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Abstract. We study the structure of social networks of students by examining the graphs of Facebook
“friendships” at five U.S. universities at a single point in time. We investigate the commu-
nity structure of each single-institution network and employ visual and quantitative tools,
including standardized pair-counting methods, to measure the correlations between the
network communities and a set of self-identified user characteristics (residence, class year,
major, and high school). We review the basic properties and statistics of the employed
pair-counting indices and recall, in simplified notation, a useful formula for the z-score of
the Rand coefficient. Our study illustrates how to examine different instances of social
networks constructed in similar environments, emphasizes the array of social forces that
combine to form “communities,” and leads to comparative observations about online social
structures, which reflect offline social structures. We calculate the relative contributions of
different characteristics to the community structure of individual universities and compare
these relative contributions at different universities. For example, we examine the impor-
tance of common high school affiliation at large state universities and the varying degrees
of influence that common major can have on the social structure at different universities.
The heterogeneity of the communities that we observe indicates that university networks
typically have multiple organizing factors rather than a single dominant one.
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1. Introduction. Social networks are a ubiquitous part of everyday life. Although
they have long been studied by social scientists [37], mainstream awareness of their
ubiquity has arisen only recently, in part because of the rise of social networking sites
(SNSs) on the World Wide Web. Since their introduction, SNSs such as Friendster,
MySpace, Facebook, Orkut, LinkedIn, and many others have attracted hundreds of
millions of users, many of whom have integrated SNSs into their daily lives to com-
municate with friends, send e-mails, solicit opinions or votes, organize events, spread
ideas, find jobs, and more [2]. Facebook, an SNS launched in February 2004, now
overwhelms numerous aspects of everyday life, having become an especially popular
obsession among college and high school students (and, increasingly, among other
members of society) [1, 2, 23, 25]. Facebook members can create self-descriptive pro-
files that include links to the profiles of their “friends,” who may or may not be offline
friends. Facebook requires that anybody who one wants to add as a friend confirm
the relationship, so Facebook friendships define a network (graph) of reciprocated ties
(undirected edges) that connect individual users.

The global organization of real-world networks typically includes coexisting mod-
ular (horizontal) and hierarchical (vertical) organizational structures [5, 8, 28, 30, 33].
Myriad papers have attempted to interpret such organization through the compu-
tation of structural modules or communities [8, 33], which are defined in terms of
mesoscopic groups of nodes with more internal connections (between nodes in the
group) than external connections (between nodes in the group and nodes in other
groups). Such communities, which are not typically identified in advance, are often
expected to have functional importance because of the large number of common ties
among nodes in a community. Additionally, empirical studies have observed some
correspondence between communities and “ground truth” groups in social and bio-
logical networks [33]. For example, communities in social networks might correspond
to circles of friends or business associates, communities in the World Wide Web might
encompass pages on closely related topics, communities in metabolic networks have
been used to find functional modules [15], and communities have been used to identify
and measure political polarization in legislative processes in the U.S. Congress [38,39].

As discussed at length in two recent review articles [8,33] and references therein,
the classes of techniques available to detect communities are both numerous and di-
verse. They include hierarchical clustering methods such as single linkage clustering,
centrality-based methods, local methods, optimization of quality functions such as
modularity and similar quantities, spectral partitioning, likelihood-based methods,
and more. In addition to remarkable successes on benchmark examples, investiga-
tions of community structure have led to success stories in diverse application areas—
including the reconstruction of college football conferences [11] and the investigation of
such structures in algorithmic rankings [6]; the analysis of committee assignments [32],
legislation cosponsorship [39], and voting blocs [38] in the U.S. Congress; the exami-
nation of functional groups in metabolic networks [15]; the study of ethnic preferences
in school friendship networks [13]; and the study of social structures in mobile phone
conversation networks [31].

In this paper, we investigate the community structures of complete Facebook net-
works whose links represent reciprocated “friendships” between user pages (nodes) for
each of five U.S. universities during a single-time snapshot in September 2005. Our
primary aim in this paper is to use an unsupervised algorithm to compute the commu-
nity structure—consisting of clusters of nodes—of these universities and to determine
how well the demographic labels included in the data correspond to algorithmically
computed clusters. We consider only ties between students at the same institution,
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yielding five separate realizations of university social networks and allowing us to
compare the structures at different institutions.

The rest of this paper is organized as follows. In section 2, we describe our
principal methods: the employed community-detection method, visual exploration
of identified communities, and standardized pair-counting methods for quantitative
comparison of communities with demographic data. We present more details about
the data in section 3. We then describe and discuss the results that we obtained for
the five institutions in section 4 before concluding in section 5.

2. Comparing Communities. A social network with a single type of connection
between nodes can be represented using an adjacency matrix A whose elements Aij

give the weight of the tie between nodes i and j. The Facebook networks we study
are unweighted, so Aij ∈ {0, 1}, where the value is 1 if a tie exists and 0 if it does
not. The resulting tangle of nodes and links, which we show for the California In-
stitute of Technology (Caltech) Facebook network in Figure 2.1, can obfuscate any
organizational structure that might be present.

Fig. 2.1 (Left) A Fruchterman–Reingold visualization [10] of the largest connected component of
the Caltech Facebook network. Node shapes and colors indicate House affiliation (gray dots
denote users who did not identify an affiliation), and the edges are randomly shaded for
easy viewing. (Right) Magnification of a portion of the network. Clusters of nodes with the
same color/shape suggest that House affiliation affects the existence of friendships/edges.

One approach to analyzing such data is to employ exponential random graph
models (see, e.g., [35]), statistically fitting an underlying model for the presence of
links. While such models (which can incorporate local network features) are poten-
tially valuable for understanding the microscopic processes that underlie the links
between individual nodes, we take a different approach, focusing on groups of friends
that form structural “communities”—groups of nodes that contain more internal con-
nections (links between nodes in the group) than external connections (between nodes
of the group and nodes in other groups) [8, 33]. Our approach was motivated in part
by the features of the Caltech data (discussed in detail in sections 3 and 4). Although
precise results obviously vary from one model specification to another, performing a
logistic regression on the dyads (pairs of nodes) yields comparable coefficient values



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUNITIES IN ONLINE COLLEGIATE SOCIAL NETWORKS 529

for link presence between users from the same “House” (the terminology for student
residences at Caltech) and between users from the same high school [36]. However,
there are significantly more users sharing the former than the latter at Caltech. While
common high school is unsurprisingly important at the dyadic level (in the rare cases
that it happens), common House affiliation is apparently much more important for
understanding structures that consist of larger groups of individuals. Accordingly, our
goal in this section is to discuss how to compare the composition of algorithmically-
determined communities with that of groups defined by common user characteristics.

We identify communities using spectral optimization [29] (followed by supplemen-
tary Kernighan–Lin node-swapping steps [21]) of the “modularity” quality function
Q =

∑

i(eii − b2i ), where eij denotes the fraction of ends of edges in group i for which
the other end of the edge lies in group j and bi =

∑

j eij is the fraction of all ends
of edges that lie in group i. High values of modularity correspond to community
assignments with greater numbers of intracommunity links than would be expected
at random (with respect to a particular null model [8, 29, 33]). Numerous other com-
munity detection methods are also available. However, our focus in the present paper
is on studying communities after they are obtained, and our methods can be applied
to the output of any community-detection algorithm in which each node is assigned
to precisely one community. Such an assignment of nodes to communities constitutes
a partition of the original graph. We seek a method to compare an algorithmically-
obtained partition to partitions based on information that we have about Facebook
user characteristics—class year, dormitory (House), high school, and major—as a
means of exploring the roles of such characteristics in the social structures of each
institution. An online social network is an imperfect proxy for an offline network,
but our comparisons are nevertheless expected to yield interesting insights about the
social life at the universities we study.

2.1. Visual Comparisons. The demographic composition of communities is some-
times clear from visual inspection. This is the case with the community structure of
the Caltech network, which agrees closely with its undergraduate House system. In
Figure 2.2, we show a force-directed layout of Caltech’s 12 communities (yielding a
modularity of Q

.
= 0.4003), which we show as pies with area proportional to the

number of constituent nodes. Purple slices signify individuals who did not identify a
House affiliation.

Unlike the other four universities studied in section 4, we find that House affiliation
is the primary organizing principle of the communities in the Caltech network, which is
what we expected because Caltech’s House structure is so dominant socially.1 Indeed,
each pie in Figure 2.2 is dominated by members of one House. Moreover, many pies
include a significant number of people who identify Avery House as their affiliation
(dark blue), which is expected because of its different residency rules (members of
all Houses could live in Avery at the time of this data). Given the promotion of
Avery House to official House status after our data snapshot, it is natural to wonder
whether community detection on current data would now find a community dominated
by Avery. Investigating the formation of such a community using longitudinal data
would be even more interesting, but is beyond the scope of our data. In principle,
one can also make limited predictions based on the compositions of the communities
about users who did not volunteer their House affiliation.

1See the discussion at http://en.wikipedia.org/wiki/House System at the California Institute
of Technology.

http://en.wikipedia.org/wiki/House_System_at_the_California_Institute_of_Technology
http://en.wikipedia.org/wiki/House_System_at_the_California_Institute_of_Technology
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Fig. 2.2 (Left) Force-directed layout of Caltech communities, each represented by a pie chart with
area proportional to population and colored by House affiliation (with purple signifying
missing information). (Right) Distribution of Rand coefficients comparing these 12 Caltech
communities with random permutations of partitions into 9 House categories (including
“Missing”). For comparison, we plot in red a Gaussian with the sample mean and variance.
As our smallest data set, the Caltech network exhibits the most extreme deviation from the
Gaussian in our permutation tests.

Despite this demonstration of the utility of visualizing communities, it is typically
necessary to perform quantitative analyses after detecting communities, as Caltech is
unusual among universities in having a single characteristic that aligns so closely with
its communities. For other institutions, we observe more heterogeneous communities,
and it is typically difficult to visually assess which characteristics best correlate with
the communities or even whether there is any strong correlation at all. To investigate
the social organization of communities at such universities, it is thus essential to quan-
titatively compare the detected communities with the available demographic groups.
Such considerations apply broadly to community detection in most networks [33].

2.2. Pair Counting. As discussed in [20, 26], methods to compare graph parti-
tions can be classified roughly into three categories: (1) pair-counting, (2) cluster-
matching, and (3) information-theoretic techniques. Cluster matching might be par-
ticularly problematic in the present context, as the numbers and sizes of groups vary
significantly, which makes the essential identifications across partitions rather difficult.
We focus on a collection of pair-counting methods, in part because of their convenient
algebraic description, as one just needs to count the ways that pairs of nodes are
grouped across two partitions. That same simplicity can also be a weakness, as it
can present a serious interpretation difficulty because of the unclear range of “good”
scores. However, as we will show in section 2.3, standardization of pair-counting
scores provides a unified interpretation of several seemingly disparate pair-counting
measures and is particularly useful for the present setting. We also compare these
results with those obtained using variation of information (VI) [26].

A pair-counting method defines a similarity score by counting each pair of nodes
drawn from the n nodes of a network according to whether the pair falls in the same
or in different groups in each partition. Pair-counting methods comprise a subset of
a more general class of association measures that can be used for studying unordered
(i.e., categorical) contingency tables [18,22,26]. We denote the counts of node pairs in
each classification as w11 (pairs classified together in both partitions), w10 (the same
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in the first but different in the second), w01 (different in the first but the same in the
second), and w00 (different in both). The sum of these quantities is, by definition,
equal to the total number M of node pairs: M = w11+w10+w01+w00 =

(

n
2

)

= n(n−
1)/2. Given two partitions of a network, one can obtain many different pair-counting
similarity coefficients using different algebraic combinations of the wαβ counts.

We first consider the Rand similarity coefficient SR = (w11 +w00)/M [34], which
counts the fraction of node pairs identified the same way by both partitions (either
together in both or separate in both). Bounded between 0 (no similar pair placements)
and 1 (identical partitions), the Rand coefficient is extremely intuitive and can be
used fruitfully in many settings. However, it has an important deficiency: The Rand
coefficient for two network partitions that each contain large numbers of categories is
skewed toward the value 1 because of the large fraction of node pairs that are placed
in different groups even when comparing two partitions with little in common.

If one wishes to exclude w00 from having an explicit role, one can use the Jac-
card index SJ = w11/(w11 +w10 +w01) or the Fowlkes–Mallows similarity coefficient
SFM = w11/

√

(w11 + w10)(w11 + w01). Both SJ and SFM clearly avoid the problem-
atic effects of large w00, but their ignorance of node pairs classified similarly into
different communities yields overly high values when comparing network partitions
with very few categories (or when one partition consists of a single group). An-
other index is the Minkowski coefficient SM =

√

(w10 + w01)/(w10 + w11), which is
asymmetric in its consideration of the two partitions. The first partition serves as
a distinguished reference, with SM based on the count of mismatches relative to the
number of node pairs placed together in that reference. Hence, SM-values closer to 0
indicate closer agreement. The Γ similarity coefficient, defined as

SΓ =
Mw11 − (w11 + w10)(w11 + w01)

√

(w11 + w10)(w11 + w01)[M − (w11 + w10)][M − (w11 + w01)]
,

has the most complicated algebraic form of the similarity coefficients that we employ.
Additional measures and discussions are available in [7, 19, 26]. Notably, each Si

measure suffers from the difficulty that it is unclear what constitute “good” values, as
they all depend intimately on the numbers and sizes of the groups in the partitions.
(We illustrate this in section 4 with computations for the Caltech network and discuss
further properties of the similarity indices in section 2.3.)

One can try to alleviate the problem of identifying good similarity values by in-
troducing various “adjusted” indices that report comparisons as a similarity relative
to that which might be obtained at random. For instance, one can construct adjusted
indices by subtracting the expected value (under some null model, typically condi-
tional on maintaining the numbers and sizes of groups in the two partitions) and then
rescaling the result by the difference between the maximum allowed value and the
mean value [18]. One such index, using a bound on the maximum allowed value, is
the adjusted Rand coefficient [18]

SAR =
w11 −

1

M
(w11 + w10)(w11 + w01)

1

2
[(w11 + w10) + (w11 + w01)] −

1

M
(w11 + w10)(w11 + w01)

.

As described in [26], adjusted indices can be problematic because the focus on
the maximum possible values does not guarantee accurate comparisons between simi-
larity coefficients across different settings. In particular, this implies that one cannot
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necessarily use similarity scores to make direct comparisons between communities and
House and between communities and high school (which is something that we specif-
ically aim to do). That is, even if such comparisons yield adjusted Rand values of 0.1
and 0.2, it is not at all clear that the second situation should be construed to yield
a more similar pair of partitions than the first. Consequently, the general problem of
knowing what similarity-score values indicate a good correlation remains.

2.3. Standardized Pair Counting. Numerous studies have attempted to assess
the utility of similarity measures. However, because a partition specified by common
demographic traits typically differs significantly from that obtained using algorithmic
community detection, we use a classical statistical approach, advocated in [3, 9], in
which similarity measures are used to test significance levels of the obtained values
versus those expected at random. We recommend using a proper metric (i.e., a
quantity that is a metric in the mathematical sense rather than only in an informal
sense) such as VI [26] for comparing partitions that are close to one another. However,
in the Facebook networks, the mutual information of a pair of partitions is small
compared to the total information in each. In such cases, two partitions can be
relatively far from each other according to a distance measure but might nevertheless
be very far in the tail of the distribution of what can be expected at random. It
is consequently more appropriate to identify the pair-counting strength relative to
that obtained at random, standardized by the width of the distribution via z-scores
zi = (Si − µi)/σi, in terms of the mean µi and standard deviation σi in some model
(i ∈ {FM,Γ, J,M,R,AR}; one multiplies by −1 for zM, so positive values indicate
partitions that are more similar than average).

One can obtain z-scores nonparametrically using permutation tests [14], though
we will identify analytical formulas for zR and show that the Fowlkes–Mallows, Γ,
Rand, and adjusted Rand z-scores are identical. The element nij of the contingency
table indicates the number of nodes that are classified into the ith group of the first
partition and the jth group of the second partition. As long as partitions are con-
strained to have the same numbers and sizes of groups as the original partitions—i.e.,
as long as the row and column sums, ni· =

∑

j nij and n·j =
∑

i nij , remain constant—

then the total number of pairs M , the number of pairs M1 =
∑

i

(

ni·

2

)

classified the

same way in the first partition, and the analogous quantity M2 =
∑

j

(

n
·j

2

)

for the
second partition likewise remain constant. This implies that any pair-counting index
specified by wαβ counts can be equivalently specified in terms of only w := w11 =
∑

ij

(

nij

2

)

, because w10 = M1−w, w01 = M2−w, and w00 = M−M1−M2+w. It fol-
lows immediately that SR, SFM, SΓ, and SAR are each linear functions of w and hence
linear functions of each other [19]. Any similarity index Si that is a linear function
of w must be statistically equivalent to w in any null model (given constant M , M1,
and M2), with the z-score and p-value equal to that associated with the specified w.
Meanwhile, as we demonstrate in section 4, the Si-values can have different orderings
in different comparisons because of their dependence on M , M1, and M2.

It is also instructive to note the relationships between the linear-in-w similarity
coefficients and the Jaccard and Minkowski indices: 1/SJ = −1 + (M1 + M2)/w and
S2
M

= (M1 + M2 − 2w)/M1. The asymmetry in the Minkowski index is clearly lim-
ited: changing the reference partition only swaps the roles of M1 and M2. Because
the square root and multiplicative inverse are both monotonic operations in the do-
mains of these indices (SM > 0 and 0 ≤ SJ ≤ 1), it follows that the p-values of the
cumulative distributions of each are identical to the p-value of w itself, even though
the corresponding z-scores can be different.
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In deference to the seminal presentation of the Rand index in [34], we refer to
the z-score of the linear-in-w scores as z-Rand: zR = (w − µw)/σw, where µw and
σw are, respectively, the mean and standard deviation of w (noting its equivalence by
linearity to the z-score advocated explicitly by Brennan and Light [3]). In the absence
of external information that indicates a need to impose specific correlations, we adopt
the standard and analytically tractable assumption of a random hypergeometric dis-
tribution of equally likely assignments subject to fixed row and column sums. The
expected value then becomes µw = M1M2/M , as for the adjusted Rand index [18].
The calculation of higher-order moments is more involved [3, 4, 17, 24]. In order to
make zR as simple as possible to calculate, we rewrite the formulas of [17] as follows:

(2.1) zR =
1

σw

(

w −
M1M2

M

)

,

σ2

w =
M

16
−

(4M1 − 2M)2(4M2 − 2M)2

256M2
+

C1C2

16n(n− 1)(n− 2)

+
[(4M1 − 2M)2 − 4C1 − 4M ][(4M2 − 2M)2 − 4C2 − 4M ]

64n(n− 1)(n− 2)(n− 3)
,(2.2)

C1 = n(n2 − 3n− 2)− 8(n+ 1)M1 + 4
∑

i

n3

i· ,

C2 = n(n2 − 3n− 2)− 8(n+ 1)M2 + 4
∑

j

n3

·j .(2.3)

Although we advocate the use of zR, the associated significance levels (equiva-
lently, the p-values of the cumulative distribution) are not equal to those for a Gaussian
distribution. The distribution for large samples is asymptotically Gaussian [22], but
the distribution associated with comparing a particular pair of partitions need not
be. Indeed, the tails of the distribution can be quite heavy [4], so the probability of
obtaining extreme z-scores can be orders of magnitude higher than in the normal dis-
tribution. Nevertheless, the Gaussian approximation is frequently sufficient to gauge
statistical significance (past the 95% confidence interval). Given the straightforward
calculation of (2.1)–(2.3), we prefer to use zR directly, with the caveat that the Rand
indices do not translate directly to p-values.

Where simple formulas for the necessary moments do not appear to be avail-
able (i.e., for the Jaccard and Minkowski indices), we resort to the computationally
straightforward (albeit intensive if one desires high accuracy) method of examining
distributions obtained using permutation tests [14], again under the null model of
equally likely node assignments conditional on the constancy of the numbers and
sizes of groups. Specifically, starting from two network partitions whose similarity
we want to measure, we calculate Si-values and obtain a context for these values by
repeatedly computing Si under random permutation of the node assignments in one
of the partitions. (Subsequent permutation of assignments in the second partition is
redundant.) We thereby aim to compare the similarity coefficients for this partition
pair to the distributions of such coefficients from the appropriate ensemble of parti-
tion pairs. Numerical estimation of p-values far in the tail of the distribution (where
many of our points of interest lie) necessarily requires sampling a correspondingly
large number of elements. In contrast, calculating z-scores only requires sampling the
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first two moments of the distribution. We typically use 10000 permutations (even for
the larger networks, where the number of nodes is actually larger than the number
of permutations considered), confirming that the obtained z-scores have converged to
roughly two significant figures by comparing them with those obtained using half of
the permutations and also comparing zR estimates with the analytical values obtained
from (2.1)–(2.3).

Of course, calculating z-scores of the pair-counting indices is not a panacea, par-
ticularly when comparing networks of different sizes. Nevertheless, we find them to be
exceptionally useful for examining the correlations between algorithmically identified
communities and demographically determined partitions. Before we concentrate on
using these z-scores to measure correlations, we compare test results (similar to those
discussed in section 4) against other methods, including VI [26] and the (nonstan-
dardized) adjusted Rand index SAR [18] using a scatter plot versus zR in Figure 2.3.
Although SAR trends positively with zR (recall that zR = zAR), there are clearly
situations with very small SAR that have much larger zR than should be expected
at random. We additionally observe that zJ and zM each appear to be closely ap-
proximated by zR at the scale of Figure 2.3, though closer inspection reveals relative
differences occasionally as large as 10%.
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Fig. 2.3 Scatter plot of zR (the Rand z-score) on the horizontal axis versus (on the vertical axis)
other pair-counting z-scores (zJ and zM), VI, a VI z-score from permutation tests, and the
adjusted Rand index SAR. The depicted data comes from 60 situations: algorithmically-
detected communities for the 5 universities using 4 demographic groupings and 3 networks
per university (full data and gender-restricted networks of women only and men only).

We admit that we are questionably guilty of one of the major sins of statistical
analysis, in that z-scores are typically a proxy for the likelihood with which one
can reject an independent null hypothesis. It is thus reasonable to question their
effectiveness for the quite different task of measuring a correlation. We stress, however,
that the underlying statistic that we have standardized is a pair counting of the
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similarities between partitions rather than a χ2 deviation from independence. (We
note that w reduces to a linear function of χ2 in the special case of uniform constant
marginals [4].) Therefore, in the absence of enforcing a particular model for the form
of the correlation between partitions, we believe this standardization of similarity
scores is a reasonable way to proceed (if done with caution).

3. Data. Our data, which was sent directly to us by Adam D’Angelo of Facebook,
consists of the complete set of users (nodes) from the Facebook networks for each of
five U.S. universities and all of the links between those users’ pages for a single-
time snapshot from September 2005. Similar snapshots of Facebook data from 10
Texas universities were analyzed recently in [25], and a snapshot from “a diverse
private college in the Northeast U.S.” was studied in [23]. Other studies of Facebook
have typically obtained data either through surveys [2] or through various forms of
automated sampling [12], and thus they tend to contain missing nodes and links that
can strongly impact the resulting graph structures and analyses.

We consider only ties between people at the same institution, which yields five
separate realizations of university social networks and allows us to compare the struc-
tures at different institutions. Our study includes a small technical institute (Caltech),
a pair of private universities (Georgetown University and Princeton University), and
a pair of large state universities (University of Oklahoma and University of North
Carolina at Chapel Hill (UNC)).
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Fig. 3.1 Cumulative degree distributions (top panels) and local clustering coefficients (bottom pan-
els) for the five university networks. We employ semilogarithmic coordinates. The hori-
zontal axes give the degree relative to the mean degree 〈k〉, and we only display data for
k/〈k〉 ≤ 8 to provide common axes for all universities.

We summarize basic properties of the university networks in Figure 3.1 and Table
3.1. See [28, 30] and references therein for discussions of the measures that we use
in this section. Although our focus in this paper is community structure, we remark
that even these simple network characteristics can yield insights about Facebook net-
works. The mean degrees tend to increase with network size, though this trend is
clearly influenced by the Caltech data. The degree distributions of these institutions
(plotted in the top panels of Figure 3.1) have heavy tails compared to Erdös–Rényi
random graphs. In particular, the degree distributions appear to be approximately
exponential. Although the mechanisms driving such distributions are impossible to
ascertain without longitudinal data, the roughly exponential form of the degree dis-
tribution both above and below the mean degree potentially indicates a wide range
in the willingness to participate (i.e., to add online friends) among Facebook users.
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Table 3.1 Basic characteristics of the largest connected components of the five Facebook networks
that we study (and also the total number of nodes in the original data): numbers of
nodes and edges in the largest connected component, mean degree, mean clustering co-
efficient, transitivity (fraction of transitive triples), assortativities (by degree, gender,
major, dormitory, class year, and high school), number of communities detected, and the
modularity of the resulting graph partition. In calculating the assortativities, we ignored
nodes for which the corresponding demographic characteristic is missing (i.e., the “pair-
wise removal” protocol that we discuss in section 4). We treat class year as a categorical
variable, and we calculate degree assortativity as a correlation coefficient [28, 30].

Institution Caltech Georgetown Oklahoma Princeton UNC
Nodes 1099 12195 24110 8555 24780

Connected nodes 762 9388 17420 6575 18158
Connected edges 16651 425619 892524 293307 766796

Mean degree 43.7 90.7 102.5 89.2 84.5
Mean clustering coeff. 0.4091 0.2249 0.2297 0.2372 0.2020

Transitivity 0.2913 0.1485 0.1587 0.1639 0.1156

Degree assortativity −0.0662 0.0753 0.0737 0.0910 6.6×10−5

Gender assortativity 0.0540 0.0145 0.1118 0.0650 0.0598
Major assortativity 0.0382 0.0439 0.0412 0.0474 0.0511

Dormitory assortativity 0.4486 0.1725 0.4033 0.0872 0.2024
Year assortativity 0.2694 0.5575 0.2923 0.4947 0.3964

High School assortativity 0.0021 0.0237 0.1583 0.0197 0.1342
Number of communities 12 33 5 12 5

Modularity 0.4003 0.4801 0.3869 0.4527 0.4274

The bottom panels of Figure 3.1 compare node degree versus clustering coefficient,

Ci =
number of pairs of neighbors of node i that are connected

number of pairs of neighbors of node i
.

We note that even heavy users have much larger local clustering than that expected at
random (e.g., when compared with the total graph densities). In Table 3.1, we indicate
each network’s mean clustering coefficient and transitivity, given by the fraction of
connected triples in the network that are fully connected triangles. Both measures of
local clustering are much larger at Caltech than they are at the other institutions. It
is, of course, not surprising that we observe large transitivities in social networks such
as the Facebook networks. Nevertheless, as we have shown recently in [27], tree-based
theories of various dynamical processes appear to be valid for Facebook networks
(despite their high clustering, implying that they are most definitely not locally tree-
like) because they are “sufficiently small” worlds, in that the mean distance between
pairs of nodes is close to the expected value obtained in random networks with the
same joint degree-degree distributions.

The data also includes limited demographic information provided by users on
their individual pages: gender, class year, and data fields that represent (using nu-
merical identifiers) high school, major, and dormitory residence (or House at Caltech,
for which we additionally have dormitory names). In situations in which individuals
elected not to volunteer a demographic characteristic, we use an additional “Missing”
label. These characteristics allow us to make comparisons between different universi-
ties, under the assumption (per the discussion in [2]) that the communities and other
elements of structural organization in Facebook networks reflect (even if imperfectly)
the social communities and organization of the offline networks on which they are
based.
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For instance, at the level of individual ties, the tendency for users to be friends
with other users who have similar characteristics can be quantified by the assortativity
of the links relative to that characteristic. Degree assortativity (or degree correlation)
can be calculated as the Pearson correlation coefficient of the degrees at the two ends
of the edges. Although many social networks tend to be positively assortative with
respect to degree, we find that the degree assortativity is negative for Caltech and is
very small for UNC. A measure of scalar assortativity relative to a categorical variable
is given by

(3.1) r =
tr(e) − ‖e2‖

1 − ‖e2‖
∈ [−1, 1] ,

where e = E/‖E‖ is the normalized mixing matrix, the elements Eij give the number
of edges in the network that connect a node of type i (e.g., a person with a given
major) to a node of type j, and the entrywise matrix 1-norm ‖E‖ is equal to the
sum of all entries of E. Comparing assortativities for various categories shows, for
example, that assortativity by dormitory and class year (treated as a categorical
variable) are high for all five institutions; assortativities by major are low for all
five institutions; and assortativities by high school and gender are less consistent
across institutions. The relative sizes of the different assortativities also vary across
institutions, which is similar to what we will see below with communities. Going
beyond this measure of local assortativity by characteristics, our major focus for this
article is on the organization of the communities of these five Facebook networks based
on these various categories. We discuss this in detail in section 4.

4. Facebook Communities. We algorithmically identify a set of communities
in the largest connected component of each institution’s network using a modified
version of Newman’s leading-eigenvector method [29] in conjunction with subsequent
Kernighan–Lin node-swapping steps [21]. We then compare these communities to
partitions obtained by grouping users according to each of the self-identified charac-
teristics: major, class year, high school, and dormitory/House.

We first revisit Caltech’s community structure, which we examined visually in
Figure 2.2. The partition of the largest connected component into 12 communities
(which has modularity Q

.
= 0.4003) exhibits a strong correlation with House affilia-

tion. To investigate this quantitatively, we calculate the similarity coefficients of this
partition versus each partition constructed using one of the four available user char-
acteristics (see Table 4.1). The raw Si-values appear to be insufficient to the task of
comparing these communities. Specifically, the ordering of the correlation strengths
with the different demographics is not consistent across pair-counting indices, even
among those we know to be linear transformations of one another. Additionally, al-
though there is agreement that the correlation with House is strongest, the Si-values
differ wildly in how much they set apart the House correlation, with SR and SM seem-
ingly indicating that the correlation with House is only marginally stronger than that
with high school, even though Caltech contains very few students at one time who
come from the same high school.

These apparent disagreements in interpretation for different Si-values occur even
though we know that their corresponding p-values are identical. Although we cannot
directly calculate those p-values, the z-scores for each characteristic (see section 2.3)
in Table 4.1 indicate that the correlation with high school is the only one of the
four demographic characteristics that is not statistically significant. We note that
the ordering of the VI-scores in Table 4.1 is consistent with that of the z-scores but
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Table 4.1 Similarity coefficients (adjusted Rand, Fowlkes–Mallows, Γ, Jaccard, Minkowski, and
Rand), VI, and similarity z-scores for comparing a 12-community partition of the Cal-
tech data versus a partition constructed using each of the four self-identified user char-
acteristics.

SAR SFM SΓ SJ SM SR VI zJ zM zR
Major 0.0063 0.1195 0.0070 0.0576 1.1238 0.7785 4.3149 3.96 3.95 3.96
House 0.3762 0.4742 0.3829 0.3056 0.9578 0.8391 1.9275 249 226 198
Year 0.0080 0.1766 0.0080 0.0968 1.2637 0.7199 3.5191 6.84 6.82 6.73
H.S. 0.0085 0.0833 0.0129 0.0301 1.0484 0.8072 4.7268 −0.55 −0.55 −0.55

Table 4.2 Numbers of nodes of each data set used in the different protocols for treating missing
data.

Connected Indicated Indicated Indicated Indicated Indicated
users major dorm/House year high school all

Caltech 762 687 594 651 633 499
Georgetown 9388 7510 6594 8374 7562 4774

Oklahoma 17420 15779 7203 13732 14998 5510
Princeton 6575 4940 4355 5801 5214 2920

UNC 18158 15492 8989 15883 15414 6719

recall that such agreement of ordering is not consistently observed in Figure 2.3.
Importantly, the z-scores provide a consistent interpretation of the roles of the four
characteristics in the Caltech data: House is most important, followed distantly by
year and major (in descending order), and there is no significant correlation with high
school. Because of the close agreement between the z-scores in Figure 2.3 and Table
4.1, we henceforth restrict attention to the analytically obtained zR-scores.

Before concluding our discussion of Caltech, we acknowledge the potentially im-
portant effects of missing demographic data, as a significant number of users did not
volunteer an affiliation (as indicated in Table 4.2 and by the purple wedges of Fig-
ure 2.2). One can approach the issue of missing data using sophisticated tools such as
multiple imputation, likelihood, or weighting methods [16]. A simpler approach is to
investigate the effects on the measured correlations by various restrictions of the data.
We consider three such protocols: inclusion, pairwise removal, and listwise removal.
Inclusion, which we use in Table 4.1, treats the missing labels like any other category,
erroneously grouping all such users together in the demographic partition. We apply
pairwise removal separately for each demographic comparison with the community
structure. In terms of a contingency table of r demographic rows and c community
columns, this amounts to a deletion of the row corresponding to “Missing.” List-
wise removal restricts the comparisons to the subset of users who volunteered all four
of the studied demographic characteristics. We stress that these protocols do not
affect the community assignments, which we obtained using the complete network
data. Other restrictions of this data (such as single-gender restrictions) can also be
fruitfully explored, but such investigations are beyond the scope of the present article.

In Table 4.3, we present the zR-scores for all four community-demographic com-
parisons using each of the three missing data protocols at the five universities we
study. We caution that because of network-size effects, z-score values cannot typi-
cally be directly compared across institutions. Accordingly, our primary conclusions
are about the statistical significances and rank orderings of the demographic corre-
lations separately in each university. Our previous conclusions about the Caltech
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Table 4.3 Analytically obtained zR-scores for comparing the algorithmically identified communities
of Facebook networks versus user characteristics. Cases where users did not volunteer
demographic characteristics are treated by three protocols: inclusion, pairwise removal,
and listwise removal.

Caltech Georgetown Oklahoma Princeton UNC
Inclusion: Major 3.962 5.885 3.799 15.03 8.044

Dorm/House 200.8 148.8 71.00 58.26 113.0
Year 6.727 1543 206.7 1058 778.2

High School −0.553 26.13 18.50 15.62 15.93
Pairwise: Major 4.051 16.00 16.44 9.968 5.700

Dorm/House 285.3 212.9 186.9 147.2 93.34
Year 5.389 1837 286.1 1270 889.1

High School 0.7695 4.247 22.54 2.888 37.22
Listwise: Major 2.235 15.23 26.10 10.07 13.90

Dorm/House 248.9 221.5 159.9 116.5 90.50
Year 2.644 1913 251.2 997.3 475.7

High School 0.3063 1.228 13.69 2.415 21.12

community structure remain almost perfectly consistent across all three missing data
protocols: House is most strongly correlated with the communities, followed distantly
by year and major (in descending order), and there is no statistically significant cor-
relation with high school. Although House affiliation remains strongly correlated with
communities in all three protocols, the correlation with year and major appears to be
only marginally statistically significant in the analysis with listwise removal.

In contrast with Caltech, the communities at each of the other four institutions
that we study correlate primarily with class year (see Table 4.3). Moreover, these
correlations are not as dominant as House is at Caltech, as each of the four char-
acteristics possess statistically significant correlations with the community structures
at the other four institutions (except high school in listwise removal at Georgetown).
We show the 12 algorithmically computed Princeton communities, colored both by
class year and by major, in Figure 4.1. Compared with the strong correlation between
communities and House affiliation at Caltech, these visual depictions of the Princeton
communities do not seem to indicate as strong a correlation with year despite the very
large corresponding zR (which again cautions against direct comparison of zR-scores
in networks of different sizes). We remark that the size of the Princeton data set,
with over 8500 nodes (6575 in the largest connected component) is disproportionately
large relative to the institution’s size; this is presumably a result of the relatively early
Facebook adoption at Princeton.

The z-scores in Table 4.3 reveal that Princeton students break up into communi-
ties primarily according to class year (among the four demographic categories available
to us), and dormitory gives the second highest correlation. While major is also sig-
nificant, the correlation with high school appears to be only marginally significant in
protocols that remove missing data. One can draw similar conclusions about George-
town from Table 4.3; the only qualitative difference is the possible lack of significance
of high school at Georgetown (as compared to its marginal significance at Princeton)
that is suggested by the more stringent missing-data protocols.

Similarly, the z-scores calculated for the UNC network partitioned into five com-
munities suggest that class year is the primary organizing characteristic and that
dormitory residence is also prominent. High school and major have smaller but sig-
nificant positive correlations with the community structure. The other large state
university that we consider is the University of Oklahoma, which is also partitioned



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

540 AMANDA L. TRAUD, ERIC D. KELSIC, PETER J. MUCHA, AND MASON A. PORTER

Fig. 4.1 Pie charts of Princeton, colored by (left) class year and (right) major. (As before, purple
slices correspond to people who did not identify the relevant characteristic.)

into five communities. Like UNC, the dominant correlation of the Oklahoma com-
munities is with year, the secondary correlation is with dormitory, and both high
school and major have statistically significant correlations. Unlike UNC, however,
the disparity between the correlations with year and with dormitory do not appear to
be as wide at Oklahoma. In contrast to Princeton and Georgetown, communities at
both UNC and Oklahoma maintain unquestionably significant correlations with high
school in both missing-data protocols.

We close this section by cautioning about interpretations of conclusions drawn
from the numbers in Table 4.3, even though they indicate some interesting differences
among the institutions that we studied. In particular, one should of course be care-
ful about how such numbers might be influenced by our methodologies. Although
we have provided three different protocols for handling missing data, others are also
worth studying. For instance, one should be wary of the possible influence of the se-
lected definition of “community” and the method of its detection. There are numerous
definitions and methods available (again, see [8, 33]), and a more definitive investi-
gation of the connections between communities and characteristics in such networks
should more fully explore multiple notions of community.

As a simple example of comparing results from different community-detection
methods, we compare the 12-community Caltech partition with that obtained for a
7-community partition (with Q

.
= 0.3594) identified by the spectral method without

Kernighan–Lin steps. Despite the necessarily different details of these two community
structures, the qualitative conclusions from the two partitions are the same: House
provides the dominant correlation, followed distantly by year and major, and there is
again no significant correlation with high school. Applying this same “weaker” (in the
sense of consistently resulting in partitions of lower modularity) community-detection
implementation to the other four institutions also typically agrees with the results
that we report above: Year has the strongest correlation with communities, and it
is followed by dormitory. The role of high school appears to be more pronounced in
these lower-modularity partitions, as one obtains statistically significant correlations
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with the communities at Georgetown and Princeton and even stronger correlations
with the communities at UNC and Oklahoma.

We also stress the difference between causation and correlation. In this paper, we
have examined correlations. As discussed in the sociological literature on SNSs (see [2]
and references therein), it is obviously very interesting and important to attempt to
discern which common characteristics have resulted from friendships and which ones
might perhaps influence the formation of friendships. In terms of the individual
characteristics discussed above, high school and class year are known prior to the
formation of these Facebook links, so one would expect those particular correlations
to also indicate how some friendships might have formed. Common residences and
majors, on the other hand, can both encourage new friendships and arise because
of them. We note, finally, that SNS friendships provide only a surrogate for offline
ones, so that one might also expect to find some differences between the community
structures of Facebook networks and the offline networks that they reflect [2].

5. Conclusions. We have demonstrated that investigation of community struc-
ture is useful for studying the online social networks of universities and inferring inter-
esting insights about the prominent driving forces of community development in their
corresponding offline social networks. We examined various measures for compar-
ing algorithmically identified communities in Facebook networks with those obtained
by grouping individuals according to self-identified characteristics. We found that z-
scores of pair-counting indices provide an effective (though not quantitatively perfect)
interpretation about the likelihood that such values might arise at random, as they
indicate significant correlations between the algorithmically identified communities
and multiple self-identified characteristics. Such calculations indicate that the orga-
nizational structure at Caltech, which depends very strongly on House affiliation, is
starkly different from those of the other universities that we studied. Even at Caltech,
however, the observed heterogeneity of the communities underscores the important
point that social networks typically have multiple organizational forces [33]. We hope
that our work leads to comparative studies that might increase understanding about
the different factors that influence the structure of social organizations. The present
paper attempts to provide foundational steps for such comparative investigations by
conveying a meaningful methodology.
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