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Abstract

In the last years there has been a growing interest in proposing methods for
estimating covariance functions for geostatistical data. Among these, maximum like-
lihood estimators have nice features when we deal with a Gaussian model. However
maximum likelihood becomes impractical when the number of observations is very
large. In this work we review some solutions and we contrast them in terms of loss of
statistical efficiency and computational burden. Specifically we focus on three types
of weighted composite likelihood functions based on pairs and we compare them with
the method of covariance tapering. Asymptotic properties of the three estimation
methods are derived. We illustrate the effectiveness of the methods through theo-
retical examples, simulation experiments and by analyzing a data set on yearly total
precipitation anomalies at weather stations in the United States.

Keywords: Covariance estimation, Geostatistics, Large datasets, Tapering.
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1 Introduction

Geostatistical data come from a limited number of monitoring stations for which we suppose

that the observations are a partial realization from a random field defined on the continuum

space (Cressie, 1993) and the Gaussian random field plays a central role in providing a

building block model in many fields like atmospheric, environmental and geological sciences.

For a Gaussian random field with a given parametric covariance function, exact compu-

tation of the likelihood requires calculation of the inverse and determinant of the covariance

matrix and this evaluation is slow when the number of observations is large.

More precisely, in the sequel we consider a Gaussian random field {Z(s), s ∈ Rd} such

that the mean function is E(Z(s)) = x(s)ᵀβ, where x(s) is a vector of q spatially-referenced

explanatory variables and β ∈ Rq is an unknown parameter vector to be estimated. We

suppose also that the covariance function Cov(Z(s), Z(s′)), for s, s′ ∈ Rd, is unknown up

to a small number of parameters that we collect in the vector ψ ∈ Rp. Without loss of

generality, the covariance function is stationary and can be written as Cov(Z(s), Z(s′)) =

σ2ρ(s− s′;φ), with σ2 > 0 and φ ∈ Rp−1.

The unknown parameters θ = (βᵀ, ψᵀ)ᵀ must be estimated on the basis of a finite number

of n observations Z = (Z(s1), . . . , Z(sn))ᵀ. Then Z ∼ Nn(Xβ,Σ(ψ)), where the i-th row

of n× q matrix X contains the explanatory variables x(si)
ᵀ and [Σ(ψ)]ij = σ2ρ(si − sj;φ).

The log-likelihood up to an additive constant can be written as

l(θ) = −1

2
log |Σ(ψ)| − 1

2
(Z −Xβ) ᵀ[Σ(ψ)]−1(Z −Xβ). (1)

The most time-consuming part when calculating (1) is to evaluate the determinant and

inverse of Σ(ψ). This evaluation could be theoretically carried out in O(n2.81) steps (see,

e.g., Aho et al. (1974), although the most widely used algorithms such as Cholesky decom-

position require up to O(n3) steps. This can be prohibitive if n is large. This motivated

to look for either approximations to the likelihood function or different minimum-contrast-

type methods that require less than O(n3) steps to evaluate (Whittle, 1954; Vecchia, 1988;

Curriero and Lele, 1999; Stein et al., 2004; Caragea and Smith, 2006; Fuentes, 2007; Kauf-

man et al., 2008; Cressie and Johannesson, 2008; Stein, 2008; Lindgren et al., 2011).

Significant computational gain is achieved when the sampling locations form a regular
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lattice. In this case, the covariance matrix has a special structure (Whittle, 1954) that can

be exploited by using spectral methods, reducing the computational burden. For irregularly

spaced data, Fuentes (2007) extended the Whittle’s idea and suggested to integrate the

spatial process over grid cells, obtaining an approximation to the likelihood on a lattice

structure. The method requires O(n log2 n) operations and does not involve calculating

determinants.

Rue and Tjelmeland (2002) approximated the inverse of the covariance matrix to be

the precision matrix of a Gaussian Markov random field wrapped on a torus. In this case

the numerical factorization of the precision matrix can be done at a cost of O(n3/2) for a

two-dimensional Gaussian Markov random field. Recently Lindgren et al. (2011) exploited

the representations of certain Gaussian random fields with Matérn covariance structure

by the solution of a stochastic partial differential equation and derived an approximation

based on a Markov Gaussian random field with sparse precision matrix. One drawback of

this approach is that we can only find the explicit form for those Gaussian random fields

that have a Matèrn covariance structure at certain degree of smoothness (see the discussion

to Lindgren et al., 2011). Other drawbacks are the distortion due to edge effects and the

necessity of placing nodes at all data locations, both observed and predictive.

Another idea (Banerjee et al., 2008; Cressie and Johannesson, 2008; Stein, 2008) is

putting a low rank structure on the covariance matrix. This allows to calculate the inverse

and the determinant of a large covariance by inverting and calculating the determinant of

a matrix of lower dimension.

All these methods have their relative strengths but they can lead to making unnatural

assumptions about the random fields giving a less appropriate model. Instead in the sequel

we will concentrate on two estimation methods that preserve the starting model, and,

with some adjustments, allow us to perform standard inference as in the case of classical

likelihood estimation.

In the tapering approach (Kaufman et al., 2008) certain elements of the covariance

matrix that correspond to pairs with large distance are set to zero. This is done, see

Section 2, in a way to preserve the property of being positive definite in the resulting

‘tapered’ matrix. Then sparse matrix algorithms can be used to evaluate efficiently an
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approximate likelihood where the original covariance has been replaced by the ‘tapered’

matrix. The intuition behind this approach is that correlations between pairs of distant

sampling locations are often nearly zero, so little information is lost in taking them to be

independent.

With composite likelihood (CL) we will indicate a general class of objective functions

based on the likelihood of marginal or conditional events (Lindsay, 1988; Varin et al.,

2011). This kind of estimation method can be helpful when it is difficult to evaluate or

to specify the full likelihood. In our case the evaluation of the likelihood of the whole set

of the observations is too expensive and composing likelihoods with a smaller number of

observations is computationally appealing.

Different types of CL functions have been proposed in the literature for estimating the

covariance model of spatial and spatio-temporal Gaussian random fields. For instance Stein

et al. (2004) proposed a CL based on conditional events improving a previous proposal of

Vecchia (1988). More recently, Bevilacqua et al. (2012) considered a weighted CL based

on the difference of Gaussian pairs in the space time context and Eidsvik et al. (2013)

developed a pairwise Gaussian block composite likelihood in the similar vein of Caragea

and Smith (2006).

As outlined in Lindsay et al. (2011), for a given estimation problem the choice of a

suitable CL function should be driven by statistical and computational considerations. In

particular, for Gaussian random fields, there is a clear computational advantage when we

consider only CL based on pairs of observations.

Therefore in this paper we contrast CL functions based on the marginal distribution

of a pair or the distribution of an observation conditionally to another observation or the

distribution of the difference between two observations. Since the three CL functions are

equivalent from a computational point of view, the main purpose of the paper is to compare

them based on statistical efficiency. Moreover we establish the asymptotic properties of the

associated estimators. Lastly we argue that the CL approach based on pairs is a valuable

competitor of the tapering approach with respect to the efficiency when the computational

burden is heavy. This is done through theoretical examples and simulations.

The paper is organized as follows. In Section 2 we present in more detail the tapering
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method while Section 3 describes the three CL estimating methods based on Gaussian pairs.

In Section 4 we compare the methods described in Section 2 and 3 through theoretical

examples and numerical results. As a real data example, in Section 5 we apply CL and

tapering methods on a real data set of yearly total precipitation anomalies already analyzed

in Kaufman et al. (2008). Finally, in Section 6 we give some conclusions.

2 Tapered likelihood

In the tapering approach, proposed by Kaufman et al. (2008), certain elements of the

covariance matrix Σ(ψ) are set to zero multiplying Σ(ψ) element by element by a correlation

matrix coming from a compactly supported isotropic correlation function. More precisely,

we consider a correlation function r(s−s′; d) that is identically 0 whenever ‖s−s′‖ > d > 0.

The ‘tapered’ matrix ΣT (ψ) = Σ(ψ)◦R(d), where [R(d)]ij = r(si−sj; d) and ◦ is the Schur

product, is still positive definite and sparse matrix algorithms can be used to evaluate an

approximated log-likelihood efficiently (Furrer and Sain, 2010). There are several ways to

construct compactly supported correlation functions (Gneiting, 2002). An example is given

by a specific type of Wendland function (Wendland, 1995):

r(h; d) =

(1− r)4 (1 + 4r) 0 ≤ r ≤ 1

0 r > 1
(2)

where r = ‖h‖/d. Kaufman et al. (2008) and Du et al. (2009) support the choice of

this function by results under infill asymptotic framework. Another possible choice is the

Bohman taper function:

r(h; d) =

(1− r)
(

sin(2πr)
2πr

)
+
(

1−cos(2πr)
2π2r

)
0 ≤ r ≤ 1

0 r > 1
(3)

Stein (2013) in a simulation study finds that the taper function (3) generally performs better

than (2) in terms of statistical efficiency in the estimation procedure. For this reason we

will consider in the sequel only the taper function (3).

Kaufman et al. (2008) proposed two approximations of the log-likelihood (1), namely

lT,1(θ, d) = −1

2
log |ΣT (ψ)| − 1

2
(Z −Xβ) ᵀ[ΣT (ψ)]−1(Z −Xβ), (4)
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and

lT,2(θ, d) = −1

2
log |ΣT (ψ)| − 1

2
(Z −Xβ) ᵀ([ΣT (ψ)]−1 ◦R(d))(Z −Xβ). (5)

In (4) the covariance matrix Σ(ψ) is tapered, instead in (5) the Σ(ψ) as well as the empirical

covariance matrix ZZ ᵀ are tapered. So the first approximation is computationally more

efficient nevertheless the derivative of (5) leads to an unbiased estimating equation. For

this reason the recent literature (Shaby and Ruppert, 2012; Stein, 2013) has been focused

on (5) and henceforth we consider only the second approximation setting lT,2 = lT .

Shaby and Ruppert (2012) show that, under increasing domain asymptotic framework

(Cressie, 1993), the maximizer of (5) has an asymptotic Gaussian distribution and the

asymptotic variance is given by the inverse of the Godambe information matrix

GTAP (θ, d) = HTAP (θ, d)JTAP (θ, d)−1HTAP (θ, d)ᵀ, (6)

where

HT (θ, d) = −E[∇2lT (θ, d)], JT (θ, d) = E[∇lT (θ, d)∇lT (θ, d) ᵀ]. (7)

The generic entries of the HT (θ, d) and JT (θ, d) matrices are

[HT (θ, d)]ij =

(
∂Xβ

∂θi

)T (
[ΣT (ψ)]−1 ◦R(d)

) ∂Xβ
∂θj

+
1

2
tr

{
Bi

(
∂Σ(ψ)

∂θj
◦R(d)

)}
and

[JT (θ, d)]ij =

(
([ΣT (ψ)]−1 ◦ T )

∂Xβ

∂θi

)T
Σ

(
([ΣT (ψ)]−1 ◦ T )

∂Xβ

∂θj

)
+

1

2
tr {[Bi ◦R(d)] Σ(ψ) [Bj ◦R(d)] Σ(ψ)} ,

where Bi = [ΣT (ψ)]−1

(
∂Σ(ψ)

∂θi
◦R(d)

)
[ΣT (ψ)]−1.

Note that limd→∞ l
2
T (θ, d) = l(θ), that is when increasing the taper range an improve-

ment of the statistical efficiency is expected. At the limit the asymptotic variance is given

by the Fisher information matrix (Mardia and Marshall, 1984)) whose generic entries are

[IML(θ)]ij =

(
∂Xβ

∂θi

)T
[Σ(θ)]−1∂Xβ

∂θj
+

1

2
tr

(
[Σ(ψ)]−1 ∂Σ

∂θi
[Σ(ψ)]−1 ∂Σ

∂θj

)
. (8)
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3 Composite likelihood estimation based on pairs

Let Ak be a marginal or conditional set of the data, the composite likelihood (CL) (Lindsay,

1988) is an objective function defined as a product of K sub-likelihoods

CL(θ) =
K∏
k=1

L(θ;Ak)
wk , (9)

where L(θ;Ak) is a likelihood calculated by considering only the random variables in Ak

and wk are suitable non negative weights that do not depend on θ. The maximum CL

estimate is given by θ̂ = argmaxθ CL(θ).

The choice of which and how many factors to include in (9) can be related to the

computational and statistical efficiency (Lindsay et al., 2011). For instance joint densities

of blocks of observations (Caragea and Smith, 2006) or joint densities of pairs of blocks

(Eidsvik et al., 2013) have been considered for Gaussian random field estimation.

In the sequel we will consider more simple instances of Ak. Setting Ak = (Z(si), Z(sj))
ᵀ,

we obtain the pairwise marginal Gaussian likelihood Lij. If we let Ak = Z(si)|Z(sj) we

obtain the pairwise conditional Gaussian likelihood Li|j and finally setting Ak = Z(si) −

Z(sj) we obtain the pairwise difference Gaussian likelihood Li−j. The computational cost

for considering all possible pairs is of order O(n2) while it is of order O(n3) in considering all

possible triplets i.e. the same order of the evaluation of the likelihood for Gaussian random

fields. Thus from a computational point of view only the pairwise CL is opportune.

The expression for the logarithm of the sub-likelihoods are

lij(θ) = −1

2

{
2 log σ2 + log(1− ρ2

ij) +
Bij

σ2(1− ρ2
ij)

}
(10)

li|j(θ) = −1

2

{
log σ2 + log(1− ρ2

ij) +
G2
ij

σ2(1− ρ2
ij)

}
(11)

li−j(θ) = −1

2

{
log σ2 + log(1− ρij) +

U2
ij

2σ2(1− ρij)

}
(12)

where ρij = ρ(si− sj;φ), Bij = (Z(si)−µi)2 + (Z(sj)−µj)2− 2ρij(Z(si)−µi)(Z(sj)−µj),

Gij = (Z(si)− µi)− 2ρij(Z(sj)− µj), Uij = (Z(si)− µi)− (Z(sj)− µj) and µi = xᵀi β. The
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corresponding weighted composite log-likelihoods are:

plM(θ) =
n∑
i=1

n∑
j>i

lij(θ)wij, (13)

plC(θ) =
n∑
i=1

n∑
j 6=i

li|j(θ)wij =
n∑
i=1

n∑
j>i

(2lij(θ)− li(σ2, β)− lj(σ2, β))wij, (14)

plD(θ) =
n∑
i=1

n∑
j>i

li−j(θ)wij, (15)

where

li(σ
2, β) = − log σ2

2
− (Z(si)− µi)2

2σ2

is the marginal likelihood. Observe that lij = lji, li−j = lj−i but li|j 6= lj|i thus the definition

of plC involves the sum of all the possible pairs. Note that equation (14) is true assuming

symmetric weights and that when wij = 1 (Lindsay et al., 2011):

plC(θ) =
n∑
i=1

n∑
j>i

2lij(θ)− (n− 1)
n∑
i=1

li(σ
2, β).

When the marginal parameters σ2 and β are known, then marginal and the conditional

pairwise likelihood have the same efficiency. Otherwise it is not obvious which kind of

estimation is more efficient.

A distinctive feature of pla, a = M,C,D, is that the associated estimating function,

∇pla(θ), is unbiased, irrespective of the distributional assumptions on the pairs. In Ap-

pendix A we will show that the maximum CL estimators are consistent and asymptotically

normal under increasing domain asymptotic framework. Note that the aforementioned re-

sults have been derived in a more general settings than those in Bevilacqua et al. (2012) for

strictly increasing sequence on evenly-spaced lattices. In contrast here we do not impose

any particular restrictions on the geometry and growth behavior of the lattice, allowing

unevenly spaced locations. This framework is more suited for real data analysis as for

instance the precipitation data in Section 5.

Under these results, again the inverse of the Godambe information matrix

Ga(θ) = Ha(θ)Ja(θ)
−1Ha(θ)

ᵀ, a = M,C,D (16)

is the asymptotic variance of the CL estimator with

Ha(θ) = −E[∇2pla(θ)], Ja(θ) = E[∇pla(θ)∇pla(θ) ᵀ]. (17)
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In the Appendix B we can find closed form expressions for the Godambe information

assuming, for notational simplicity, a constant mean function E(Z(s)) = µ. Note that the

Ja is a block diagonal matrix so that expressions when E(Z(s)) = x(s)ᵀβ, can be easily

derived.

The role of the weights in CL function is to save computational time and improve the

statistical efficiency. A compactly supported weight function, i.e. wij(d) > 0 if ‖si−sj‖ ≤ d,

and 0 otherwise, has evident computational advantages. Moreover even a simple cut-off

weight function, wij(d) = 1 if ‖si − sj‖ ≤ d, and 0 otherwise, can improve the efficiency

as it has been shown in Joe and Lee (2009), Davis and Yau (2011) and Bevilacqua et al.

(2012). The intuition behind this approach is that the correlations between pairs of distant

sampling locations are often nearly zero. Therefore the use of the whole pairs may lose

efficiency since too many redundant pairs of observations can skew the information confined

in pairs of near observations. Hereafter we use pla(θ, d) to denote CL function based on

pairs using simple cut-off weight function and Ga(θ, d) the associated Godambe information

matrix.

The evaluation of the standard error requires consistent estimation of the inverse of the

matrix Ga(θ). It can be obtained through the plug-in estimates Ha(θ̂a) and Ja(θ̂a) where

θ̂a, a = M,C,D is the maximizer of (13), (14) and (15) respectively. Nevertheless the latter

becomes computationally unfeasible for large data sets since it is of order O(n4). In order to

estimate Ja(θ̂a) we use a subsampling method as described in Heagerty and Lumley (2000).

Provided that W−1Ja(θ̂a) converges to a matrix J∗a as n −→∞, where W =
∑

(i,j) wij, we

use the subsampling method in order to obtain an estimate Ĵ∗a of J∗a and then estimate

Ja(θ̂a) by WĴ∗a . Given S1, . . . , Sm subsets of the observation points {s1, s2, . . . , sn}, the

estimator is

Ĵ∗a =
1

m

m∑
k=1

1

W (k)

∑
(i,j)∈Sk
(i′,j′)∈Sk

[∇pla(θ̂a)]ij[∇pla(θ̂a) ᵀ]i′j′wijwi′j′ , (18)

where W (k) =
∑

(i,j)∈Sk wij. The subsets are derived gathering the points that fall in a

collection of overlapping sub-regions of the same shape of the region of observations but

of smaller volume (Lee and Lahiri, 2002). Finally, the asymptotic covariance matrix of θ̂a
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can then be estimated using the subsampling approximation

Ĝ−1
a (θ̂a) = WH−1

a (θ̂a)Ĵ
∗
aH
−1
a (θ̂a) (19)

and standard error estimation of each parameter is computed taking the square root of the

diagonal elements of Ĝ−1
a (θ̂a).

Computational reasons can drive the choice of the number of subsets m. Suppose

the n observations are divided into subsets of roughly q observations per subset, so that

n ' mq. Evaluation of Ha and Ĵ∗a are of order O(n2) = O(m2q2) and O(n4/m3) = O(mq4),

respectively. So, ifm grows at a rateO(n2/3), both evaluations have the same computational

order of the composite likelihood.

4 Numerical examples

We have considered three models:

1. the exponential covariance function

C(h; θ) = σ2 exp(−3‖h‖/φ) (20)

2. the Cauchy covariance function

C(h; θ) =
σ2

1 + (
√

19‖h‖/φ)2
(21)

3. the wave or cardinal sine covariance function

C(h; θ) = σ2(20.371 ‖h‖/φ)−1 sin(20.371 ‖h‖/φ). (22)

Figure 1 illustrates the behavior of the covariance function and the tapered correlation

functions using the Bohman function (3), with σ2 = 1 and d = φ = 0.1. The covariance

models (20), (21) and (22) are parametrized in terms of practical range that is the correla-

tion is lower than 0.05 when ‖h‖ ≥ φ. The aforementioned models cover a wide spectrum

of situations that can arise in geostatistics. The first model probably is the most commonly

used model in geostatistics and it is a special case of the Matérn model when ν = 1/2.
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Figure 1: (a) Covariance functions with equivalent practical range, where σ2 = 1, φ = 0.1,

(b) the tapered covariance functions using (3)), with d = φ.

Model (21) is polynomially decreasing and hence more suitable than the exponential model

for modeling of a slowly decaying covariance. Model (22) allows for negative correlations

which is used, for instance, in meteorology, with high and low pressure zones.

First of all we compare the computational time required for one evaluation of the like-

lihood (1), the tapered likelihood (5), the weighted marginal pairwise likelihood (13) and

its unweighted version using the exponential covariance function with φ = 0.1. As taper

function we consider the Bohman function (3).

For evaluating (1) and (5) we follow the implementation of Kaufman et al. (2008)

(available at www.image.ucar.edu/Data/precip tapering/) and we use the sparse matrix

implementation in the R package spam (Furrer and Sain, 2010). As an anonymous referee

suggested, the spam package allows users to separate structural and numerical computations

needed for Cholesky factorization. The result is that for a given sparsity structure, the full

factorization needs only to be done once. In subsequent factorizations, one can pass in the

structure and have spam only compute the numerical part. This can save a lot of time
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when the tapered likelihood function is evaluated repeatedly. In the sequel the sparsity

structure is given, and we have recorded the total time for computing the Cholesky factor,

the log determinant of the covariance matrix and the quadratic form in (5). For the

implementation of the plM(., d), the vectors of the distances ‖si − sj‖, i 6= j and the

statistics for lij are calculated using C code, then the evaluation of the pairwise likelihood

is made by R code. Only this evaluation has been considered in the experiment, making

the comparison appropriate with the code for the likelihood and its tapered version.

For the data locations we have followed Kaufman et al. (2008). We have considered a

regular grid with increments 0.03 over Wk where Wk = [0, 2k/2]× [0, 2k/2], k = 0, . . . , 5. The

grid points have been perturbed adding a uniform random value on [−0.01, 0.01] to each

coordinates and, finally, we have randomly chosen nk = 500·2k points without replacement.

As taper range and cut-off distance for the weighted composite likelihood estimator we have

set d = φ, i.e. the practical range. Because we keep d as fixed, increasing k and consequently

the number n of observations, the fraction of nonzero elements in the resulting tapered

covariance matrix decreases. Finally, in carrying out the experiment, we have used a 2.4

GHz processor with 16 GB of memory and the reported time statistics are means over 10

evaluations of each function.

Table 1 depicts the saving in terms of computational burden for large datasets for the

marginal pairwise likelihood estimates. In this setup the tapering method takes advantage

of the sparsity of the matrix for overtaking the unweighted version of the CL. However the

saving is quite remarkable when we consider the weighted version of the CL.

Now we compare the asymptotic relative efficiency (ARE) of the estimates σ̂2, φ̂ and

µ̂ under the covariance models (20), (21), and (22). We have considered the case k = 0,

that is 500 locations over [0, 1] × [0, 1], and a sequence of increasing values of the taper

range d, corresponding to increasing percentages 0.1%, 0.2%, . . . , 2% of non zero values

in the tapered covariance matrix. As practical range for the models we have chosen φ =

0.1 because this value of φ over this spatial domain is consistent to increasing domain

framework.

As overall measure of the ARE for the multi-parameter case we consider:

AREa(d) =

(
|Ga(θ; d)|
|IML(θ)|

)1/p

, a = C,M, T (23)
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n l(θ) lT (θ, d) plM(θ,∞) plM(θ, d) %

500 0.201 0.036 0.048 0.001 0.00436

1000 0.884 0.127 0.266 0.002 0.00221

2000 3.809 0.470 1.076 0.002 0.00113

4000 20.616 1.722 4.050 0.002 0.00056

8000 154.031 7.271 14.067 0.002 0.00029

16000 1624.439 29.524 56.065 0.004 0.00014

Table 1: Time in seconds for evaluating l(θ), lT (θ, d), plM(θ,∞) and plM(θ, d) functions

with d = 0.1 under increasing domain setup. The column (%) indicates the associated

percentages of non zero values in the tapered covariance matrix.

where IML(θ) is the Fisher information matrix (8) and p = 3 is the number of unknown

components in θ. Note that in the overall measure, the case a = D is not considered since

composite likelihood based on differences does not involve the mean estimation when the

mean is constant. Beyond the overall measure we have evaluated the relative efficiences of

each single parameter for the cases a = C,D,M, T .

In Figures 2, 3, 4 we depict the ARE of the estimates as a function of the percent-

ages of non zero values obtained in varying the value d. As general remark for the tapering

method the asymptotic relative efficiency is a monotonic increasing function of the percent-

ages of non zero values as expected. The tapering method is more efficient in estimating

the marginal parameters µ and σ2. On the other hand, for small percentages of non zero

values, where the maximum tapered likelihood estimates takes advantage from the spar-

sity of the covariance matrix, the maximum marginal and conditional pairwise likelihood

estimates outperform the maximum tapered likelihood and the maximum difference pair-

wise likelihood estimates. This is true for the overall measure (23) and this performance is

owed to the gain in estimating more efficiently the practical range φ. Moreover there is no

practical difference in considering marginal and conditional likelihood estimates, so that a

preference should be given to the first one because it requires less computation. Finally

we note that the estimates based on the marginal or conditional pairwise likelihood are

better of the ones based on the difference pairwise likelihood. Note also that asymptotic
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efficiency of the maximum CL estimates is not a increasing function of the distance consid-

ered in the weight function with the exception of the wave model. These examples suggest

that a proper choice of the distance d can improve significantly the statistical efficiency of

maximum CL estimates under specific models. Our findings add more evidence to similar

results reported in the literature (Joe and Lee, 2009; Davis and Yau, 2011; Bevilacqua

et al., 2012). Furthermore such distance, i.e. the number of pairs, in the marginal and

conditional pairwise CL should be different with respect to the distance of the difference

CL.

Looking at the behavior for the different models, we see that the the maximum tapered

likelihood estimate performs reasonably well under the exponential and the Cauchy model,

but probably a larger taper range is required for outperforming the maximum pairwise like-

lihood estimates, vanishing the computational advantage of the sparsity of the covariance

matrix.

Finally we have simulated 1, 000 random samples drawn from a Gaussian random fields

under the same spatial configuration as before but with different values of the range pa-

rameter, namely φ = 0.05, 0.1, 0.2. All the estimates have been carried out using the ver-

sion 1.0.3 of R package CompRandFld (Padoan and Bevilacqua, 2013), avalaible on CRAN

(http://cran.r-project.org/). This package offer a full implementation of all the es-

timation methods described here, including the evaluation of the standard errors of the

estimates.

The numerical results collected in Tables 2, 3, 4, are consistent with the theoretical

results. Each estimation methods appear unbiased and the increment of the spatial de-

pendence, i.e. increasing the taper range, leads to an increment of the variability of the

estimates. As general comment the tapering approach outperforms the CL methods in

estimating the marginal parameters, µ and σ2, of the random field. This dominance is not

attained when we consider the estimation of the range parameter. In particular, when we

consider small spatial dependence (φ = 0.05), plC and plM provide a better efficiency than

the tapering approach in the estimates of φ (see Table 2). Moreover the tapering approach

is less efficient of the marginal and conditional pairwise likelihood when we consider the

Wave model. Finally we remark that the pld yields to estimates with large variability except
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Figure 2: AREs of the tapering and CL estimators with respect of the percentages of non

zeros values in the tapering matrix, for the exponential model (20) with φ = 0.1, σ2 = 1.
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Figure 3: AREs of the tapering and CL estimators with respect of the percentages of non

zeros values in the tapering matrix, for the Cauchy model (21) with φ = 0.1, σ2 = 1.
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Figure 4: AREs of the tapering and CL estimators with respect of the percentages of non

zeros values in the tapering matrix, for the wave model (22) with φ = 0.1, σ2 = 1.
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in the case of φ = 0.2 for the Cauchy and Wave models (see Table 4).

Exponential model Cauchy model Wave model

µ φ σ2 µ φ σ2 µ φ σ2

ML bias 0.0017 -0.0009 -0.0023 0.0022 -0.0016 -0.0021 0.0011 -0.0017 -0.0028

rmse 0.0552 0.0075 0.0672 0.0643 0.0098 0.0669 0.0443 0.0091 0.0651

TAP bias 0.0016 0.0002 -0.0020 0.0023 -0.0008 -0.0030 0.0007 0.0199 0.0002

rmse 0.0553 0.0138 0.0674 0.0647 0.0143 0.0668 0.0444 0.0425 0.0652

plC bias 0.0008 -0.0010 -0.0022 0.0015 -0.0017 -0.0030 0.0002 0.0000 -0.0010

rmse 0.0614 0.0078 0.0725 0.0693 0.0099 0.0719 0.0477 0.0165 0.0701

plM bias 0.0008 -0.0010 -0.0021 0.0015 -0.0017 -0.0029 0.0001 -0.0006 -0.0001

rmse 0.0613 0.0078 0.0726 0.0693 0.0099 0.0719 0.0478 0.0178 0.0702

plD bias 0.0054 0.0571 -0.0010 0.0149 0.0065 -0.0007

rmse 0.0310 0.2330 0.0201 0.1189 0.0263 0.0787

Table 2: Bias and root mean square error (rmse) of the estimates when µ = 0, φ = 0.05,

σ2 = 1.

5 A real data example

As data example we consider the data-set in Kaufman et al. (2008) that can be retrieved

from www.image.ucar.edu/Data/precip tapering/. We consider yearly total precipita-

tion anomalies registered at 7, 352 location sites in the USA from 1895 to 1997.

The yearly totals have been standardized by the long-run mean and standard deviation

for each station from 1962. The data-set can be considered of medium size allowing ML

estimation although it is very slow to compute.

Kaufman et al. (2008) adapted a zero mean Gaussian random field with an exponential

covariance model using the maximum likelihood and the tapering method. Here we choose

an exponential covariance model plus a nugget effect , i.e.

C(h; θ) = τ 2I(||h|| = 0) + σ2 exp {−||h||/φ} , (24)
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Exponential model Cauchy model Wave model

µ φ σ2 µ φ σ2 µ φ σ2

ML bias 0.0037 -0.0015 -0.0067 0.0044 -0.0010 -0.0041 0.0012 -0.0001 -0.0022

rmse 0.0843 0.0114 0.0792 0.0973 0.0089 0.0758 0.0409 0.0027 0.0648

TAP bias 0.0039 -0.0013 -0.0074 0.0048 -0.0015 -0.0096 0.0011 -0.0026 -0.0022

rmse 0.0851 0.0129 0.0791 0.0989 0.0094 0.0767 0.0420 0.0155 0.0675

plC bias 0.0041 -0.0028 -0.0089 0.0050 -0.0034 -0.0110 0.0013 -0.0010 -0.0020

rmse 0.0900 0.0133 0.0826 0.1033 0.0120 0.0800 0.0433 0.0086 0.0691

plM bias 0.0041 -0.0028 -0.0087 0.0049 -0.0034 -0.0109 0.0013 -0.0005 -0.0017

rmse 0.0901 0.0133 0.0827 0.1033 0.0120 0.0800 0.0435 0.0069 0.0694

plD bias 0.0011 0.0088 -0.0004 0.0020 -0.0044 -0.0001

rmse 0.0201 0.1142 0.0120 0.0891 0.0167 0.0717

Table 3: Bias and root mean square errors (rmse) of the estimates when µ = 0, φ = 0.1,

σ2 = 1.

as suggested by inspecting the empirical semi-variogram in Figure 5.

The parameter θ = (τ 2, σ2, φ)ᵀ is estimated with maximum likelihood, tapered likeli-

hood and pla(θ; d), a = C,D,M methods. The distance between two sites are measured

using the great-circle distance and the exponential covariance function is still positive defi-

nite for this distance (Huang et al., 2011). As taper function we use the Bohman taper with

d = 112.654 Km, as in Kaufman et al. (2008). This leads to 0.0063% of non zero values in

the tapered covariance matrix. The same value d has been adopted for the weighted ver-

sion of the pairwise likelihood. However the estimates that we obtained using the pairwise

likelihood based on difference using d were unrealistic. Note that the difference pairwise

likelihood estimates can be calculated by nonlinear weighted least squares in the model

(Z(si)− Z(sj))
2 = 2γ(si − sj; θ) + εi,j, εi,j ∼ N(0, 8γ(si − sj; θ)2)

where γ(si − sj; θ) is the semi-variogram model. Since plD is basically based on semi-

variogram the selection of the distance d requires some care after considering Figure 5.

The distance d = 112.654 Km seems too limiting for catching the actual behavior of the

variogram so we fixed a different distance, namely d = 3× 112.654 in plD(θ, d).
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Exponential model Cauchy model Wave model

µ φ σ2 µ φ σ2 µ φ σ2

ML bias 0.0060 -0.0046 -0.0170 0.0069 -0.0009 -0.0052 0.0005 0.0000 -0.0026

rmse 0.1474 0.0283 0.1178 0.1591 0.0104 0.0972 0.0375 0.0009 0.0647

TAP bias 0.0073 -0.0058 -0.0219 0.0082 -0.0031 -0.0223 0.0010 0.0001 -0.0008

rmse 0.1514 0.0286 0.1183 0.1632 0.0118 0.1057 0.0408 0.0048 0.0727

plC bias 0.0077 -0.0139 -0.0270 0.0085 -0.0124 -0.0298 0.0014 0.0002 -0.0010

rmse 0.1624 0.0391 0.1251 0.1731 0.0297 0.1195 0.0442 0.0029 0.0780

plM bias 0.0077 -0.0138 -0.0264 0.0084 -0.0124 -0.0296 0.0014 0.0002 -0.0010

rmse 0.1621 0.0390 0.1250 0.1728 0.0297 0.1195 0.0444 0.0029 0.0783

plD bias 0.0031 0.0125 -0.0004 0.0020 0.0001 0.0011

rmse 0.0420 0.1587 0.0193 0.1206 0.0037 0.0789

Table 4: Bias and root mean square errors (rmse) of the estimates when µ = 0, φ = 0.2,

σ2 = 1.

Table 5 reports the estimates of maximum likelihood, tapering and pla, a = C,D,M

methods and the associate standard errors. For maximum likelihood and tapering methods

standard errors are computed using the square root of the diagonal elements of the inverse

of the Fisher and Godambe information matrices in (8) and (6). The Godambe information

matrix for the composite likelihood methods is estimated using the subsampling method as

explained in Section 3 with overlapping rectangular subregions of length and width respec-

tively 76.15 Km and 52.17 Km. The number of sub-regions involved in the subsampling

estimation is 116. Note that the standard errors of the maximum likelihood estimates are

not necessarily smaller than the standard errors of the other estimation methods. What

we expect is that the difference between the Fisher information matrix and the Godambe

information matrix of the other estimation methods is a non-negative definite matrix.

Figure 5 gives a rough evaluation of the goodness of fit of the proposed model and shows

that the estimates with different estimation methods look similar enough.

We gain a better insight if we compare the prediction performance. In doing this, we

have used a leave-one-out cross-validation, i.e. we have set aside one observation and we

have predicted it using the other observations. As overall criteria we have considered three
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ML TAP (d) plC(d) plM(d) plD(d)

τ 2 0.1033 0.06381 0.1069 0.1070 0.1144

(0.0042) (0.0091) (0.0072) (0.0024) (0.02842 )

φ 168.1174 121.36855 186.2457 185.7594 161.6937

(12.2329) (9.6355) (18.7000) (18.9975) (27.3767)

σ2 0.6693 0.7418 0.5890 0.5866 0.4909

(0.0632) (0.0449) (0.0251) (0.0616) (0.03658)

Table 5: Maximum likelihood, tapering and composite likelihood estimates for the exponen-

tial covariance model with nugget effect (estimated standard errors are reported between

parentheses).

predictive scores described in Gneiting and Raftery (2007) and Zhang and Wang (2010).

Let Ẑ(si) be the best linear prediction on the location site si based on all data except

Z(si), i.e. its kriging prediction (Cressie, 1993). We will consider

1. the root mean square error (RMSE)

RMSE =

[
1

n

n∑
i=1

{
Z(si)− Ẑ(si)

}2
]1/2

, (25)

2. the logarithmic score (LSCORE)

logS =
1

n

n∑
i=1

[
1

2
log{2πσ(si)}+

1

2
{Y (si)}2

]
, (26)

where Y (si) = (Z(si)−Ẑ(si))/σ(si) and {σ(si)}2 is the prediction variance associated

with Ẑ(si),

3. the continuous ranked probability score (CPRS)

CPRS =
1

n

n∑
i=1

σ(si)

(
Y (si) (2F (Y (si))− 1) + 2F (Y (si))−

1√
π

)
, (27)

where F is the cumulative distribution of the Gaussian distribution.

The prediction scores required the computation of Ẑ(si) and its associated variance

{σ(si)}2 that can be evaluated one by one. Zhang and Wang (2010) describe how to
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Figure 5: The empirical semi-variogram for yearly total precipitation anomalies. The lines

represent the fitted semi-variograms.

compute them in one step. For instance, assuming a zero mean function mean, RMSE can

be evaluated as

RMSE =

(
ZᵀΣ(ψ)−1D−1D−1Σ(ψ)−1Z

n

)1/2

where D = diag(Σ(ψ)−1). Since Σ(ψ) is unknown, we can use a plug-in estimate of Σ,

Σ(ψ̂).

In Table 6, 7 and 8 we report RMSE, LSCORE and CRPS for the exponential model

and we contrast them with an exponential model without nugget effect, as proposed by

Kaufman et al. (2008). Our findings highlight how we have an effective improvement in the

RMSE and LSCORE criteria when we consider an additional nugget effect. Moreover pla,
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Model ML TAP (d) plC(d) plM(d) plD(d)

Exponential with nugget 0.467 0.470 0.469 0.467 0.467

Exponential without nugget 0.479 0.479 0.481 0.481 0.480

Table 6: Prediction performance in terms of MSPE for exponential covariance model with

and without nugget effect estimated with maximum likelihood, tapering and composite

likelihood methods.

Model ML TAP (d) plC(d) plM(d) plD(d)

Exponential with nugget 0.638 0.639 0.642 0.642 0.642

Exponential without nugget 0.677 0.670 0.868 0.869 0.834

Table 7: Prediction performance in terms of LSCORE for exponential covariance model

with and without nugget effect estimated with maximum likelihood, tapering and composite

likelihood methods.

a = C,M,D estimates provides comparable results with respect to the tapering method.

Finally Figure 6 shows prediction map of the precipitation anomalies over USA and the

associate map of standard error prediction where the covariance matrix has been estimated

using the plM estimates. It can be appreciated that precipitation anomalies are mainly

concentrated in the north of the country and in the east/west coast. Note that, as expected,

standard errors tend to be higher in the west of the country where there are few location

sites.

Model ML TAP (d) plC(d) plM(d) plD(d)

Exponential with nugget 0.446 0.447 0.444 0.444 0.445

Exponential without nugget 0.456 0.460 0.440 0.439 0.452

Table 8: Prediction performance in terms of CRPS for exponential covariance model with

and without nugget effect estimated with maximum likelihood, tapering and composite

likelihood methods.
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Figure 6: (a) Prediction map of the precipitation anomalies data; (b) the associated stan-

dard error prediction map.

6 Concluding remarks

The class of CL functions is very large and for a given estimation problem it is not clear

how to choose in this class. In the Gaussian case, if the choice of the CL is driven by

computational concerns then the CL based on pairs have clear computational advantages

with respect to other type of CL.

In this paper through theoretical and numerical examples we have compared three

versions of the weighted pairwise likelihood (marginal, conditional and difference), using

the covariance tapering approach as benchmark. All approaches rely on the choice of

a distance d. As pointed out by an anonymous referee, the distance does not play the

same role in the considered approaches. In the tapering approach we pretend that pairs

of observations that are far apart a certain distance d are independent. The role of the

distance d in the weight function of the CL is different since it allows to keep out the

(marginal, conditional or difference) likelihood of pairs of observations.

One advantage of the tapering approach is that the balance between the statistical

and computational efficiency is clear. Instead for the CL approach the gain in statistical

efficiency is less undimmed when we increase the distance and preliminary evaluation of

this gain as in Bevilacqua et al. (2012) could be computationally hard in particular for

large data-set.

In this paper the theoretical and numerical examples highlight a better performance
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of the weighted version of the conditional and marginal pairwise likelihood with respect

to the one of the difference pairwise likelihood. Moreover the weighted marginal pairwise

likelihoods are computationally preferable with respect to the tapering approach while

the tapering approach shows better statistical efficiency when increasing the taper range.

Our suggestion for the practitioners is to consider both the approaches when they are

computationally feasible, as in the real data example. For data sets of large dimension

the pairwise likelihood approach is preferable since a little loss of statistical efficiency is

offset by good computational performances. Our findings are consistent with those of Stein

(2013) who compares the covariance tapering with a specific type of composite likelihood

based on independent blocks.
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Appendix A

Asymptotic results can be been proved for spatial processes which are observed at finitely

many locations in the sampling region. In this case we deal with an increasing domain

setup where the sampling region is unbounded. In the sequel we suppose that the mean

function for the random field is known and without loss of generality this is zero. More

precisely, we consider a weakly dependent random field {Z(s), s ∈ S} defined over an

arbitrary lattice S in Rd that is not necessarily regular. The lattice S is equipped with the

metric δ(sk, sl) = max1≤l≤d |si,l − sj,l| and the distance between any subsets A,B ⊂ S is

defined as δ(A,B) = inf{δ(sk, sl) : sk ∈ A and sl ∈ B}. We denote

α(U, V ) = sup
A,B
{|P (A ∩B)− P (A)P (B)| : A ∈ F(U), B ∈ F(V )},

where F(E) is the σ-algebra generated by the random variables {Z(s), s ∈ E}. The α-

mixing coefficient (Doukhan, 1994) for the random field {Z(s), s ∈ S} is defined as

α(a, b,m) = sup
U,V
{α(U, V ), |U | < a, |V | < b, δ(U, V ) ≥ m}.

where |C| is the cardinality of the set C.

We make the following assumptions:

C1: S is infinite, locally finite: for all s ∈ S and r > 0, |B(s, r) ∩ S| = O(rd), with

B(s, r) d-dimensional ball of center s and radius r; moreover there exists a set of

neighbourhoods, Vs ⊂ S, such that |Vs| is uniformly bounded.

C2: Dn is an increasing sequence of finite subsets of S: dn = |Dn| → ∞ as n→∞.

C3: Z is a Gaussian random field with covariance function C(h; θ), with θ ∈ Θ. Θ is a

compact set of Rp. The function θ 7→ C(h; θ) has continuous second order partial

derivatives with respect to θ ∈ Θ, and these functions are continuous with respect to

h and infθ∈ΘC(h; θ) > 0;

C4: The true unknown value of the parameter θ, namely θ∗, is an interior point of Θ.

C5: The Gaussian random field is α-mixing with mixing coefficient α(m) = α(∞,∞,m)

satisfying:
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(C5a) ∃ η > 0 s.t.
∑

k,l∈Dn α(δ(k, l))
η

2+η = O(dn),

(C5b)
∑

m≥0m
d−1α(m) <∞;

C6: Let

gk(Y (k); θ) = −(1/2)
∑

l∈Vk,l 6=k

l(k,l)(θ)

with Y (k) = (Z(s), s ∈ Vk), l(k,l) = lkl, lk|l or lk−l. The functions lkl, lk|l, and lk−l are

defined as in (10),(11) and (12), respectively.

The composite likelihood is defined as

Qn(θ) =
1

dn

∑
k∈Dn

gk(Y (k); θ); (28)

and the composite likelihood estimator is given by

θ̂n = argminθ∈ΘQn(θ).

C7: the function Qn(θ) = Eθ∗ [Qn(θ)] has a unique global minimum over Θ at θ∗, the true

value.

Remarks

1. Assumptions C1-2 are quite general. For instance we can consider a rectangular

lattice, as in Shaby and Ruppert (2012), Dn ⊂ ∆Zd, for a fixed ∆ > 0, andDn ⊂ Dn+1

for all n.

2. The α−mixing assumption C5 are a bit hard to check in general. It is satisfied

when we consider compactly supported correlation functions, like the taper functions

(2) and (3). When we consider a rectangular lattice the condition is satisfied for a

stationary Gaussian random field with correlation function C(h; θ) = O(‖h‖−c), for

some c > d and its spectral density bounded below (Doukhan, 1994, Corollary 2, p.

59). In our examples this condition is satisfied by the exponential model.

3. The assumption C7 is an identifiability condition. For each s, the function Eθ∗ [gs(Ys; θ)]

has a global minimum at θ∗ according the Kullback-Leibler inequality but in the multi-

dimensional case (p > 1) θ∗ fails, in general, to be the unique minimizer. Assumption
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C7 is not satisfied, for instance, when we consider a rectangular lattice and a com-

pactly supported correlation functions, see (2) and (3), for instance, and ∆ > d. In

the case of the covariance models (20), (21) and (22) the condition is clearly satisfied.

4. The assumption C6 is satisfied if we suppose a cut-off weight function for wkl.

5. Any individual log-likelihood l(i,j) can be written as

l(k,l) = c1(θ, k − l) + c2(θ, k − l)Z2
k + c3(θ, k − l)Z2

k + c4(θ, k − l)ZkZl,

where the functions ci, i = 1, . . . , 4 are C2 functions with respect to θ.

Consistency

Given the previous assumptions C1-C7, θ̂n is a consistent estimator for θ0 provided that

supθ∈Θ |Qn(θ) − Qn(θ)| → 0 in probability, as n → ∞. According Corollary 2.2 in Newey

(1991), we have to prove that

1: for each θ ∈ Θ, Qn(θ)−Qn(θ)→ 0 in probability, as n→∞;

2: for Mn = Op(1),

|Qn(θ′)−Qn(θ)| ≤Mn‖θ′ − θ‖.

We sketch the proof for l(k,l) = lkl, the same arguments apply for the other sub-likelihoods,

using the fourth remark.

1: We prove that supk∈Dn E[(supθ∈Θ gk(Y (k); θ))2+η] <∞, for η > 0. In fact, we have

gk(Y (k); θ) =
1

2

∑
l∈Vk,l 6=k

{
2 log σ2 + log(1− ρ2

kl) +
Z2
k + Z2

l − 2ρklZkZl
σ2(1− ρ2

kl)

}
≤

∑
l∈Vk,l 6=k

log σ2 +
1

2
log(1− ρ2

kl) +
Z2
k + Z2

l

σ2(1− ρ2
kl)

≤ c1|Vk| log σ2 + c2|Vk|Z2
k + c2

∑
l∈Vk,l 6=k

Z2
l

and |Vk| is uniformly bounded according the assumption C6. The uniform bounded

moments gk(Y (k); θ) entail uniform L1 integrability of gk and with the assumption

28



C5 we obtain (Jenish and Prucha, 2009, Theorem 3)

Qn(θ)−Qn(θ) = d−1
n

∑
k∈Dn

{gk(Y (k), θ)− Eθ[gk(Y (k), θ)]} → 0, in probability

2: We have

|gk(Y (k); θ′)− gk(Y (k); θ)| =
1

2

∑
l∈Vk,l 6=k

∣∣∣∣2 log
σ
′2

σ2
+ log

1− ρ′2kl
1− ρ2

kl

+(Z2
k + Z2

l )

[
1

σ′2(1− ρ′2kl)
− 1

σ2(1− ρ2
kl)

]
− 2ZkZl

[
ρ
′

kl

σ′2(1− ρ′2kl)
− ρkl
σ2(1− ρ2

kl)

]∣∣∣∣
≤ c1|Vk|‖θ′ − θ‖+ c2(|Vk|Z2

k +
∑

l∈Vk,l 6=k

Z2
l )‖θ′ − θ‖

|Qn(θ′)−Qn(θ)| ≤ d−1
n

∑
k∈Dn

|qk(θ′)− qk(θ)|

≤ c3d
−1
n

∑
k∈Dn

(1 + Z2
k +

∑
l∈Vk,l 6=k

Z2
l )‖θ′ − θ‖

= Mn‖θ′ − θ‖

for some positive constants c1, c2 and c3 andMn = c3d
−1
n

∑
k∈Dn(1+Z2

k+
∑

l∈Vk,l 6=k Z
2
l ).

Since Eθ[Mn] <∞, we obtain the desired result.

Asymptotic normality

We make the additional assumption:

N1: there exists two symmetric nonnegative definite matrices H and J such that for large

n:

Jn = varθ∗(
√
dn∇Qn(θ∗)) ≥ J and Hn = Eθ∗(∇2Qn(θ∗)) ≥ I.

where if A and B are two symmetric matrices, A ≥ B means that A−B is a semipositive

definite matrix.

We note that because gs is a C2 and Θ is a compact space there exists a random variable

h(Y (s)), Eθ(h(Y (s))) <∞ satisfying:∣∣∣∣ ∂2

∂θkθl
gs(Y (s), θ)

∣∣∣∣2 ≤ h(Y (s)).
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Moreover for all s ∈ S, Eθ[
∂
∂θk
gs(θ)] = 0, because gs is a sum of log-likelihoods, and it is

easy to show that we have that sups∈S, θ∈Θ Eθ

[∣∣∣ ∂
∂θk
gs(θ)

∣∣∣2+η
]
<∞ and

sups∈S, θ∈Θ Eθ

[∣∣∣ ∂2

∂θkθl
gs(θ)

∣∣∣2+η
]
<∞, for all η > 0.

Under the condition C1-C7 and N1, conditions (H1-H2-H3) of Theorem 3.4.5 in Guyon

(1995) are satisfied and √
dnJ

−1/2
n Hn(θ̂n − θ∗)

d→ N(0, Ip),

where Ip is the p× p identity matrix.
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Appendix B

In this Section we provide the formulas for the Godambe information matrix associated to

pla(θ), a = M,C,D for a Gaussian random field {Z(s)} with mean function E(Z(s)) = µ,

and covariance function Cov(Z(si), Z(sj)) = σ2ρ(si − sj;φ) = σ2ρij. We denote

Ha(θ) = −E[∇2pla(θ)], Ja(θ) = E[∇pla(θ)∇pla(θ) ᵀ] a = M,C,D.

where θ is the vector of the unknown parameters.

The Godambe information matrix is given by

Ga(θ) = Ha(θ)Ja(θ)
−1Ha(θ)

ᵀ, a = M,C,D.

Let Bij, Gij and Uij be defined in section 3. Moreover we define

Fij = ρij(Z(si)− µ)2 + ρij(Z(sj)− µ)2 − (Z(si)− µ)(Z(sj)− µ)(1 + ρ2
ij)

= ρijBij − (Z(si)− µ)(Z(sj)− µ)(1− ρ2
ij)

Qij = Z(si) + Z(sj)

For plM(θ) and plC(θ), θ = (φ, σ2, µ)ᵀ, the pairwise score functions are given by

∇plM(θ) =
n∑

i=1,j>i

wij


κij

ρij
(1+ρij)

(
1− Fij

σ2ρij(1−ρ2ij)

)
− 1
σ2

(
1− Bij

2σ2(1−ρ2ij)

)
2µ

σ2(1+ρij)

(
1− Qij

2µ

)


∇plC(θ) =
n∑

i=1,j>i

wij


2κij

ρij
(1+ρij)

(
1− Fij

σ2ρij(1−ρ2ij)

)
− 1
σ2

(
1− G2

ij+G
2
ji

2σ2(1−ρ2ij)

)
2µ(1−ρij)
σ2(1+ρij)

(
1− Qij

2µ

)


and for plD(θ), θ = (φ, σ2)ᵀ, we have

∇plD(θ) =
n∑

i=1,j>i

wij

 κij

(
1− U2

ij

2γij

)
− 1
σ2

(
1− U2

ij

2γij

)

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where αij = (1 + ρij)
−1
√

1 + ρ2
ij, and κij = (1− ρij)−1∇ρij. Moreover we have

HM(θ) =
n∑

i=1,j>i

wij


α2
ijκijκ

ᵀ
ij −

ρij
σ2(1+ρij)

κij 0

− σ−4 0

− − 2
σ2(ρij+1)



JM(θ) =
n∑

i,k=1,j>i,l>k

wijwlk


αijαklCor(Fij, Fkl)κijκ

ᵀ
kl −σ−2αijCor(Fij, Bkl)κij 0

− σ−4Cor(Bij, Bkl) 0

− − 2Cor(Qij ,Qkl)

σ2
√

1+ρkl
√

1+ρij



HC(θ) =
n∑

i=1,j>i

wij


2α2

ijκijκ
ᵀ
ij −

2σ−2ρij
(1+ρij)

κᵀij 0

− σ−4 0

− − 2(1−ρij)
σ2(1+ρij)



JC(θ) =
n∑

i,k=1,j>i,l>k

wijwlk


4αijαklCor(Fij, Fkl)κijκ

ᵀ
kl −

√
2σ−2αijCor(Fij, G

2
kl +G2

lk)κij

− 2−1σ−4Cor(G2
ij +G2

ji, G
2
kl +G2

lk)

− −

0

0
2Cor(Qij ,Qkl)(1−ρij)(1−ρkl)

σ2
√

1+ρkl
√

1+ρij


HD(θ) =

1

2

n∑
i=1,j>i

wij

 κijκ
ᵀ
ij −σ−2κij

− σ−4


JD(θ) =

1

2

n∑
i,k=1,j>i,l>k

wijwlkCor(U
2
ij, U

2
kl)

 κijκ
ᵀ
kl −σ−2κij

− σ−4


In order to derive the correlations in the Ja(θ), a = M,C,D matrices, we can exploit the

following formula that holds for a stationary Gaussian random field:

Cov(Z(si)Z(sj), Z(sk)Z(sl)) = σ4(ρikρjl + ρilρjk)

After some algebra, we have:

• Cov(Qij, Qlk) = σ4 ρil+ρik+ρjl+ρjk√
1+ρij

√
1+ρlk

ρijρlk

• Cov(Gij, Gkl) = σ2(ρik − ρilρkl − ρijρjk + ρijρklρjk)
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• Cov(G2
ij, G

2
kl) = 2[Cov(Gij, Gkl)]

2

• Cov(Uij, Ukl) = σ2(ρik − ρil − ρjk + ρjl)

• Cov(U2
ij, U

2
kl) = 2[Cov(Uij, Ukl)]

2

• Cov(Bij, Bkl) = 2σ4[ρ2
ik +ρ2

il−2ρklρikρil+ρ2
jk +ρ2

jl−2ρklρjkρjl−2ρijρikρjk−2ρijρilρjl

• Cov(Fij, Fkl) = ρijρklCov(Bij, Bkl) + σ4(1− ρ2
ij)(1− ρ2

kl)(ρikρjl + ρilρjk)

−2σ4ρij(1−ρ2
kl)(ρik−ρjk)(ρil−ρjl)−2σ4ρkl(1−ρ2

ij)(ρik−ρil)(ρjk−ρjl)

• Cov(Fij, Bkl) = ρijCov(Bij, Bkl)− 2σ4(1− ρ2
ij)(ρik − ρil)(ρjk − ρjl)

• Cov(Fij, G
2
kl) = 2σ4[ρijρ

2
ik + ρijρ

2
klρ

2
il − 2ρijρklρikρil + ρijρ

2
jk + ρijρ

2
klρ

2
jl − 2ρijρklρjkρjl

−(1 + ρ2
ij)ρikρjk − (1 + ρ2

ij)ρ
2
klρilρjl + (1 + ρ2

ij)ρkl(ρikρjl + ρilρjk)]
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