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Comparing cDNA and oligonucleotide array data: concordance of gene expression across platforms for the NCI-60 cancer cellsMicroarray gene-expression profiles are generally validated one gene at a time by real-time RT-PCR. We describe here a different approach based on simultaneous mutual validation of large numbers of genes using two different expression-profiling platforms. The result described here for the NCI-60 cancer cell lines is a consensus set of genes that give similar profiles on spotted cDNA arrays and Affymetrix oligonu-cleotide chips. Global concordance is parameterized by a 'correlation of correlations' coefficient.

Abstract

Microarray gene-expression profiles are generally validated one gene at a time by real-time

RT-PCR. We describe here a different approach based on simultaneous mutual validation of large

numbers of genes using two different expression-profiling platforms. The result described here for

the NCI-60 cancer cell lines is a consensus set of genes that give similar profiles on spotted cDNA

arrays and Affymetrix oligonucleotide chips. Global concordance is parameterized by a 'correlation

of correlations' coefficient.

Background
Gene expression microarrays are revolutionizing the biomed-

ical sciences, but gross errors in microarray data can arise

from a variety of sources, including cross-hybridization, alter-

native splicing, contamination of clones, mistakes in sequenc-

ing, and the fact that hybridization conditions must be 'one-

size-fits-all' across an array. Re-sequencing of clones can

eliminate some errors in gene identification but not the pos-

sibility of a mix-up during the arraying process or the possi-

bility that minor cross-contamination with a clone

representing a highly expressed gene will obscure the signal

from one of low expression. Therefore, the results for inter-

esting genes are often validated individually by an independ-

ent method such as real-time reverse transcription PCR (RT-

PCR), northern blot, or RNase protection. With each of these

methods, however, the relevant probes or primer-probe sets

must be designed, tuned and applied one at a time. Hence,

most laboratories can verify the information for only a hand-

ful of genes. A multiplexed method that validated thousands

of expression levels simultaneously would be preferable.

Our strategy for multiplexed validation is to profile a set of

RNA samples using two technologies (for example, cDNA

microarrays and oligonucleotide chips) that are subject to

very different artifacts. When the two technologies disagree,

one cannot tell, in the absence of outside information, which

is the more accurate. But when they agree, each tends to vali-

date the other. Agreement in a binary experiment (such as

cancer versus normal cell type) is better than nothing, but it

can be coincidental. Rich patterns of agreement for a given

transcript across many samples in a dataset are statistically

unlikely to arise by accident. We have found the mutual
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validation algorithm to be very useful for studies on expres-

sion data from the 60 human cancer cell lines (the NCI-60)

used by the National Cancer Institute (NCI) to screen for new

drug candidates [1,2].

The NCI-60 panel was established in 1990 and, since that

time, has been used to screen more than 100,000 compounds

in microtiter plate format for inhibition of cell growth. The

assay provides information-rich pharmacological profiles of

the compounds in terms of 60 potency values for each com-

pound [3-6]. The activity profiles can be mapped into molec-

ular descriptors of the compounds tested or, more pertinent

here, into molecular characteristics assessed in the cell lines

at the DNA, RNA, protein, functional and pharmacological

levels [7-14]. Overall, the NCI-60 lines have been character-

ized more extensively than any other set of cells, and the data-

bases on them constitute valuable public resources for

research in a large number of laboratories.

We and our collaborators have profiled the NCI-60 using

9,706-clone cDNA microarrays representing approximately

8,000 different genes [15,16] and also using Affymetrix oligo-

nucleotide chips representing approximately 6,000 different

genes [17]. In the study reported here, we quality-controlled

the resulting datasets individually, identified UniGene cluster

memberships of the sequences on the arrays, resolved the

one-to-many, many-to-one and many-to-many relationships

among sequences on the two types of array, and computed the

Pearson and Spearman correlation coefficients between them

as measures of the similarity of expression pattern. This anal-

ysis yielded a set of cDNA clones and oligonucleotide

sequences for which we were confident at the p = 0.03 level

that we were assessing the same gene with both types of array.

This mutual validation procedure yielded consensus gene-

expression datasets that are much more reliable than either

set by itself. Our focus in this study was less on the compari-

son of technologies than on the generation of mutually

validated, and therefore robust, datasets. As the array tech-

nologies become less expensive, an increasing number of lab-

oratories and institutions (including the NCI) have more than

one type of platform readily available.

Results
Identification of genes common to the two array types

Vital statistics of the two datasets and their common subset

are summarized in Table 1. Starting with cDNA clone IDs and

GenBank accession numbers, we used UniGene cluster mem-

bership to pair the cDNA clones with oligonucleotide probe

sets. Starting from 9,706 arrayed cDNA clones and 6,810

arrayed oligonucleotide sets, we found 8,426 and 5,280

unique UniGene clusters accounting for 9,271 and 5,720 gene

transcripts, respectively. A total of 3,153 clusters representing

3,520 oligo-array sequences and 3,993 cDNA array clones

were common to the two datasets. After exclusion of oligo-

array sequences with more than 45 (out of 60) thresholded

expression values, there were 2,344 UniGene clusters in com-

mon representing 2,492 oligo-array sequences and 3,002

cDNA-array clones.

Distributions of matched genes

As shown in Figure 1a, the distribution of Pearson correlation

coefficients (r) between cDNA- and oligo-array sequences

mapping to the same UniGene cluster appeared to be bimo-

dal. Of the correlation coefficients, 63% fell in a peak above r

= 0.3, centered at around r = 0.6; 37% fell below r = 0.3 in a

peak centered at around r = 0. The latter values presumably

relate, in large part, to uncertainties in the UniGene cluster-

ing or incorrect assignments of sequence due to clonal con-

tamination or sequencing errors. Figure 1b shows the

corresponding reference distribution of Pearson correlation

coefficients for randomly selected non-matching cDNA- and

oligo-array transcripts (transcripts mapping to different Uni-

Gene clusters). The peak is symmetrical around zero,

Table 1

Summary of the numbers of clones, genes and UniGene clusters falling into various categories at different stages in the mutual-valida-

tion procedure

Category                                                                                                                         Oligo chip       cDNA array

Total number of oligo sequences or cDNA clones 6,810 9,706

Number of unique UniGene clusters (number of sequences) 5,280 (5,720 sequences) 8,426 (9,271 clones)

Number of UniGene clusters including more than one transcript from each array type 494 (9.4%, max 4) 1,259 (14.9%, max 9)

Number of sequences belonging to more than one UniGene cluster 47 sequences(0.9%, max 11) 761 clones (8.2%, max 2)

Numbers of UniGene clusters (number of sequences) represented on both array types 3,153 (3,520 sequences) 3,153 (3,993 clones)

Numbers of UniGene clusters (number of sequences) represented on both array types 
after removing oligo genes with > 45 thresholded values

2,344 (2,492 sequences) 2,344 (3,002 clones)

Number among the common 2,344 UniGene clusters that include more than one 
sequence/array

133 (5.7%, max 4) 475 (20.3%, max 9)

Number of final UniGene clusters after correlation filtering (number of sequences) 1,493 (1,564 sequences) 1,493 (1,733 clones)
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essentially matching the left-hand peak for the UniGene-

matched expression levels in Figure 1a. As shown in Figure 1c,

the distribution in Figure 1a can be modeled as consisting of

a contribution (22% of transcripts) from mistaken matches

distributed as in Figure 1b and a component (78%) represent-

ing true matches.

We next asked whether the degree of concordance was being

artificially degraded by the choice of log-transformation and

parametric assessment in terms of Pearson correlation. The

analysis was repeated with Spearman correlation, which

depends only on rank, but we found no major difference (that

is, Figure 1d and 1e are similar to Figure 1a and 1b). We then

asked whether the degree of correlation for UniGene-

matched cDNA-oligo pairs was dependent on the absolute

level of expression and found, perhaps surprisingly, that it

was not (r = +0.10). In contrast, the degree of correlation

observed was highly dependent on whether the calculation

was done for cDNA array genes whose identities had been

putatively confirmed by 'sequence verification' criteria

described in Materials and methods. Comparison of Figure 1f

and 1g clearly indicates that many of the poorly correlated

UniGene-matched cDNA-oligo pairs resulted from misidenti-

fication or from inadequacies of UniGene clustering, rather

than real differences in results between the two technologies.

Figure 2a shows cumulative distributions of the Pearson cor-

relation coefficients from Figure 1a,b,f and 1g. Only 3% of the

random, non-matching transcript pairs had r > 0.3, whereas

63% of the UniGene-matched pairs met that criterion. Hence,

if we kept only cDNA-oligo expression pairs with r > 0.3 to

form a concordant gene set, we could reject at the 97% level

(one-tail) the null hypothesis that any given pair was, in real-

ity, uncorrelated.

Bootstrapped 95% confidence limits (without a bias correc-

tion) were obtained for the correlation coefficients of cDNA-

oligo pairs mapping to the same UniGene cluster (Figure 2b).

The pairs with the 15 highest correlation coefficients are sum-

marized in Table 2. Only a few gene pairs (25 of 1,493) with r

> 0.3 had bootstrap confidence limits (two-tail, 95%) [18]

that included zero correlation. This correlation screening

yielded a set of 1,493 UniGene clusters representing 1,733

transcripts from the cDNA arrays and 1,564 from the oligo

arrays (Table 2). A small number of additional genes (25) can

be removed from the validated set if desired on the basis that

the bootstrap confidence intervals for their correlation

included zero.

Analysis of global concordance

To analyze the global correlation of expression levels for

matched cDNA- and oligo-arrays, we used our 'correlation of

correlations' coefficient, rc, as described in Materials and

methods. As shown in Figure 3a, at a correlation screening

cutoff of r = 0, a total of 2,061 UniGene clusters were repre-

sented, and rc = 0.25. As the stringency of selection was

increased, rc rose steadily to 0.92 at a cutoff level of r = 0.91

(with only 28 UniGene clusters still represented). Thus, the

correlation screening strategy significantly improved the con-

cordance of these two datasets (at the price of excluding some

genes). In contrast, rc for grouping of cell lines was not

strongly affected by stringent selection of genes (Figure 3a). It

remained at 0.85-0.87 for all correlation cutoffs (except those

that severely limited the number of genes retained). The noise

introduced by considerable amounts of 'poor' transcript data

did not appear to degrade the clustering of cells appreciably.

This counter-intuitive result surprised us initially, but a rea-

son then became clear: As already indicated, most of the very

poor correlations between expression levels in the two data-

bases arose from misidentification of genes, rather than from

experimental error. For purposes of cell clustering (unlike

gene clustering), false identification of genes makes no differ-

ence. Gene identities do not enter into the calculation.

For subsequent calculations, we used the gene subset with a

correlation cutoff of r = 0.3. Figure 3b compares hierarchical

clusterings of the 60 cell lines on the basis of cDNA- and

oligo-array data. The results were very similar; five out of nine

cell types clustered almost identically, and many of the rest

clustered at least similarly. Cluster trees based on the original

datasets before UniGene-matching did not show such strong

concordance.

The two final datasets (containing 1,733 cDNA-array profiles

and 1,564 oligo-array profiles) were combined, then hierar-

chically clustered using the average linkage algorithm and

Pearson correlation metric. Figure 4a shows the result in the

form of a clustered image map. Matched transcripts from the

two types of arrays were strikingly well clustered together on

the basis of their UniGene classifications; 53% appeared as

nearest neighbors on the tree (as opposed to an expectation

value of 0.03% for random pairs). Figure 4b shows a section

of the tree characterized by selective expression in melanoma

cells. Most of the UniGene-matched pairs and triplets appear

as nearest neighbors (indicated by blue bars). Therefore, one

can have more confidence when inferring biological

significance from the clusterings than is possible with either

the cDNA- or oligo-array data alone. Many of the tightly clus-

tered genes (for example, LAMP2, HXB, ACVR1, TIMP3 and

FYN) have important roles in metastasis, adhesion and sup-

pression of melanoma cells [19,20]. In particular, TIMP3

(metalloproteinase inhibitor 3 precursor), a well-known

melanoma repressor, clustered with two oligo-array genes

and one cDNA-array gene relevant to metastasis and tumor

cell invasion [21].

Our primary reason for considering the mutually validated

dataset more reliable than either one separately is a simple

conceptual one: any time two very different experimental

protocols yield similar answers, one gains confidence in the

results, even if independent 'gold standard' corroboration is

not possible. A second reason is provided in this case by the
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Figure 1 (see legend on next page)
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increased coherence of clustering results represented by Fig-

ure 4. A related, supporting observation (see Figure 3a) is that

the correlation of correlations on genes continues to increase

as the validated set is more and more stringently restricted.

A third source of support is provided by the correlation with

real-time RT-PCR results (our unpublished observations)

shown in Additional data file 11 for five transcripts (of the

ABC transporter family). Two of them (ABCC2 and ABCG1)

had shown good correlation between cDNA- and oligo-arrays,

and three (ABCC1, ABCC6 and ABCE1) had shown poor cor-

relation. As indicated in the Additional data file 11, the first

two also showed good correlation of both microarray meth-

ods with RT-PCR; the latter three did not. ABCC1 RT-PCR

data correlated reasonably well with the cDNA-array data

(0.44; bootstrap 95% confidence interval 0.16-0.67) but not

with the oligo-array data (0.13; -0.1-0.29). ABCC6 appeared

to show good correlation (0.48) between cDNA- and oligo-

array data, but the bootstrap confidence interval was indeter-

minate because almost all cells gave signals below the limits

of reliable detection, and the correlation depended largely on

a few data points out of the 60. ABCE1 showed poor correla-

tion in all three comparisons. The p-value for the null hypo-

thesis that these findings occurred by chance is p < 0.05.

Discussion
We present here a mutual validation study of transcript

expression data for the NCI-60 cell line panel using two

different microarray technology platforms. The study has two

types of value. First, it provides proof of principle for a new

protocol and new statistical algorithm that make it possible to

validate microarray gene-expression data for large numbers

of genes at once. In the current analysis, the process used to

arrive at concordant datasets was conceptually similar to per-

forming 60 × 2,473 = 148,380 real-time RT-PCR measure-

ments with 2,473 individually designed primer-probe sets.

Where once the establishment of two different platforms

might have been viewed as impractical, it is now being done

by increasing numbers of laboratories and institutions as the

cost decreases and the technologies become more nearly rou-

tine. For example, laboratories and core facilities at the NCI

have major commitments to both cDNA and Affymetrix oligo-

nucleotide arrays, as does the NCI Director's Challenge Pro-

gram, which has issued at least 26 grants to 22 institutions for

molecular profiling of human cancers.

Second, the analysis provides the most robust gene-expres-

sion database yet available to the hundreds, or probably thou-

sands, of laboratories that are using the NCI-60 drug activity

and molecular characterization databases. Matched pairs of

cDNA clones and oligonucleotide sequences representing

1,493 UniGene clusters with r > 0.3 are identified here. The

tabulation for all cDNA-oligo matched pairs can be found at

our website [22], along with the full databases, sorted by cor-

relation coefficient so that subsets of any desired stringency

of concordance can be selected for use. Also at the website are

the full cDNA and oligo databases, as well as a consensus

dataset obtained by log-averaging the two after mean-center-

ing them. These are the central data resources produced by

this study. Another group has reported poor concordance

between cDNA and Affymetrix oligonucleotide arrays for the

NCI-60 cell lines [23]. The difference in findings may have

resulted from any of several factors: they used a preliminary

version of our oligo-array data, used BLAST alone for gene

matching, and did not use the information on sequence re-

verification.

We are using these mutually validated data (with various cor-

relation cutoffs, depending on the application) as a solid basis

for inquiries into the molecular biology and pharmacology of

these widely used tumor cells. To cite one example, we used

the concordant sets to identify molecular markers for

differential diagnosis of colon and ovarian cancer deposits in

the abdomen [24]. That distinction is clinically important

because the former type of tumor is generally treated with 5-

fluorouracil, whereas the latter is treated with paclitaxel and

a platinum agent [25]. We first analyzed the NCI-60 cDNA

array data in depth to identify genes that optimally differenti-

ate ovarian from colon cancer. One candidate gene, villin,

looked promising on the basis of the cDNA array data, but

when the clone insert was re-sequenced, no matching mRNA

sequence was found in the public databases. We suspected a

misidentified clone. However, we also saw a strong correla-

tion between the cDNA- and oligo-array data (r = 0.75; p <

0.001) and, therefore, persisted in our pursuit of villin as a

marker, rather than going on quickly to other candidates.

Using additional databases, methods of alignment and

published literature, we found that villin could be expressed

in an alternative form with a different polyadenylation site

and a transcript 791 base-pairs (bp) longer than the sequence

in GenBank. That extra 791-bp sequence, which contained the

cDNA clone on the array, had not been deposited in GenBank.

Histograms showing the distribution of correlation coefficients for UniGene-matched and UniGene-mismatched transcriptsFigure 1 (see previous page)

Histograms showing the distribution of correlation coefficients for UniGene-matched and UniGene-mismatched transcripts. Pearson correlation 
coefficients for (a) cDNA-array and oligoarray transcript pairs that map to the same UniGene cluster and for (b) pairs that map to different UniGene 
clusters. (c) Modeling of the correlation distribution in (a) in terms of a component (22%) based on (b) representing mistaken matchings and a component 
(78%) based on true matches. This was an eye-fit of the one parameter representing the proportions of the two populations of values. (d) The same as in 
(a) but with Spearman (non-parametric) correlation coefficients. (e) The same as in (b) but with Spearman correlation coefficients. (f) Distribution of 
Pearson correlations for UniGene-matched cDNA-oligo transcripts that have not been sequence-verified. (g) The same as in (e) but for sequence-verified 
transcripts.
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Correlation filtering of UniGene matched oligo- and cDNA-array dataFigure 2

Correlation filtering of UniGene matched oligo- and cDNA-array data. (a) Cumulative distributions of the Pearson correlation coefficient for various types 
of expression pattern pairings. (b) Pearson correlation coefficient and its 95% bootstrap confidence limits for UniGene-matched oligo and cDNA 
transcripts.
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Reassured about the identity, we next validated this candi-

date marker prospectively in protein lysate arrays and then

tumor 'tissue arrays'. Villin appears, on the basis of the infor-

mation we have developed thus far, to have advantages over

currently used immunopathology markers for distinguishing

colon and ovarian tumors. Without the mutual validation

protocol, we would not have pursued villin as a candidate.

Materials and methods
cDNA microarrays

Gene-expression data for the NCI-60 from 9,706-clone cDNA

microarrays [15,16] (Synteni; Incyte, Palo Alto, CA) were nor-

malized and refined using Gaussian-windowed moving-aver-

age [26] fits of the Cy3 and Cy5 channels, without subtraction

of the local background (our unpublished algorithm). In

large-scale sensitivity analyses (our unpublished data), omis-

sion of background subtraction led to slightly more robust

signal-to-noise ratios. The identities of around 43% of the

genes had previously been verified by re-sequencing or by the

criterion that two or more independent cDNA clones ostensi-

bly representing the same gene had nearly identical expres-

sion patterns [16]. Both oligo- and cDNA-array expression

levels were log2-transformed because distributions of the

original values were highly skewed. The values were then cen-

tered by subtracting the mean over all cell lines for each gene.

Oligonucleotide arrays

Gene-expression profiles were obtained using 6,810-gene

Affymetrix HU6800 oligonucleotide arrays [17]. Briefly,

poly(A) RNA was prepared from each of the 60 cell lines, and

1.5 mg was biotinylated for use in hybridization. An 'average

difference' expression value was calculated for each gene

using Affymetrix GeneChip software [27]. The data were nor-

malized to match interquartile ranges across all chips, floored

at 30 units because analysis showed a large increase in noise

below that level, and log2-transformed. Genes with > 45

floored values were excluded, leaving 4,244 sequences.

UniGene cluster matching

Transcripts represented on the cDNA and oligo arrays are

uniquely identified by IMAGE consortium clone ID and Gen-

Bank accession number, respectively. To identify genes in

common between the two platforms, we used principally the

UniGene database [28]. UniGene has the advantage of

combining sequence-based identity with a clustering algo-

rithm that groups nonoverlapping ESTs (expressed sequence

tags) and gene sequences. In some cases, BLAST comparisons

of sequences were used to resolve apparent inconsistencies or

uncertainties in the UniGene clusterings. Using both an early

version of Match Miner [22,29] and an independent algo-

rithm scripted in Perl to search the entire UniGene database

(with cross-confirmation by the two programs), we identified

Table 2

Gene-by-gene summary of correlation statistics between UniGene-matched cDNA- and oligo-array genes

UniGene cluster Gene name          Chromosome 
location

cDNA clone ID Oligo gene 
accession 
number

Pearson 
correlation 
coefficient

Spearman 
correlation 
coefficient

Pearson 95% 
bootstrap CI

Hs.2053* TYR 11q14-q21 271985 M27160 0.961 0.427 (0.936, 0.985)

Hs.621 LGALS3 14q21-q22 510003 M57710 0.951 0.955 (0.929, 0.969)

Hs.76118 UCHL1 4p14 512355 X04741 0.944 0.895 (0.883, 0.975)

Hs.289114 HXB 9q33 487887 X78565 0.943 0.893 (0.921, 0.966)

Hs.286124 CD24 6q21 21822 L33930 0.943 0.924 (0.925, 0.962)

Hs.75621 SERPINA1 14q32.1 358836 K01396 0.943 0.691 (0.808, 0.973)

Hs.82772 COL11A1 1p21 287205 J04177 0.941 0.575 (0.865, 0.969)

Hs.76669 NNMT 11q23.1 429145 U08021 0.938 0.909 (0.909, 0.965)

Hs.256290 S100A11 1q21 510059 D38583 0.937 0.834 (0.849, 0.970)

Hs.1244 CD9 12p13 306170 M38690 0.937 0.922 (0.901, 0.964)

Hs.180255 HLA-DRB1 6p21.3 235903 M33600 0.936 0.651 (0.871, 0.973)

Hs.313 SPP1 4q21-q25 363981 U20758 0.935 0.828 (0.906, 0.959)

Hs.82985 COL5A2 2q14-q32 429203 M11718 0.931 0.806 (0.870, 0.963)

Hs.77274 PLAU 10q24 486215 X02419 0.931 0.897 (0.895, 0.963)

Hs.287820 FN1 2q34 512287 X02761 0.930 0.898 (0.901, 0.954)

Because of limitations of space, only the pairs with the 15 highest Pearson correlation coefficients are listed. The full table for 2,344 UniGene cluster 
pairs can be found at our website [22], along with descriptions of gene function. CI, confidence interval. *Hs.2053 represents an anomalous case in 
which the data points fell into two groups that were not well distinguished by ranks.
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Figure 3 (see legend on next page)
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8,426 and 5,280 unique UniGene clusters for the cDNA and

oligo arrays, respectively. Approximately 9.4% (494) of the

UniGene clusters identified for the oligo arrays included more

than one sequence on the array; the corresponding number

for the cDNA arrays was 14.9% (1,259 clusters). Further

complicating the process, 47 oligo array sequences (0.9%)

mapped to more than one cluster, generally because their

GenBank accession numbers referenced sequences that span

more than one gene. Of the cDNA-array clones, 761 (8.2%)

mapped to two or more clusters, generally because their 3'

and 5' sequence reads were assigned to different clusters. If

multiple transcripts from a given array type mapped to the

same UniGene cluster, we used those that were maximally

correlated, the heuristic rationale being that they were mutu-

ally validating and therefore likely to be most reliable.

Correlation screening for concordant expression 

patterns

Bootstrap confidence limits were calculated with case-wise

omission of missing data and without bias correction

(because bias-corrected bootstrapped confidence limits for

correlation coefficients typically perform worse than do

uncorrected ones [18]). Correlation screening with a cutoff of

r = 0.3 eliminated all but two transcripts, each of which

mapped to two different UniGene clusters, respectively. In

that one case, the oligo sequence designated X66401 was

assigned to both Hs.158164 and Hs.180062; cDNA IMAGE

clone 509477 was assigned to both Hs.63287 and Hs.86978.

Correlation of correlations (rc)

Conceptually, rc for cells can be explained as follows. For the

cDNA-array dataset, visualize the 60 cell lines as nodes linked

in all possible pairwise combinations by 60 × (60 - 1)/2 =

1,770 connections with associated values of the Pearson

correlation coefficient. Do the same for the oligo-array data-

set, obtaining another set of 1,770 correlation coefficients.

The correlation of correlations is the Pearson correlation

coefficient of those 1,770 pairs of values. Mathematically, rc

was calculated as follows: Let Uij denote the correlation of

cells i and j (for i and j from 1 to n) on the basis of their cDNA-

array gene-expression patterns, and let Vij denote the correla-

tion of cells i and j based on their oligo-array gene expression.

For example, if Xdi denotes the expression level of gene d (for

d from 1 to D) in cell i, then the Pearson correlation coefficient

for cells i and j based on gene expression is given by the

formula

and similarly for Vij. The Pearson correlation of Uij and Vij

gives a measure of the similarity in the distributions of cDNA-

and oligo-array gene expression. The formula is given by

where the sums are over all distinct pairs of cells i and j, there

being n(n - 1)/2 such pairs [15]. A non-parametric (Spear-

man) version can be defined similarly, but will not be used

here. In an analogous manner, rc for genes can be defined by

imagining the cDNA-array transcripts (or oligo-array

transcripts) as a set of nodes connected by all possible pair-

wise correlations among them (using only the genes repre-

sented once per UniGene family). A program for calculating rc

can be found at our website [22].

Co-clustering

The cDNA- and oligo-array datasets were combined to form a

pooled set of 3,297 expression patterns from the two array

types, and each pattern was mean-subtracted across the 60

cell lines. This combined set was then hierarchically clustered

using a Pearson correlation distance metric and the average

linkage algorithm. The results are shown in clustered image

map form [4,15,16].

Additional data files
The following additional data are included with the online

version of this article: Figures that show scatter plots of cell-

cell Pearson correlation coefficients relating the cDNA array

and oligo array data sets (Additional data file 1) and scatter

plots of cell standard deviations across the set of 2,344 genes

for the cDNA array and oligo array data sets (Additional data

file 2).

An Excel sheet for the original Affymetrix oligo array data on

6,810 human and 319 control transcripts (Additional data file

Global concordance between the oligo- and cDNA-array gene-expression databases after UniGene matchingFigure 3 (see previous page)

Global concordance between the oligo- and cDNA-array gene-expression databases after UniGene matching. (a) Correlation of correlations (rc) and 
number of genes remaining in the dataset as a function of the correlation cutoff value. For the original cDNA- and oligo-array sets before UniGene 
matching, rc for the cells was only 0.48. (b) Cluster trees (average linkage, correlation metric) for the 60 cell lines based on cDNA array and oligo 
databases after UniGene matching and correlation screening at a threshold value of r = 0.3 (which produced sets of 1,733 cDNA-array and 1,564 oligo-
array transcripts). Most of the clusters are very similar to each other in the two trees, and the clusters for five tissues of origin were found almost 
identical: CNS (red), renal (green), melanoma (purple), leukemia (pink), and colon (blue).

U

X X
D

X X

X
D

X

ij

di
d

D

dj di
d

D

dj
d

D

di
d

D

di
d

D

=

−

−





= = =

= =

∑ ∑ ∑

∑ ∑

1 1 1

2

1 1

1

1 


 −











= =
∑ ∑

2

2

1 1

2
1

X
D

Xdj
d

D

dj
d

D

,

r
c

U V
n n

U V

U
n n

U

ij
i j

ij ij
i j

ij
i j

ij
i j

ij
i j

=

−
−

−
−



< < <

< <

∑ ∑ ∑

∑ ∑

2

1

2

1

2

( )

( ) 









−
−











< <

∑ ∑
2

2

2

2

1
V

n n
Vij

i j
ij

i j( )

,



R82.10 Genome Biology 2003,     Volume 4, Issue 12, Article R82       Lee et al. http://genomebiology.com/2003/4/12/R82

Genome Biology 2003, 4:R82

Figure 4 (see legend on next page)
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3). It that includes the index, gene accession number (except

for controls, which have Affymetrix's designations) and orig-

inal oligo array gene expression data for the 60 cell lines

(average difference intensity); for calculations, these original

data were floored at 30 and log2-transformed. An Excel sheet

for the ratio data on 9,706 cDNA-clone database (ratios

obtained as described in text) (Additional data file 4). It

includes the index, gene name, cDNA IMAGE clone ID and 60

cell line cDNA-array ratios (each of 60 cell lines over refer-

ence pool); NA indicates values omitted after applying qual-

ity-control filters described in [15].

An Excel file (Additional data file 5) is available that gives a

summary for the UniGene-matched pairs, which includes

information about the index, UniGene cluster, gene accession

number, cDNA IMAGE clone ID, the Pearson correlation

coefficient between expression patterns for UniGene-

matched cDNA- and oligo-array transcript pairs (calculated

with missing data omitted) and the two-tail bootstrapped,

99% and 95% confidence limits for the Pearson correlation

coefficient. It should be noted that after quality control

(including removal of genes for which >45 of the 60 oligo-

array values were below the threshold of 30), there were

2,344 UniGene clusters in common between the two data

sets. These clusters were represented by 2,492 oligo tran-

scripts and 3,002 cDNA clones (see Table 1). For this sum-

mary table, the pair with maximum correlation was used if

there was more than one cDNA-oligo pair in each UniGene

classification.

An Excel file (Additional data file 6) for  the consensus data

set based on both cDNA- and oligo-arrays. It includes the

index, UniGene cluster, gene accession number, cDNA clone

ID and consensus expression levels for 2,344 UniGenes clus-

ters found in both data sets. Values represent log means of the

cDNA ratio data and oligo data (for the 2,344 matched pairs

summarized in cDNA-oligo2344. summary). It should be

noted that the two data sets can be concatenated in a number

of other ways, for example, after being normalized or trans-

formed into ranks, and we provide the former.

Additional data file 7 (Additional data file 7) provides descrip-

tive information on the oligo-array transcripts listed in Addi-

tional data file 8 (Additional data file 8). Included are index,

gene accession number, UniGene cluster, description of gene

function (when available), HUGO name of the gene, chromo-

some location of gene, and LocusLink; a corresponding Excel

file (Additional data file 8) contains the Oligo database and

includes the index, gene accession number and oligo array

gene expression data for the 60 cell lines (average difference

intensity); data were floored at 30 and log2-transformed.

Additional data file 9 (Additional data file 9) provides

descriptive information on the cDNA-array transcripts listed

in Additional data file 10 (Additional data file 10). It includes

index, IMAGE clone ID, UniGene cluster, description of gene

function (when available), HUGO name of the gene,

chromosome location of the gene, and LocusLink identifier; a

corresponding Excel file (Additional data file 10) contains the

cDNA database. It includes the index, IMAGE Clone ID and

60 cell line cDNA-array ratios (each of 60 cell lines over

reference pool); NA indicates values omitted after applying

quality-control filters described in [15]. The data were log2

transformed.

Finally, the real-time RT-PCR results for five transcripts of

the ABC transporter family are provided (Additional data file

11).
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