted noise levels σ. To do this,

we use the parameters k as the left-hand side of Eqs (8) and (9) and solve for x at the fitted lev-

els of σ. These values were used as the measurement boundaries b(σ).

In the Bayesian models with d noise, we assume that, for each trial, there is an added

Gaussian noise term on d, ηd* p(ηd), where pðZdÞ ¼ N ð0; s2
dÞ, and σd is a free parameter.

We pre-computed 101 evenly spaced draws of ηd and their corresponding probability densi-

ties p(ηd). We used Eqs (8) and (9) to compute a lookup table containing the values of d as

a function of x, σ, and ηd. We then used linear interpolation to find sets of measurement

boundaries b(σ) corresponding to each draw of ηd [46]. We then computed 101 response

probabilities for each trial, one for each draw of ηd, and computed the weighted average

according to p(ηd).
Probability correct with additive precision. We tested a model in which the decision variable

was a weighted mixture of precision (equivalent in this case to the Fisher information of the

measurement variable x) and the perceived probability of being correct [49]. In this model, the

decision variable is o

s2
þ 1

1þexpð�jdjÞ
, where ω is a free parameter. To find the measurement bound-

aries b(σ), we substituted Eqs (8) and (9) for d, and set the whole value equal to parameters k,

solving for x at the fitted levels of σ. This model can be considered a hybrid Bayesian-heuristic

model. Like BayesUltrastrong, it has 4 free boundary parameters. Although the model is a hybrid

Bayesian-heuristic model, not a strictly Bayesian one, we refer to it as BayesUltrastrong + preci-

sion in S1 Fig and S1 Table.
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Fixed. In Fixed, the observer compares the measurement to a set of boundaries that are not

dependent on σ. We fit free parameters k, and use measurement boundaries br = kr.

Lin and Quad. In Lin and Quad, the observer compares the measurement to a set of bound-

aries that are linear or quadratic functions of σ. We fit free parameters k andm, and use mea-

surement boundaries br(σ) = kr +mrσ (Lin) or br(σ) = kr +mrσ
2 (Quad).

Lin and Quad are each a supermodel of Fixed. In other words, there are parameter settings

where Lin and Quad are equivalent to Fixed (although our model comparison methods ensure

that the models are still distinguishable, see “Model recovery” section). Additionally, in Task

A, Quad is a supermodel of the Bayesian models without d noise.

Orientation estimation. In Orientation Estimation, the observer uses the mixture of the two

stimulus distributions as a prior distribution to compute a maximum a posteriori estimate of

the stimulus:

ŝ ¼ argmax
s

pðs j xÞ ð10Þ

¼ argmax
s

pðx j sÞpðsÞ ð11Þ

¼ argmax
s

½N ðs; x; s2Þðpðs j C ¼ 1Þ þ pðs j C ¼ 2ÞÞ�: ð12Þ

The observer then compares ŝ to a set of boundaries k to determine category and confidence

response.

Decision boundaries. To find the decision boundaries in measurement space, we used

gmm1max_n2_fast from Luigi Acerbi’s gmm1 (github.com/lacerbi/gmm1) 1-D Gaussian mix-

ture model toolbox to solve Eq (12), computing a lookup table containing the value of ŝ as a

function of x and σ [46]. We then found, using linear interpolation, the values of x correspond-

ing to σ and the free parameters k. These values were used as the measurement boundaries b

(σ).

Linear neural. In this section, r refers to neural activity, not button responses. This model is

different from all other models in that the generative model does not include measurement x.

The model can be derived as follows.

All neurons have Gaussian tuning curves with variance s2
TC and gain g ¼ 1

s2
. Tuning curve

means are contained in the vector of preferred stimuli ~s. The number of spikes in the popula-

tion is r � PoissonðgN ðs; ~s; s2
TCÞÞ. Neural weights are a linear function of the preferred sti-

muli: w ¼ a~s.

On each trial, we get some quantity that is a weighted sum of each neuron’s activity,

z = w � r.E z j s½ � ¼ w � E r j s½ � ¼ ag
P

j
~s j exp �

ðs�~s jÞ
2

2s2
TC

� �

.

Rather than sum over all neurons, we assume an infinite number of neurons uniformly

spanning all possible preferred stimuli ~s. This allows us to replace the sum with an integral.

The expected value of z is ag
R

~sexp �
ðs�~s jÞ

2

2s2
TC

� �

d~s ¼ ags
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
TC

p

. The variance of z is

P

j w
2
j fjðsÞ ¼ ag

R

~s2exp � ðs�~sÞ2

2s2
TC

� �

d~s ¼ ag
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
TC

p

ðs2
TC þ s2Þ.

Now that we have the mean and variance of z, we assume that z is normally distributed.

This is equivalent to assuming that there are a high number of spikes, because the Poisson dis-

tribution approximates the normal distribution as the rate parameter becomes high. To
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compute response probability, we fit neural activity boundaries k, and replace Eqs (2) or (3)

with

pyðri j si; siÞ ¼

Z kri

kri�1

N ðz; agsi
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
TC

p

; ag
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
TC

p

ðs2

TC þ s2i ÞÞdz: ð13Þ

Lapse rates. In confidence and category models, we fit three different types of lapse rate. On

each trial, there is some fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen from

a distribution over the four levels defined by λ1, the probability of a “very low confidence”

response, and λ4, the probability of a “very high confidence” response, with linear interpola-

tion for the two intermediate levels.

• A “confidence lapse” λconfidence in which the category report is chosen normally, but the con-

fidence report is chosen from a uniform distribution over the four levels.

• A “repeat lapse” λrepeat in which the category and confidence response is simply repeated

from the previous trial.

In category choice models, we fit a standard category lapse rate λ, as well as the above
“repeat lapse” λrepeat.
Parameterization. Because of tradeoffs when directly fitting parameters γ, α, β, we re-

parameterized Eq (1) as

sðc; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
L þ

ðs2
L � s2

HÞðc
�b � c�b

L Þ

c�b
L � c�b

H

s

þ c sin
ps

90

�

�

�

�

�

�; ð14Þ

where cL and cH were the values of the lowest and highest reliabilities used. This way, σL and

σH were free parameters that determined the s.d. of the measurement distributions for the low-

est and highest reliabilities, and β was a free parameter determining the curvature of the func-

tion between the two reliabilities. For models where the relationship between reliability and

noise was non-parametric, the first term in Eq (1) was replaced with free s.d. parameters

(σrel. 1, . . ., σrel. 6) corresponding to each of the six reliability levels.

For models where subjects had incorrect knowledge about their measurement noise, we fit

two sets of uncertainty-related parameters. One set was for the generative measurement noise

(used in Eqs (2) and (3)), and the other set was for the subject’s belief about their noise, e.g.,

their sensory uncertainty (used in Eqs (8), (9) and (12)).

All parameters that defined the width of a distribution (e.g., σL, σH, σd, σrel. 1, . . .) were sam-

pled in log-space and exponentiated during the computation of the log likelihood. See S9

Table for a complete list of each model’s parameters.

Model fitting. Rather than find a maximum likelihood estimate of the parameters, we

sampled from the posterior distribution over parameters, p(θ j data); this has the advantage of

maintaining a measure of uncertainty about the parameters, which can be used both for model

comparison and for plotting model fits. We used the log posterior

log pðy j dataÞ ¼ log pðdata j yÞ þ log pðyÞ þ constant; ð15Þ

where log p(data j θ) is given in Eq (4). We assumed a factorized prior over each parameter j:

log pðyÞ ¼
X

n

j¼1

log pðyjÞ; ð16Þ
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where j is the parameter index and n is the number of parameters. We took uniform (or, for

parameters that were standard deviations, log-uniform) priors over reasonable, sufficiently

large ranges [46], which we chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo

(MCMC) method, slice sampling [88]. For each model and dataset combination, we ran

between 4 and 7 parallel chains with random starting points. For each chain, we took 40,000 to

600,000 total samples (depending on model computational time) from the posterior distribu-

tion over parameters. We discarded the first third of the samples and kept 6,667 of the remain-

ing samples, evenly spaced to reduce autocorrelation. All samples with log posteriors more

than 40 below the maximum log posterior were discarded. Marginal probability distributions

of the sample log likelihoods were visually checked for convergence across chains. In total

we had 842 model and dataset combinations, with a median of 26,668 kept samples

(IQR = 13,334).

After sampling, we conducted a visual check to confirm that our parameter ranges were suf-

ficiently large. For each model, we plotted the posterior distribution over parameter values for

each subject; an example plot is shown in Fig 10. Visual checks of these plots confirmed that

the distributions are unimodal and roughly Gaussian. Visual checks also confirmed that the

parameter distributions are well-contained within the chosen parameter ranges, except for the

distributions of:

• Lapse rate parameters, which tend to mass around 0, where they are necessarily bounded.

• Log noise parameters, which have a large negative range where they are effectively at zero

noise.

• Upper confidence boundary parameters, which become small for subjects who frequently

report “high confidence,” or large for subjects who frequently do.

Model comparison. Model groupings. We used 8 groupings of model-subject combina-

tions where it made sense to consider the models as being on equal footing for the purpose of

model comparison. The model-subject combinations were grouped by: experiment (which

corresponded to subject population), data type (category response only vs. category and

Fig 10. Posterior distributions over parameter values for an example model. Each subplot represents a parameter of the model. Each colored
histogram represents the sampled posterior distribution for a parameter and a subject in experiment 1, with colors consistent for each subject.
The limits of the x-axis indicates the allowable range for each parameter. Black triangles indicate the overall mean parameter value.

https://doi.org/10.1371/journal.pcbi.1006572.g010
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confidence response), task type (Task A, B, or both fit jointly). The 8 groupings correspond to

S1 to S8 Figs and S1 to S8 Tables.

Metric choice. A more complex model is likely to fit a dataset better than a simpler model,

even if only by chance. Since we are interested in our models’ predictive accuracy for unob-

served data, it is important to choose a metric for model comparison that takes the complexity

of the model into account, avoiding the problem of overfitting. Roughly speaking, there are

two ways to compare models: information criteria and cross-validation.

Most information criteria (such as AIC, BIC, and AICc) are based on a point estimate for θ,

typically θMLE, the θ that maximizes the log likelihood of the dataset (Eq (4)). For instance,

AIC adds a correction for the number of parameters n to the log likelihood of the dataset:

AIC ¼ �2
Pt

i¼1
log pðri j yMLEÞ þ 2n.

WAIC is a more Bayesian approach to information criteria that adds a correction for the

effective number of parameters [89]. Because WAIC is based on samples from the full poste-

rior of θ (Eq (15), typically sampled via MCMC), it takes into account the model’s uncertainty

landscape.

Although information criteria are computationally convenient, they are based on asymp-

totic results and assumptions about the data that may not always hold [89]. An alternative way

to estimate predictive accuracy for unobserved data is to cross-validate, fitting the model to

training data and evaluating the fit on held out data. Leave-one-out cross-validation is the

most thorough way to cross-validate, but is very computationally intensive; it requires that you

fit your model t times, where t is the number of trials. Here we use a method (PSIS-LOO,

referred to here simply as LOO) proposed by Vehtari et al. [43] for approximating leave-one-

out cross-validation that, like WAIC, uses samples from the full posterior of θ:

LOO ¼
X

t

i¼1

log

P

uwi;upðri j yuÞ
P

uwi;u
; ð17Þ

where θu is the u-th sampled set of parameters, and wi,u is the importance weight of trial i for

sample u. Pareto smoothed importance sampling provides an accurate and reliable estimate of

the weights. LOO is currently the most accurate approximation of leave-one-out cross-valida-

tion [90]. Conveniently, it has a natural diagnostic that allows the user to know when the met-

ric may be inaccurate [43]; we used that diagnostic and confirmed that our use of the metric is

justified.

We determined that our results were not dependent on our choice of metric. We computed

AIC, BIC, AICc, WAIC, and LOO for all models in the 8 model groupings, multiplying the

information criteria by� 1

2
to match the scale of LOO. For AIC, BIC, and AICc, we used the

parameter sample with the highest log likelihood as our estimate of θMLE. Then we computed

Spearman’s rank correlation coefficient for every possible pairwise comparison of model com-

parison metrics for all model and dataset combinations, producing 80 total values (8 model

groupings × 10 possible pairwise comparisons of model comparison metrics). All values were

greater than 0.998, indicating that, had we used an information criterion instead of LOO, we

would not have changed our conclusions. Furthermore, there are no model groupings in

which the identities of the lowest- and highest-ranked models are dependent on the choice of

metric. The agreement of these metrics strengthens our confidence in our conclusions.

Metric aggregation. Summed LOO differences: In all figures where we present model com-

parison results (e.g., Fig 5, right column), we aggregate LOO scores by the following proce-

dure. Choose a reference model (usually the one with the lowest mean LOO score across

subjects). Subtract all LOO scores from the corresponding subject’s score for the reference

model; this converts all scores to a LOO “difference from reference” score, with higher scores
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being worse. Repeat the following standard bootstrap procedure 10,000 times: Choose ran-

domly, with replacement, a group of datasets equal to the total number of unique datasets, and

take the sum over subjects of their “difference from reference” scores for each model. Plots

indicate the median and 95% CI of these bootstrapped summed “difference from reference”

scores. This approach implicitly assumes that all data was generated from the same model.

To confirm that our sample size was large enough to trust our bootstrapped confidence

intervals, we bootstrapped our bootstrapping procedure to see how the confidence intervals

were affected by the number of subjects N. For an example pair of models that we might be

interested in comparing, we took the 11 LOO differences between the models, one for each

subject in experiment 1. For each N between 2 and 11, we took 50 subsamples of our subject

LOO differences with replacement; this is akin to running the experiment 50 times for each N.

For each subsample, we conducted the above bootstrap procedure, which give us a median

and 95% CI on the mean of differences. We then plot the mean of these values, with error bars

indicating ±1 s.d., at each N (Fig 11a). A visual check indicates that the confidence interval

appears to converge at about N = 9. This indicates that our bootstrapped confidence intervals

are trustworthy.

Group level Bayesian model selection: We also used LOO scores to compute two metrics

that allow for model heterogeneity across the group. The first metric was “protected exceed-

ance probability,” the posterior probability that one model occurs more frequently than any

other model in the set [91], above and beyond chance (e.g., S1b Fig). The second was the

expected posterior probability that a model generated the data of a randomly chosen dataset

[92] (e.g., S1c Fig). The latter metric assumes a uniform prior over models, which is a function

of the total number of datasets. We used the SPM12 (www.fil.ion.ucl.ac.uk/spm) software

package to compute these metrics.

In all but one of the 8 model groupings, all three methods of metric aggregation identify the

same overall best model. For example, in S1 Fig, one model (Quad + non-param. σ) has the

Fig 11. Example analysis of a bootstrapped confidence interval. (a) Uncertainty estimates for bootstrapped confidence intervals, as a
function of the number of subjects included. Blue line represents the median bootstrapped mean of LOO differences, and black lines indicate
the lower and upper bounds of the 95% CI. Error bars represent ±1 s.d. (b) For comparison to a, the standard style of plot used to show
model comparison results (e.g., Fig 4).

https://doi.org/10.1371/journal.pcbi.1006572.g011
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lowest summed LOO differences, the highest protected exceedance probability, and the highest

expected posterior probability.

Visualization of model fits. Model fits were plotted by bootstrapping synthetic group

datasets with the following procedure: For each task, model, and subject, we generated 20 syn-

thetic datasets, each using a different set of parameters sampled, without replacement, from

the posterior distribution of parameters. Each synthetic dataset was generated using the same

stimuli as the ones presented to the real subject. We randomly selected a number of synthetic

datasets equal to the number of subjects to create a synthetic group dataset. For each synthetic

group dataset, we computed the mean output (e.g., button press, confidence, performance) per

bin. We then repeated this 1,000 times and computed the mean and standard deviation of the

mean output per bin across all 1,000 synthetic group datasets, which we then plotted as the

shaded regions. Therefore, shaded regions represent the mean ±1 s.e.m. of synthetic group

datasets.

For plots with orientation on the horizontal axis (e.g., Fig 3j–3o), stimulus orientation was

binned according to quantiles of the task-dependent stimulus distributions so that each point

consisted of roughly the same number of trials. For each task, we took the overall stimulus dis-

tribution pðsÞ ¼ 1

2
p s j C ¼ 1ð Þ þ p s j C ¼ 2ð Þð Þ and found bin edges such that the probability

mass of p(s) was the same in each bin. We then plotted the binned data with linear spacing on

the horizontal axis.

Fig 12. Model recovery analysis. Shade represents the difference between the mean AIC score (across datasets) for
each fitted model and for the one with the lowest mean AIC score. White squares indicate the model that had the
lowest mean AIC score when fitted to data generated from each model. The squares on the diagonal indicate that the
true generating model was the best-fitting model, on average, in all cases.

https://doi.org/10.1371/journal.pcbi.1006572.g012
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Model recovery. We performed a model recovery analysis [93] to test our ability to

distinguish our 6 core models, as well as the 2 stronger versions of the Bayesian model. We

generated synthetic datasets from each of the 8 models for both Tasks A and B, using the

same sets of stimuli that were originally randomly generated for each of the 11 subjects. To

ensure that the statistics of the generated responses were similar to those of the subjects, we

generated responses to these stimuli from 4 of the randomly chosen parameter estimates

obtained via MCMC sampling for each subject and model. In total, we generated 352 data-

sets (8 generating models × 11 subjects × 4 datasets). We then fit all 8 models to every data-

set, using maximum likelihood estimation (MLE) of parameters by an interior-point

constrained optimization (MATLAB’s fmincon), and computed AIC scores from the result-

ing fits.

We found that the true generating model was the best-fitting model, on average, in all

cases (Fig 12). Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the

model that generated the data) for 86.6% of the datasets, indicating that our models are

distinguishable.

Ideally, we would have evaluated our model recovery fits using LOO, as we evaluated the

fits to human data. However, LOO can only be obtained when fitting with MCMC sampling,

which takes orders of magnitudes longer than fitting with MLE. It would be impossible to fit

all 352 synthetic datasets in a short amount of time using the procedure and sampling quality

standards described above (i.e., a large number of samples, across multiple converged chains).

Furthermore, we do not believe that our model recovery is dependent on how the models are

fit and the fits are evaluated; we found that AIC and LOO scores gave us near-identical model

rankings for data from real subjects.

Supporting information

S1 Fig. Model comparison, experiment 1.Models were fit jointly to Task A and B category

and confidence responses. (a) Medians and 95% CI of bootstrapped sums of LOO differences,

relative to the best model. Higher values indicate worse fits. (b) The protected exceedance

probability, i.e., the posterior probability that a model occurs more frequently than the others

[91]. (c) The expected posterior probability that a model generated the data of a randomly cho-

sen subject [92].

(TIF)

S2 Fig. Model comparison, experiment 1.Models were fit to Task A category and confidence

responses. See S1 Fig caption.

(TIF)

S3 Fig. Model comparison, experiment 1.Models were fit to Task B category and confidence

responses. See S1 Fig caption.

(TIF)

S4 Fig. Model comparison, experiment 1.Models were fit jointly to Task A and B category

choices. See S1 Fig caption.

(TIF)

S5 Fig. Model comparison, experiment 1.Noise parameters were fit to Task A category

choices and then fixed during the fitting of Task B category and confidence responses. See S1

Fig caption.

(TIF)
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S6 Fig. Model comparison, experiment 2.Models were fit jointly to Task A and B category

and confidence responses. See S1 Fig caption.

(TIF)

S7 Fig. Model comparison, experiment 3.Models were fit to Task B category and confidence

responses. See S1 Fig caption.

(TIF)

S8 Fig. Model comparison, experiment 3.Models were fit to Task B category choices. See S1

Fig caption.

(TIF)

S9 Fig. Model fits and model comparison for the three strengths of the Bayesian model, as

in Fig 5. In the main text, BayesWeak-dN is referred to simply as Bayes.

(TIF)

S10 Fig. BayesWeak-dN fits, as in Fig 3. In the main text, BayesWeak-dN is referred to simply as

Bayes.

(TIF)

S11 Fig. Fixed fits, as in Fig 3.

(TIF)

S12 Fig. Orientation Estimation fits, as in Fig 3.

(TIF)

S13 Fig. Linear Neural fits, as in Fig 3.

(TIF)

S14 Fig. Lin fits, as in Fig 3.

(TIF)

S15 Fig. Quad fits, as in Fig 3, but for data in experiment 2.

(TIF)

S1 Table. Cross comparison of all models in S1 Fig. Cells indicate medians and 95% CI of

bootstrapped summed LOO score differences. A negative median indicates that the model in

the corresponding row had a higher score (better fit) than the model in the corresponding col-

umn.

(PDF)

S2 Table. Cross comparison of all models in S2 Fig. See S1 Table caption.

(PDF)

S3 Table. Cross comparison of all models in S3 Fig. See S1 Table caption.

(PDF)

S4 Table. Cross comparison of all models in S4 Fig. See S1 Table caption.

(PDF)

S5 Table. Cross comparison of all models in S5 Fig. See S1 Table caption.

(PDF)

S6 Table. Cross comparison of all models in S6 Fig. See S1 Table caption.

(PDF)
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S7 Table. Cross comparison of all models in S7 Fig. See S1 Table caption.

(PDF)

S8 Table. Cross comparison of all models in S8 Fig. See S1 Table caption.

(PDF)

S9 Table. List of parameters for each model. Each sheet corresponds with the sets of models

pictured in S1 Fig and S1; S2 Fig and S2 Table; and so on.

(XLS)
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