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Abstract	  

Cancer cell lines are often used in laboratory experiments as models of 

tumors, although they can have substantially different genetic and epigenetic 

profiles compared to tumors. We have developed a general computational 

method – TumorComparer - to systematically quantify similarities and differences 

between tumor material when detailed genetic and molecular profiles are 

available. The comparisons can be flexibly tailored to a particular biological 

question by placing a higher weight on functional alterations of interest (‘weighted 

similarity’).  In a first pan-cancer application, we have compared 260 cell lines 

from the Cancer Cell Line Encyclopaedia (CCLE) and 1914 tumors of six 

different cancer types from The Cancer Genome Atlas (TCGA), using weights to 

emphasize genomic alterations that frequently recur in tumors. We report the 

potential suitability of particular cell lines as tumor models and identify apparently 

unsuitable outlier cell lines, some of which are in wide use, for each of the six 

cancer types. In future, this weighted similarity method may be generalized for 

use in a clinical setting to compare patient profiles consisting of genomic patterns 

combined with clinical attributes, such as diagnosis, treatment and response to 

therapy. 
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Introduction	  

 

Immortalized cancer cell lines, derived from tumors and grown and 

maintained in vitro, are the most commonly used experimental models in cancer 

research. Cell lines preserve many properties of tumors, and have been of 

immense value in advancing the understanding of cancer biology and developing 

novel therapies over the past decades 1-3. However, there are important 

differences, both in general and in particular tumor types, between the genetic 

alteration profiles of cell lines and tumors, which are the subject of this study. 

While cell lines retain many features of tumors, they also acquire additional 

changes in the process of immortalization, and during growth and maintenance in 

culture. Several studies have reported differences between cell lines and tumors 

with respect to gene expression 4,5, methylation 6-8, and copy number alterations 

9,10. In general, cell lines tend to have more genomic alterations than primary 

tumors, which can be explained by a bias towards using cell lines derived from 

metastatic tumors 1, and in-vitro selection of subpopulations of cell lines during 

long periods of growth and maintenance in the laboratory 1. Furthermore, the 

apparent overall difference in mutation burden between cell lines and tumors 

may be affected by the presence of germline mutations in cell lines, which are 

explicitly removed from tumor data as matched normal samples are usually 

available for tumors, but which are incompletely removed from cell line data even 

with the customary filtering of known common germline variants. In addition, as 

there is a systematic bias in the source of most immortalized cell lines, cell lines 

typically do not represent all subtypes of cancers in a particular tissue of origin. In 

particular, tumor subtypes with the least amount of genetic alterations tend to be 

under-represented 11-13. Given these differences, selecting the most suitable cell 

line(s) for a specific laboratory investigation becomes a technical challenge of 

practical interest. In general, cell lines with profiles similar to tumor samples are 

more suitable than outliers. However, when a set of particular features, such as 

mutations in particular oncogenes, are required for cell lines to “phenocopy” 

aspects of tumors, focus on these features would provide more useful 

assessment of similarity14. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 2, 2015. ; https://doi.org/10.1101/028159doi: bioRxiv preprint 

https://doi.org/10.1101/028159


4 

 

 

 

Thus, beyond overall genetic similarity, the choice of an appropriate cell line 

for a specific scientific project crucially depends on the goal and context of the 

study and comparison algorithms should take the investigator’s interest into 

account. For example, one may want to choose a cell line that is most similar to a 

set of tumors in terms of alterations in signalling pathways, such as protein 

phosphorylation cascades; or, in terms of mutations in particular pathways; or, in 

terms of the overall level of alterations in known oncogenic pathways.  

 

We therefore aimed to develop a general method for adapting the criteria for 

the choice of cell line most similar to a particular tumor type to the biological 

question at hand. A simple yet powerful approach is to incorporate feature 

weights into the measure of similarity of molecular profiles. For example, 

alterations in genes involved in a certain type of signalling may get a higher 

weight, others a lower weight. A very simple choice of weights is 1.0 (chosen) 

and 0.0 (ignored), but in general weights are real numbers 0.0≤w≤1.0. Here, we 

aimed to derive weights that emphasize potentially oncogenic genomic 

alterations, while de-emphasizing alterations that are likely to be “passengers” in 

tumors. We derived such weights (called RA1, for TumorComparer weights 

based on Recurrent Alterations 1) from TCGA tumor profiles, and then computed 

the weighted similarity between tumors and cell lines using these weights. We 

applied the method with RA1 weights to compare tumors of 6 different cancer 

types from The Cancer Genome Atlas (TCGA) 15 to cell lines from the Cancer 

Cell Line Encyclopedia (CCLE) 16, and identified good, moderate and poor 

matches as well as outlier cell lines to guide cell line selection for laboratory 

experiments focussed on oncogenic processes.  
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Results	  

We developed an approach to comparing tumors and cell lines using multiple 

data types, using weights to emphasize events relevant to the biological question 

at hand, e.g. the more frequent and/or known oncogenic events (Figure 1). We 

then applied our method to compare cell lines and tumors for six different cancer 

types, using genomic data from 260 CCLE cell lines and 1914 TCGA tumor 

samples (Table 1) and weights emphasizing recurrent alterations in tumors. By 

investigating the nearest neighbours of the cell lines and tumors, we identified 

the best matching cell lines for the tumors of various types, as well as poor 

matches and outlier cell lines.  
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Figure 1. Workflow of the TumorComparer. (a) Weighted similarity is 

computed using weights that are either derived from data or provided by the 

user, and reflect the emphasis placed on particular genetic properties of tumors. 

Multiple data types, such as mutations and DNA copy number alterations, are 
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combined into one composite matrix containing all features to be compared. (b) 

To compare cell lines and tumors, we used mutations (mutated - green, wild type 

- white) and copy number alterations (gains – light and dark red, losses – light 

and dark blue, diploid - white), and chose weights based on recurrence of 

cancer-type specific and/or pan-cancer events, as a proxy for likely functional 

events.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.  Tumor and cell line datasets. The 1914 tumors from The Cancer 

Genome Atlas (TCGA) and 260 cell lines from the Cell Line Encyclopedia 

(CCLE) used here represent 6 cancer types/subtypes. 

 

Tumors	  vary	  more	  in	  the	  extent	  of	  alterations	  by	  cancer	  type	  than	  do	  cell	  lines	  

We compared mutations and copy number alterations (CNAs) in cell lines 

from the Cancer Cell Line Encyclopedia (CCLE) and tumors from The Cancer 

Genome Atlas (TCGA) for six different cancer types (lung adenocarcinoma - 

LUAD, lung squamous cell carcinoma - LUSC, high grade serous ovarian 

carcinoma - OV, breast carcinoma - BRCA, colorectal adenocarcinoma - 

COADREAD, and glioblastoma - GBM). We used cell lines of the corresponding 

types/subtypes, with two exceptions – all ovarian cell lines were used (since the 

Cancer Type # of Tumors # of Cell Lines 

Ovarian Cancer (OV) 311 47 

Lung Squamous Cell 

Carcinoma (LUSC) 
178 25 

Lung Adenocarcinoma 

(LUAD) 
172 42 

Breast Cancer (BRCA) 760 51 

Colorectal 

Adenocarcinoma 

(COADREAD) 

220 54 

Glioblastoma (GBM) 273 41 
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type annotation is not always unambiguous, and is debatable in some cases, as 

we recently reported 17), and all CCLE cell lines annotated as “large intestine” 

were used as colorectal cell lines. 

CCLE provides mutation data for 1651 genes, and we restricted the current 

analysis to using CNA data for the same subset of genes. CNA data was 

available for 1529 of these 1651 genes, giving us 3180 alterations or features 

altogether. Mutations were represented in binary form (1 = ‘gene is mutated’, 0-

‘gene is not mutated’), irrespective of location and number of mutations. For copy 

number changes we used a 5-valued (-2,-1,0,1,2) GISTIC 18 representation. 

While our main focus is on detailed comparison of individual tumor profiles 

with those of potentially useful cell line models, some general trends emerge 

from the systematic comparison across many cell lines and tumors in a number 

of different cancer types. First, we confirm the previous observation 6,9,13,17 that 

cell lines tend to have a larger number of genes affected by somatic mutations or 

copy number alterations than do tumors (Figure 2). While the lack of matched 

germline samples for cell lines may confound this conclusion, it plausibly remains 

valid because of the systematic removal of common variants from the set of non-

synonymous mutations in the CCLE cell line dataset. The higher level of genetic 

alterations in cell lines may simply be the consequence of their origin in 

metastatic cancers or of their adaptation to laboratory conditions, as well as their 

higher purity when compared to tumor samples. Whether or not cell lines are 

nonetheless good models for certain tumor types depends on the extent to which 

they retain alterations characteristic of human tumor tissue, which is analysed in 

detail below. 

The second general observation relates to the extent of genetic variation in 

tumors and cell lines derived from different tissues. We confirm the observation 

that mutation counts, as well as copy number alterations, are substantially higher 

for some tumor types than others (Figure 2) 19,20. In contrast, cell lines vary less 

between different tumor types of origin (Figure 2). This observation may be 

related to mechanisms of immortalization, in-vitro growth or adaptation via 

passaging. 
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Figure 2. Tumors vary more in the extent of mutations and copy number 

alterations by cancer type than do cell lines. Comparison of the extent of 

mutation (top) and copy number alteration (CNA, bottom) across six cancer types 

for cell lines and tumors. While tumors vary remarkably in mutation counts  (top 

left; e.g., the median number of mutations in lung squamous cell carcinoma is 

nearly six times greater than in breast cancer and five times greater than in high 

grade serous ovarian carcinoma), the corresponding variation is less than two-

fold in cell lines (top right). The trend for copy number alterations (bottom) is 

similar, albeit less pronounced. This difference between tumors and cell lines 

may be due to alterations acquired by cell lines during immortalization, in-vitro 

growth and/or adaptation via passaging. 

 

The trend for copy number alterations (bottom) is similar, albeit less 

pronounced. This difference between tumors and cell lines may be due to 

alterations acquired by cell lines during immortalization, in-vitro growth and 

adaptation via passaging. 
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All	   cancer	   types	   have	   a	   few	   good	   tumor	  matches,	   and	  most	   have	   some	   outlier	   cell	  

lines	  

To ensure that known and likely oncogenic genomic alterations are 

emphasized in the comparisons, while differences in likely insignificant or 

“passenger” alterations are de-emphasized, we aimed to select weights that 

reflect oncogenic events in tumors. To this end, we utilized the results of the 

MUTSIG 19,21 and GISTIC 18 programs for TCGA mutation and CNA data, 

respectively, and gave higher weights to genes that were identified by MUTSIG 

as being significantly recurrently mutated, reported by GISTIC as being in a 

significant CNA peak, and intermediate weights to other genes known to be 

important in cancer (based on the TCGA pan-cancer analyses of mutation 22 and 

CNA data 20). All other genes had a lower, default weight (see Methods for 

details).  

We assessed the suitability of each cell line as a tumor model using its 

weighted similarity to the tumors (weight set RA1), calculated as the weighted 

asymmetric matching score, ignoring zero-zero matches (see Methods for 

details). Since tumors are themselves a heterogeneous group, often consisting of 

multiple subtypes, we looked at the mean similarity to k nearest tumors (MSK), 

instead of mean similarity to the entire tumor cohort. Results are shown for 

k=10% of tumors in the respective dataset; results were not significantly different 

for other values of k, e.g. 20%, 30% etc.). We also compared the MSK values of 

tumors, which estimate tumor-tumor similarity, to the MSK value of each cell line 

to ascertain whether a given cell line is a good genomic match, a moderately 

good match, a poor match or an outlier (Table 2).  

For approximate visual assessment of the proximity of tumors and cell lines, 

we project them into two dimensions (Figure 3) using multidimensional scaling 

(MDS) with all-against-all distances between samples as input. Intuitively, cell 

lines that are close to several tumors on the MDS plots are good genomic 

matches, those which are far from most tumors are poor matches and outliers, 

while the remaining cell lines are intermediate matches. Figure 4 shows the MSK 
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scores for all 260 cell lines across the 6 tumor types – the number of cell lines 

which are good matches (near or exceeding the mean tumor-tumor similarity, 

near or above the green line) or particularly poor matches (more than two 

standard deviations away from the mean tumor-tumor similarity levels; below the 

red line). 
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Figure 3. All six cancer types have cell lines that are good tumor 

matches and some outlier cell lines. The spread of the tumors shows that OV 

and LUSC are more homogenous than BRCA and LUAD. The position of cell 

lines in the two-dimensional representation (multi-dimensional scaling) relative to 

the tumors indicates which cell lines are good matches (near some tumors) and 

which are poor matches or outliers (far from most/all tumors). Similarities 

between tumors (small blue dots) from TCGA tumor (sub)types and 

corresponding cell lines (larger dots, orange to blue, from outliers to good 

matches) from CCLE were computed using mutation and copy number alteration 

data with weights reflecting cancer-specific significant genomic alterations (RA1). 

In the interest of clarity, only the outlier cell lines are labelled (further details in 

Methods and Supplement Table 1). 
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Figure 4.  Most cell lines are moderately good matches to tumors, but 

some cell lines are clear outliers. Cell line MSK scores (mean similarity to k 

nearest tumors), with tumor MSK scores in the foreground for six cancer types (k 

= 10% of tumor dataset, green line: mean tumor MSK score, red line: mean 

(tumor MSK scores) – 2*sd(tumor MSK scores), the threshold for outliers). The 

MSK scores show that there is a spectrum of good and moderately good to poor 

tumor matches and outlier cell lines. 
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Several	  ovarian	  cell	  lines	  are	  poor	  matches	  to	  TCGA	  high-‐grade	  serous	  ovarian	  tumors;	  

A2780,	  SKOV3	  and	  IGROV1	  are	  among	  the	  highly	  cited	  outliers	  

High grade serous ovarian carcinoma (HGSOC) is characterized by a 

relatively low number of mutations (but near-ubiquitous TP53 mutations), and a 

medium to high extent of copy number alterations 23. We recently evaluated 47 

ovarian cell lines from the CCLE as models of HGSOC using the genomic 

profiles of TCGA tumors, and found that several highly cited cell lines are poor 

genomic matches to the tumors, while some less popular cell lines make for 

better matches 17. Here, we revisited the comparison of ovarian cell lines and 

tumors using the weighted similarity approach. 

On average the MSK for HGSOC tumors was 0.45. Eleven cell lines (ES2, 

OVTOKO, CAOV3, SNU8, COV644, JHOS4, KURAMOCHI, 59M, JHOM1, 

COV318 and OVSAHO) scored higher than this (Figure 4), indicating that they 

might be particularly good matches with respect to the genomic alterations we 

chose to emphasize. On the other hand, COV434, A2780, TOV21G, OVK18, 

RMGI, SKOV3, OC316, IGROV1, COLO704, OV56, RMUGS, EFO27 and 

OVKATE were clear outliers, with an MSK ≤	 0.29.	 As noted earlier 17, IGROV1, 

OC316, EFO27, OVK18 and TOV21G have few CNAs and an exceptionally large 

number of mutations – the exact opposite of the majority of TGCA HGSOC 

tumors, which have few mutations and a medium to high level of copy number 

aberrations, relative to other cancer types.  

The combined CCLE and TCGA dataset contained 3 mutations and 28 genes 

in focal CNA peaks, including 13 in singleton peaks (i.e., only one nominated 

target gene in the focal peak) declared significant by MUTSIG and GISTIC, 

respectively. Most cell lines contained some of these 16 alterations, as well as 

alterations in other cancer genes found in the TCGA pan-cancer studies 20,22. 

However, several of the outlier cell lines lacked the HGSOC-specific alterations, 

but had alterations in other cancer genes. More specifically, A2780, COV644, 

MCAS, OC316, OVTOKO and SNU840 lack any of the HGSOC-specific 

important alterations. Interestingly, the cell line JHOM2B, which has mutations in 
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TP53 and RB1 but lacks any high level amplifications or homozygous deletions 

characteristic of HGSOC, also carries a BRAFV600E mutation. When all CCLE 

cell lines were clustered using mRNA expression (not shown), JHOM2B 

clustered with colorectal cell lines, raising the possibility that it might be a 

colorectal cell line, though further study is needed to confirm or rule that out.   

 

Most	   breast	   cancer	   cell	   lines,	   including	   all	   highly	   cited	   cell	   lines,	   are	   at	   least	  

moderately	  good	  matches	  to	  a	  subset	  of	  tumors	  

The citation landscape of BRCA cell lines is dominated by a handful of cell 

lines, including MCF7, MDAMB231, T47D, MDAMB435 and MDAMB468 24. All of 

these cell lines were found to be good genomic matches for at least 76 tumors 

(10% of all BRCA tumors analysed, Figure 4). The outliers were HS739T, 

CAL51, HS281, HS343T, and HS742T, none of which are highly cited (in fact, 

CAL51, with 38 citations appears to be the only one used commonly – HS742T 

has only one citation while HS739T, HS281T and HS343T had no PubMed hits). 

All five outlier cell lines have very flat CNA profiles, with almost no copy number 

alterations. HS281T and HS731T have very few BRCA-specific recurrent 

mutations. Although the five outlier cell lines are all triple-negative breast cancer 

(TNBC) cell lines25, that does not explain their low similarity to tumors, since 

several other CCLE TNBC cell lines (e.g. BT20, BT549 and MDAMB468) have 

much higher similarity scores. In general, BRCA cell lines resemble BRCA 

tumors much more than ovarian cell lines resemble HGSOC tumors - however, 

this is at least partly due to a greater number of BRCA-specific alterations (29 

MUTSIG genes and 33 genes in GISTIC focal peaks). Moreover, the median 

tumor-tumor MSK was only 0.33 for TCGA breast tumors, indicating greater 

heterogeneity within the cohort, and “lowering the bar” for a cell line to be 

considered a good match to tumor genome profiles.  
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Most	   lung	  adenocarcinoma	  cell	   lines	  are	  at	   least	  moderately	  good	  matches	  to	  tumor	  

genomic	  profiles;	  HS229T	  and	  HS618T	  are	  outliers	  while	  poor	  matches	   include	  DV90,	  

NCI-‐H1703	  and	  MORCPR	  

Similar to BRCA cell lines, most LUAD cell lines are good matches to at least 

10% of the tumors (17), except HS229T, HS618T, DV90, NCIH1703 and 

MORCPR, none of which are highly cited (Figure 4). Also similar to TCGA BRCA 

are the relatively high number of significant alterations (21 MUTSIG genes and 

39 genes in GISTIC focal peaks) and relatively low median tumor-tumor MSK of 

0.36. DV90, HS229T and HS618T are characterized by unusually flat copy 

number profiles. DV90 also has an unusually high number of mutations, along 

with NCI-H1573 and NCI-H2342 (which also has a high number of high-level 

CNAs).  On the other hand, NCI-H2023, VMRCLCD and NCI-H3255 were the 

top-scoring LUAD cell lines with an MSK of 0.49, close to the highest tumor-

tumor MSK of 0.51. RERFLCAD1 was also above the third quartile (0.42) of 

LUAD tumor-tumor MSK. 

 

NCI-‐H226,	  LOUNH91	  and	  HLFA	  are	  outliers	  among	   lung	  squamous	  cell	  carcinoma	  cell	  

lines,	  while	  SQ1	  and	  RERFLCAI	  are	  also	  relatively	  poor	  matches	  

LUSC is characterized by a high extent of mutations and copy number 

alterations. LUSC tumors typically have a higher extent of CNAs than LUAD 

tumors. These characteristics are also found in the majority of LUSC cell lines, 

with the exception of HLFA, which has a remarkably flat CNA profile (fraction 

genes altered, FGA = 0.6%). LOUNH91 (20% FGA) and NCI-H226 (33% FGA) 

have relatively quiet CNA profiles, and also lack LUSC-specific recurrent 

alterations. However, while NCI-H226 is a relatively well-established cell line with 

57 citations, LOUNH91 and HFLA appear to be used much less often (1 and 1 

citations, respectively). NCI-H1385 stands out by virtue of having the highest 

number of high-level CNAs (21% genes, as opposed to a median of 3.6% for 

LUSC cell lines and 2.9% for LUSC tumors). HCC15 has an exceptionally high 

number of mutations (93 genes (5.6%), as opposed to a median of 51 genes 

(3.1%) for LUSC cell lines and 39 genes (2.3%) for LUSC tumors). Notably, as 
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many as 40% (10/25) CCLE LUSC cell lines are reported as being TP53 wild 

type, in contrast to TCGA LUSC tumors in which 82% (146/178) carry TP53 

mutations.  

TCGA LUSC tumors have a relatively high median MSK of 0.42, and have 6 

MUTSIG genes and 31 GISTIC genes in our dataset, consistent with the nature 

of a cancer that is driven more by CNAs than mutations 26. Out of the 25 CCLE 

LUSC cell lines we analysed, as many as 12 (SKMES1, HCC95, NCI-H1869, 

NCI-H2170, LK2, NCI-H520, SW1573, VMRCLCP, LUDLU1, SW900, LC1SQSF 

and LC1F) had an MSK ≥ 0.42, with SW900, LC1SQSF and LC1F exceeding the 

third quartile (0.48) of LUSC tumor-tumor MSK (Figure 4). 

  

U87MG	  and	  SF126	  are	  among	  poor	  genomic	  matches	  for	  glioblastoma	  tumors;	  several	  

glioma	  cell	  lines	  lack	  GBM-‐specific	  recurrent	  alterations	  

TCGA GBM tumors have 14 MUTSIG genes and 31 GISTIC genes in our 

dataset, and a relatively high median tumor-tumor MSK of 0.45. CCLE includes 

gliomas as a subset of “central nervous system” cell lines. We compared all 

CCLE glioma cell lines to the TCGA GBM tumors. U87MG (MSK 0.16), the most 

widely used GBM cell line (1578 citations), is a poor match for the genomic 

profile of the tumor cohort due to its atypical profile, as well as harbouring several 

alterations which are not recurrent in GBM but are important in other cancers 

(Figure 4). 8MGBA is an outlier for similar reasons, albeit one with relatively few 

(13) citations. Interestingly, several CCLE glioma cell lines lack GBM-specific 

recurrent alterations reported by TCGA 27. H4 has none of the GBM-specific 

mutations, and only has a homozygous deletion of PTEN among the GBM-

specific GISTIC peaks. KNS60, MOGGCCM and MOGGUVW have EGFR and 

TP53, RB1 and TP53, and PTEN mutations respectively, but no recurrent CNAs. 

Similarly, SF295, SNU201 and YH13 lack any GBM-specific recurrent CNAs.   
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Colorectal	   cell	   lines	   show	   a	   lot	   of	   intra-‐cancer	   type	   heterogeneity	   (as	   do	   TCGA	  

colorectal	   tumors);	   HCT116,	   HS675T	   and	   HS698T	   are	   outliers	   among	   colorectal	   cell	  

lines	  

TCGA COADREAD tumors have 19 MUTSIG genes and 18 GISTIC genes in 

our dataset, and have a median tumor-tumor MSK of 0.38, indicative of greater 

intra-cancer type heterogeneity than OV, LUSC and GBM, and in a similar range 

to BRCA and LUAD. This is in agreement with the TCGA colorectal study 28, 

which reported that colorectal cancers showed great variation in mutation rates, 

with a subset of tumors demonstrating microsatellite instability (often along with 

hypermethyation and MLH1 silencing) and carrying a much higher mutational 

burden than the majority of tumors, and another subset of hyper-mutators with 

yet higher number of mutations, somatic mismatch-repair and POLE mutations 

28. Several of the CCLE colorectal cell lines (e.g. SNU1040, SNU81, CW2, 

HCT15, HT115, SNU175 and GP2D) have a very high mutation count (of 418-

750, compared to a median of 68 for all CCLE colorectal cell lines). In the 

absence of information on POLE mutations, methylation profiles and 

microsatellite instability status, it is challenging to resolve the colorectal cell lines 

into hyper-mutants and others. Most colorectal cell lines have at least some 

recurrent COADREAD-specific alterations reported by TCGA, making them at 

least moderately good matches to a subset of COADREAD tumors. At first sight, 

HS698T (MSK 0.08), HCT116 (MSK 0.14) and HS675T (MSK 0.15) seem to be 

particularly poor matches for the TCGA colorectal tumors, with HS675T, CW2, 

LS180, GP2D, HCT15, SNUC4 and HS698T showing an unusually low fraction 

of copy number altered genes (5-60 genes; median for colorectal cell lines = 

641.5). HCT116, which is very widely used (4613 citations) also has many 

alterations that are rare in colorectal cancer but recurrent in the TCGA pan-

cancer dataset. HS698T and HS675T, on other hand, have no PubMed citations 

to date. However, several of these cell lines have recently reported as 

hypermutated29 (A total of 14 out of 54 CCLE colorectal cell lines - CCK81, 

GP2D, HCT116, HCT15, HT115, HT55, KM12, LOVO, LS180, LS411, RKO, 

SNU175, SNUC4, SW48), which would explain the high number of mutations and 

low extent of copy number alterations, making these cell lines representatives of 
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the hypermutated subtype of colorectal cancer rather than outliers. Since the 

hypermutated subtype is characterized by an exceptionally high mutational 

burden rather than specific recurrent alterations, comparisons based on finding 

shared recurrent events (such as here with weights RA1) are likely to identify 

hypermutated samples as poor matches to most tumors and/or potential outliers. 
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Cancer Type 

or Subtype 
 

Cell Line  Number of 

Citations 
Main Atypical Alterations 

Breast Cancer HS742T 1 Flat CNA profile 

Breast Cancer HS739T 0 Flat CNA profile, also has few BRCA-

specific recurrent mutations 

Breast Cancer HS343T 0 Flat CNA profile 

Breast Cancer HS281T 0 Flat CNA profile, also has few BRCA-

specific recurrent mutations 

Breast Cancer CAL51 38 Flat CNA profile 

Lung 
Adenocarcinoma 

HS618T 0 Flat CNA profile, also lacks LUAD-
specific recurrent mutations 

Lung 

Adenocarcinoma 

HS229T 0 Flat CNA profile, also lacks LUAD-

specific recurrent mutations 

Lung Squamous 
Cell Carcinoma 

NCIH226 57 Relatively quiet and atypical CNA 
profile; also lacks LUSC-specific 

recurrent mutations 

Lung Squamous 

Cell Carcinoma 

HLFA 2 Flat CNA profile, also lacks LUSC-

specific recurrent mutations 

Lung Squamous 

Cell Carcinoma 

LOUNH91 1 Relatively quiet and atypical CNA profile 

Glioblastoma U87MG 1578 Atypical CNA profile; also has several 
mutations and CNAs in cancer genes 

not typically altered in GBM 

Glioblastoma 8MGBA 13 Atypical CNA profile; also has several 

mutations and CNAs in cancer genes 
not typically altered in GBM 

Colorectal Cancer HS675T 0 Flat CNA profile; also has few 

COADREAD-specific recurrent 

mutations 

Colorectal Cancer HCT116 4613 Flat CNA profile; also has many 

mutations in cancer genes not typically 

mutated in COADREAD. Might 
represent the hypermutated subtype of 

colorectal cancer29. 

Colorectal Cancer HS698T 0 Flat CNA profile; also has few 

COADREAD-specific recurrent 
mutations 

Ovarian Cancer A2780 1812 Flat CNA profile 

Ovarian Cancer IGROV1 309 Hypermutated; flat CNA profile 

Ovarian Cancer EFO27 21 Hypermutated 

Ovarian Cancer COV434 41 Flat CNA profile 

Ovarian Cancer COLO704 1 Hypermutated 

Ovarian Cancer OVKATE 1  

Ovarian Cancer OVK18 10 Hypermutated 

Ovarian Cancer OV56 0 Atypical CNA profile 

Ovarian Cancer OC316 3 Hypermutated 
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Ovarian Cancer TOV21G 53 Hypermutated; flat CNA profile 

Ovarian Cancer SKOV3 2918 Fairly quiet and atypical CNA profile 

Ovarian Cancer RMUGS 0 Atypical CNA  profile 

Ovarian Cancer RMGI 1 Fairly quiet and atypical CNA profile; 

lacks TP 53 mutation and has several 

mutations and CNAs in cancer genes 

not typically altered in ovarian cancer 

 

Table 2. 28 outlier cell lines from 6 cancer types. The genomic profiles of 

these cell lines are badly matched to tumors from this cancer type. These cell 

lines are very probably not good models for tumors. The cell line HCT116 has 

been recently reported to be hypermutated29. Details of alterations for each cell 

line are in the supplement (Tables S1-S6). 
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Discussion	  

While cell lines are valuable models of tumors, there are undeniable 

differences between the two 2,3,6-9,11-13,17,30-33. Moreover, even tumors of a given 

cancer type/subtype may differ substantially from each other in terms of their 

genomic alterations 34. Thus, there is a need to refine comparisons of tumors 

samples, by focussing on the most important properties or alterations – at the 

same time, excluding all but the known important events means that we might 

miss potentially important shared alterations. Assigning weights to features of 

interest like specific genomic alterations, activation of a particular signalling 

pathway etc. allows us to incorporate the degree of importance of various 

features into our measure of similarity. Thus, including all or most available data 

along with judiciously chosen weights is an attractive option for comparing pairs 

of tumors and/or cell lines.   

Here we introduced TumorComparer (TC), a weighted similarity based 

approach to assessing cell line – tumor similarity, and illustrated its use by 

comparing CCLE cell lines to TCGA tumors for six different cancer types. We 

used a set of weights – RA1 – that uses TCGA data to strongly emphasise 

cancer-type-specific recurrent genomic alterations, followed by pan-cancer 

recurrent alterations. We identified both good and poor genomic matches as well 

as outliers among the cell lines of all the cancer types. Several of the outliers and 

poor tumor matches were cell lines that lacked cancer-specific recurrent 

alterations reported by TCGA. We also flagged a few potentially mislabelled cell 

lines. Notably, while we found 13 outlier cell lines among ovarian cancer cell lines 

including five widely used ones, only 2-5 outliers were found in breast, colorectal, 

glioma, lung adenocarcinoma and lung squamous cell carcinoma cell lines 

(including no widely-used cell lines in lung adenocarcinoma, and only one each 

in the other cancer types). Thus the vast majority of cell lines, including most of 

the widely used ones, bear at least a moderate resemblance to tumors, in terms 

of sharing cancer-type-specific recurrent alterations, and not having an unusually 

high or low number of alterations. It is worth noting that the TCGA project has 

focussed on the genomics of primary, untreated tumors, and as such, is 

representative of that subset. Similarly, CCLE does not include all cell lines, and 
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conclusions based on a comparison of TCGA and CCLE data may not apply to 

other collections of tumors and cell lines. However, the weighted similarity 

approach introduced here can be applied to genomic and molecular profiles 

beyond the TCGA and CCLE datasets analysed here.  

Our method is widely applicable to comparisons of genomic profiles, 

including, but not limited to tumor-tumor, tumor–cell line and cell line–cell line 

comparisons. In particular, weighted similarity can be valuable for studies in 

precision medicine. For instance, given a set of patients with genomic profiles as 

well as treatment and outcome histories, we can compare a new patient’s 

genomic profile to the profiles of other patients using weighted similarity, and the 

history of the most similar patients can be used to gain insight into likely 

responses of the new patient to potential treatments. Similarly, if a set of patient 

data is not available, one can perhaps usefully exploit the availability of large 

drug sensitivity screens conducted in cell line panels 16,35-38 and make inferences 

based on cell lines most similar to a particular patient’s tumor regarding potential 

response to particular drug therapy. 

This study has generalized our recent work on evaluating cell lines via 

comparison of genomic profiles in ovarian cancer 17, using weighted similarity 

with RA1, a set of weights chosen to emphasize important genomic alterations 

when computing pairwise similarity/distance.  While the main conclusions of our 

previous study were reproduced by this more general approach, the assessment 

of individual cell lines (barring a few outliers) can vary, depending on the choice 

of similarity/distance measure, and the features we emphasize (and to what 

extent). In particular, the study on HGSOC (high-grade serous ovarian cancer) 

tumors and ovarian cell lines used TP53 mutation status, hypermutant status, 

and mutation status in seven “non-HGSOC” genes, along with correlation with 

the mean copy number alteration profile of tumors to score cell lines. The 

weighted similarity approach introduced here is more general and systematic, 

and all six cancer types/subtypes were studied using a consistent approach to 

deriving feature weights, and the same similarity measure. Our methodology can 

be applied to optimize comparison of cancer samples, be they in-vivo or in-vitro, 

in a flexible and data-driven manner.  For instance, in cases where genomic 
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similarity in terms of shared recurrent alterations might be deemed less important 

than other characteristics such as expression of specific biomarkers, or biological 

properties like growth characteristics or response to certain therapies14, our 

approach can be adapted to inform the comparison via the incorporation of 

features reflecting the characteristics of interest, and weights emphasizing said 

features. A particularly promising application is patient-patient similarity, which is 

going to be a critical component in personalized cancer therapy. As we acquire 

more molecular and clinical data along with treatment outcomes, meaningful 

measures of similarity to previously treated patients will be an invaluable guide 

for treatment strategies. By emphasising, via choice of weights, determinants of 

response and resistance to anti-cancer drugs, our approach can be adapted for 

use in prognosis, assignment to clinical trials and choice of therapy. 
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Methods	  

Data	  acquisition	  and	  preprocessing	  

TCGA data was obtained from the Broad Institute’s GDAC portal websites, 

and cell line data was obtained from the CCLE website 16. In order to focus on 

the mutations most likely to be functional, we excluded mutations in introns, 3’ 

and 5’ untranslated regions, flanking and intergenic regions, as well as silent and 

RNA mutations. Data was pre-processed using the Perl and R programming 

environments 39. 

 

GISTIC2	  on	  CCLE	  CNA	  data	  

GISTIC2 18 was run using the GenePattern 40 website, using the CCLE 

segmented data downloaded from the CCLE 16 website and all the default 

parameters, except the “confidence”, which was increased from 0.75 to 0.99. We 

used the discretized 5-valued (-2,-1,0,1,2) gene-wise data produced by the 

GISTIC algorithm for copy-number analysis. 

 

Assignment	  of	  weights	  to	  features	  

In general, feature weights are to be determined depending on the interest of 

the investigator and the question(s) asked. Here we chose a particular set of 

weights focussed on genomics alterations observed as recurrent across many 

cancer samples. We assigned each of the 3180 genomic features (mutations in 

1651 genes, and copy number alterations (CNAs) in 1529 of these genes) a 

weight between 0 and 1 as follows (default weight = 0.01). As alterations in 

cancer genes that have no statistically significant recurrence in a particular 

cancer type may still be of biological interest, we gave all known cancer genes 

from the TCGA pan-cancer studies a weight of 0.1.   Genes in the results from 

the recurrence analysis programs MUTSIG or GISTIC for specific tumor types 

have high weights as follows: (i) each gene which had a cancer-specific MUTSIG 

q-value ≤	 0.1 has a weight of 1; (ii) all genes in GISTIC peaks have a weight 
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according to the number of genes in the peak  - all genes in a peak that spans n 

genes have a weight of 1/n. 

Thus, all genes with significant recurrence of mutation events according to 

the MUTSIG method and all genes in singleton peaks in the GISTIC method 

have the maximum possible weight of 1, other GISTIC peak genes have a weight 

inversely proportional to the size of their peak, all remaining known cancer genes 

have a weight of 0.1, and the remaining alterations, assumed to be passengers, 

have a weight of 0.01. 

Weighted	  asymmetric	  matching	  

The vast majority of features are zero in most samples, since only a small 

fraction of genes are mutated in a typical tumor – so 0-0 matches are the 

“default” or expected case, and not very informative. We computed the weighted 

similarity of two samples using weighted asymmetric matching, which measures 

the similarity between two samples after discarding the 0-0 matches (hence 

“asymmetric”, like the Jaccard Index for binary data). 

Samples are represented by feature vectors  

𝑋   = (𝑥!, 𝑥!,… , 𝑥!)  and   𝑌   = (𝑦!, 𝑦!,… , 𝑦!)  and a weight vector for feature 

weights 𝑊   = (𝑤!,𝑤!,… ,𝑤!), their weighted similarity is calculated as  

 

𝑆!"   =
     𝑤!    𝑥!   =   𝑦!   𝐴𝑁𝐷  (  𝑥!   ≠ 0  ))!

!!!

𝑤!    𝑥!   ≠ 0   𝑂𝑅  (  𝑦!   ≠ 0  ))!

!!!

 

 

that is, 0-0 matches are discarded, and the similarity is calculated as the ratio of 

the sum of weights of features for which the two samples have the same value, 

to the sum of weights of all features for which at least one of the samples has a 

non-zero value. This is similar to the widely used Jaccard Index for binary data, 

in which zero-zero matches are discarded, and the similarity is calculated as the 

ratio of the intersection to the union of the subsets of features for which the two 

samples have non-zero values 
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Evaluation	  of	  cell	  lines	  using	  MSK	  (mean	  similarity	  to	  k-‐nearest	  tumors)	  scores	  

Since tumor types and subtypes are often inherently heterogeneous, we 

evaluated cell lines using their similarity to a subset of k tumors, rather than all 

the tumors. 

Once the weighted similarity scores have been computed, it is straightforward 

to determine the k most similar tumors for any given cell line or tumor (and k). 

Using the mean and standard deviation of the MSK scores of tumors, a cell line 

was deemed to be a poor match if its MSK score was more than two standard 

deviations below the mean MSK score for tumors, and an outlier if it was more 

than three standard deviations below the mean MSK score for tumors. 

 

Non-‐metric	  multidimensional	  scaling	  

We projected tumors and cell lines into two dimensions for approximate 

visual assessment of their proximity. Multidimensional scaling (MDS) is a method 

of dimension reduction which, given an input distance matrix, produces a 

mapping in a lower-dimensional space that preserves the distances in the 

original space as faithfully as possible. Classical MDS aims to directly compute 

the distances in the lower dimension so that they are as close to the original 

distances as possible (via a minimization of the sum of squares of error terms), 

and if used with Euclidean distances, is equivalent to PCA (principal component 

analysis) 41. Non-metric MDS, on the other hand, only aims to preserve the order 

between the distances, which allows it to potentially achieve a better low-

dimensional mapping on datasets with a high variance in the distance matrix.  

Since only a low amount of the variance in our data was explained by the first 

two principal components, we used the isoMDS function from the R package 

MASS 41 to perform non-metric MDS. isoMDS uses the output of classical MDS 

(via the function cmdscale) as its initial configuration in the lower dimensional 

space, and then iteratively re-computes the distances in the lower dimensional 

space until convergence 41.  Given weighted similarities between 0 and 1, 

distances were generated as  

Di,j = 1 – Si,j 
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where Di,j is the distance between samples i and j, and Si,j is the similarity 

between them.  
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