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Landslides are one of the most widespread disasters and threaten people’s lives and
properties in many areas worldwide. Landslide susceptibility mapping (LSM) plays a crucial
role in the evaluation and extenuation of risk. To date, a large number of machine learning
approaches have been applied to LSM. Of late, a high-level convolutional neural network
(CNN) has been applied with the intention of raising the forecast precision of LSM. The
primary contribution of the research was to present a model which was based on the CNN
for LSM and methodically compare its capability with the traditional machine learning
approaches, namely, support vector machine (SVM), logistic regression (LR), and random
forest (RF). Subsequently, we used this model in the Wenchuan region, where a
catastrophic earthquake happened on 12 May 2008 in China. There were 405
valuable landslides in the landslide inventory, which were divided into a training set
(283 landslides) and validation set (122 landslides). Furthermore, 11 landslide causative
factors were selected as the model’s input, and each model’s output was reclassified into
five intervals according to the sensitivity. We also evaluated the model’s performance by
the receiver operating characteristic (ROC) curve and several statistical metrics, such as
precision, recall, F1-score, and other measures. The results indicated that the CNN-based
methods achieved the best performance, with the success-rate curve (SRC) and
prediction-rate curve (PRC) approaches reaching 93.14% and 91.81%, respectively.
The current research indicated that the approach based on the CNN for LSM had
both outstanding goodness-of-fit and excellent prediction capability. Generally, the
LSM in our research is capable of advancing the ability to assess landslide susceptibility.
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1 INTRODUCTION

Landslides are one of the main disasters which exist in
mountainous zones worldwide, threatening people, properties,
and the natural environment (Qiang and Xiu-June 2011; Dou
et al., 2019; Mengistu et al., 2019; Shano et al., 2020). These events
represent one of the most severe geological disasters and are
caused by landforms, geology, hydrology, and human activities
(Jaafari et al., 2019), possibly causing massive casualties and
damaging many infrastructures when large-scale landslides
occur. Especially in Wenchuan China, from the magnitude 8
earthquake in 2008 (Chen M. et al., 2020) to now, this region
maintains a relatively high activity level, seriously threatening the
rebuilding of the county and the local people (Chong et al., 2013;
Zhou et al., 2021). Hence, reliability prediction and timely
management of landslides are of vital importance for
preventing and reducing the cost caused by landslides (Wu
et al., 2015).

LSM describes the space division of landslides in a specific
zone on the foundation of past and present landslide incidents. In
LSM, the most important step in determining the evaluation
accuracy involves defining whichmodeling approach is to be used
(Akinci and Zeybek, 2021). In recent years, people have applied
qualitative methods and quantitative methods (Depicker et al.,
2020) in LSM. These qualitative methods are based on a

knowledge-driven approach. The statistical models used in
LSM include the analytical hierarchy process (AHP)
(Hepdeniz, 2020), weight of evidence (Saha and Saha, 2020),
frequency ratio (Zhang et al., 2020), information gain (Chen T.
et al., 2020), etc. However, these methods have been gradually
replaced by machine learning methods, which have achieved
better performance in LSM, and a data-driven model is
regarded as a more useful landslide spatiotemporal mapping
tool in the quantitative method, including logistic regression
(LR) (Akgun, 2012; Pourghasemi et al., 2013), support vector
machine (SVM) (Pham et al., 2019), naïve Bayes (Xie M. et al.,
2021), decision tree (DT) (Nhu et al., 2020a), and the artificial
neural network (ANN) (Nhu et al., 2020b). While some
progresses have been made in LSM, the performance of the
methods in LSM still needs to be improved. For example, for
some general methods such as DT and the ANN, their simple
model structure makes it hard to fully capture the complex linear
relationship or nonlinear relations between landslides and their
surroundings (Kong et al., 2021).

Apparently, neither knowledge-driven approaches nor
traditional machine learning approaches such as the SVM can
make full use of the environmental information around
landslides. More recently, except for the methods given above,
convolutional neural networks (CNNs) have been successfully
used in LSM (Wang et al., 2019; Fang et al., 2020; Pham et al.,

FIGURE 1 | Location of the study area.
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2020; Wei et al., 2021). What is worth mentioning is that Wang
et al., (2019) thoroughly compared one-dimensional, two-
dimensional, and three-dimensional CNNs according to

information from Yanshan County. A multiresolution
sampling method (Yi et al., 2020) that can further take
advantage of the surroundings of the landslides was proposed.

FIGURE 2 | Maps of landslide causative factors. (A) Elevation, (B) aspect, (C) slope, (D) plan curvature, (E) profile curvature, (F) lithology, (G) NDVI, (H) relief
amplitude, (I) distance to rivers, (J) distance to faults, and (K) distance to roads.
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Despite these developments, there is no consensus on the most
appropriate method for LSM in the literature. Although it is novel
to use CNN to analyze landslide susceptibility compared with
other approaches, previous studies have mainly focused on the
comparison between machine learning and statistical methods
(Goetz et al., 2015; Pham et al., 2016; Merghadi et al., 2020), with
few attempts to compare these approaches with conventional
machine learning. To fill this gap, our research aims to compare
the CNN with conventional machine learning approaches (LR,
RF, and SVM), selecting 11 related factors such as terrain,
environmental conditions, and the engineering behaviors of
human beings to construct a landslide susceptibility
assessment mechanism. We adopted the ROC curve, precision,
recall, F1-score, and MCC coefficient to carry out assessment and
verify our models, facilitating the prediction of landslide
susceptibility.

As for this research, the mapping of landslide susceptibility in
the Wenchuan region involves four steps:

1. For assembling the data required for the research, a causative
factor determination procedure was performed by using
multicollinearity assessment and Pearson’s analysis to
choose appropriate factors, predisposing factors to establish
datasets for CNN-based models.

2. Modeling landslide susceptibility in terms of CNN, logistic
regression, random forest, and support vector machine.

3. Generating the landslide susceptibility mapping of the
study area.

4. Evaluating the goodness-of-fit and prediction capability in
training datasets and validation datasets.

2 DESCRIPTION OF THE STUDY AREA

As illustrated in Figure 1, the study area is on the northwest edge
of the Sichuan Basin, located in Sichuan Province, Southwest
China. This area covers an area of 4,084 square kilometers and
spans 102° 39′ E and 103° 44′ E longitudes and 30° 45′ N and 31°

43′N latitudes. The pie chart in Figure 1 shows the percentage of
landslides that occurred in the area for each year from 2013 to
2018. In this region, the variation in rock characteristics is
complex and dominated by soft rock and soil layers, with a

fourth-century loose soil layer and strong decaying magmatic
layer as its symbols. The terrain in Wenchuan is mostly
dominated by two mountain ranges: the Longmen mountain
system andQionglai mountain system. This area also contains the
Maowen fault and Beichuan–Yinxiu fault (Xie W. et al., 2021).
With prosperous water systems and highly fractured mounds, the
main water systems inWenchuan County are the Minjiang River,
Zagunao River, and Yuzixi River.

The magnitude 8 earthquake that occurred on 12 May 2008
caused a large-scale loosened rock mass and loose sediments (Cui
et al., 2021). Under the action of rainfall and other natural factors,
it leads to the saturation of the soil and rock layer on the slope and
even water accumulation in the water barrier at the lower part of
the slope, which increases the weight of the landslide and reduces
the shear strength of the soil and rock layer, so the frequency of
landslide increases. In this region, the main forms of landslide
collapse, landslides, and debris flow severely disrupt the local
traffic and economy. Thus, analyzing the factors of landslides and
evaluating landslide susceptibility will contribute greatly to
distinguish and figure out where the landslide-prone areas are.

3 DATA PREPARATION

3.1 Landslide Inventory
The basis of landslide susceptibility studies is landslide inventory.
Generally, a complete landslide inventory should keep track of
the sites, size, outline, and time of the landslide, which can be
developed into a basic database for further study. The data of this
research mainly originated from the detailed landslide data of
Wenchuan County at the GDEMV2 30 m resolution digital
elevation. In total, 405 landslides were selected from the
detailed geological hazard survey data of Wenchuan
(2013F02D2018). Taking the image resolution and aims into
consideration, we converted all the data into 30 m × 30 m
raster data. The landslide inventory was divided into two parts
at random for the intention of evaluating the landslide
susceptibility: 70% of landslides were utilized for the purpose
of model training, and the remaining 30% were utilized for the
purpose of validation. In addition to this, the same quantity of
non-landslide sites was chosen at random outside the buffer area
to perform the training and validation. Taking the scale of
landslides into consideration, this research sets the buffer
distance as 100 m.

3.2 Landslide Causative Factors
At present, there are no general rules existing for choosing the
landslide causative factors (Yi et al., 2020). It is generally believed
that not a single factor can contribute to the appearance of
landslides, requiring a close combination of many
environmental factors such as terrain and geology. Therefore,
choosing appropriate landslide factors can better explain the
occurrence of landslides. Because of the complexity and
diversity in the trigger source of landslides, we chose the
factors according to the variation in the specific region (Van
Westen et al., 2008). Considering the conditions of the nature and
availability of data in the research area, 11 causative factors were

TABLE 1 | Data sources of landslide-impacting elements.

No Factors Data
Sources and Scale

1 Elevation Digital elevation model (DEM) data of 90 m
2 Slope
3 Aspect
4 Relief amplitude
5 Plan curvature
6 Profile curvature
7 NDVI Landsat 8 OLI image
8 Distance to faults
9 Lithology National Basic Geographic Database 1: 250,000
10 Distance to rivers
11 Distance to roads
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selected: elevation, slope, aspect, plan curvature, profile curvature,
relief amplitude, distance to rivers, distance to roads, distance to
faults, NDVI, and lithology (Figure 2). The data that are utilized
in this research are mainly derived from Wenchuan landslide
survey data (2013–2018), as shown in Table 1.

Among these influencing factors, elevation occupies a decisive
role in landslides. As for the study area, landslides are
concentrated between 875 and 2613 m. The aspect in the
research zone is associated with the location of the landslides
as slope deposits or quaternary cover are usually distinct in
different directions (Nandi and Shakoor, 2010). The slope
reflects the sharpness of the research zone, and generally, steep
slopes are more prone to landslides than gentle slopes (Dai et al.,
2001). Plan and profile curvature is efficient to mirror the
complication of the terrain (Oh and Pradhan, 2011). In
mountain areas, the normalized vegetation index (NDVI) is an
indispensable index of slope stability, and we classified the NDVI
into six ranges: < 0, 0–0.08, 0.08–0.13, 0.13–0.18, 0.18–0.24, and
> 0.24. Relief amplitude is efficient in mirroring the gravitational
underlying power of terrain, and it is often taken into
consideration in the research studies related to the landslide.
Geological factors are another key aspect causing landslides to
occur; we divided the geological factors into two categories:
engineering rock groups and fault distance groups.
Engineering rock groups are one of the causative factors of
LSM, and some geological formations will be better off for
landslide generation (Wang et al., 2019). In the study area,
engineering rock groups are divided into three groups: soft
and hard interbedded rock groups (A), soft rock groups (B),
and hard rock groups (C). Distances to faults were obtained
through the buffer classification of ArcGIS 10.8 software, which is
the key factor influencing the size and subsequent spread of
landslides (Fang et al., 2020), and generally, landslides occur
mainly near active faults. It is particularly significant to notice
that landslides in the study area have occurred mainly near active
faults since the large earthquake that occurred in 2008. Human

engineering activities (distance to roads) significantly impact the
scale and expansion of landslides, and the fluctuations in river
flow significantly affect the surrounding side slopes and slopes.

4 METHODOLOGY

4.1 Convolutional Neural Network
With the landslide inventory and causative factors, the next step
is to format these data into a uniform input dataset to construct
the CNN model. The layers of the 11 landslide causative factors
are superimposed together to form a tensor of size 11 × w × h,
where w and h are the width and height of the research area,
respectively. The established landslide inventory is then
superimposed onto the abovementioned layers to obtain the
raster location corresponding to the landslide point, which is
expanded into square data of size n × n centered on that raster
pixel so that more environmental information around the
landslide will be used in model construction. It is to be noted
that the scale of the raster influences the CNN model’s
performance. The raster used for training should be set up on
the resolution of the raster (Yi et al., 2020), and the final raster size
used for learning in this study was determined to be 17 × 17 by
using the trial-and-error approach.

As a characteristic deep learning algorithm, convolutional
neural network (Krizhevsky et al., 2012) is widely used for
image classification and recognition (Szegedy et al., 2015; Gu
et al., 2018). The classical CNN structure consists of an input
layer, multiple convolutional layers, multiple pooling layers, and
fully connected layers (He et al., 2016). In this study, the input
layer imports a normalized (uniform size) 11-dimensional
training tensor, and the neurons extract some basic pixel
features, including edges, corner points, etc. Next, the
convolutional layer obtains the feature maps by convolutional
operations, and at each position, the units that are derived from
various feature maps gain their own kinds of features. Usually, a

FIGURE 3 | Two parts of the CNN network Architecture. (A) The construction of data set, (B) The construction of specific network.
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convolutional layer consists of numerous feature maps with
various weight vectors in order to retain the richer features.
The convolutional layer is later connected to a pooling layer
for downsampling operation. For LSM, it can reduce the
resolution of the image and the number of parameters and
obtains robust translation and deformation. Finally, the chance
of incidence of landslides is calculated by the fully connected layer
to output the classification result. As for this research, the
organization of the designed convolutional neural network is
illustrated in Figure 3.

4.2 Conventional Machine Learning
Methods
1) Logistic regression: It is a comprehensive linear model that is
commonly utilized in dichotomous problems and widely used for

landslide susceptibility modeling problems (Kavzoglu et al., 2014;
Colkesen et al., 2016). The cost function is first set up, after which
the optimum model parameters are addressed iteratively by
optimization methods. Logistic regression commonly uses the
sigmoid functional equation as the cost function.

σ x( ) � 1
1 + e−x

. (1)

In the landslide susceptibility partition rating, the probability
of landslide occurrence can be formulated as

P � 1
1 + e−Z

, (2)
Z � β0 + β1x1 + β2x2 +/ + βnxn, (3)

where βi is the regression coefficient, xi is the individual influence
factor, P is the possibility of the incidence of landslide, and Z is the
sum of all the influence factors after simultaneous loading.

2) Random forest: It is an integrated learning approach which
is utilized widely in order to perform the regression (Nhu et al.,
2020a; Wang et al., 2020). The integrated learning approach
produces numerous independent training sets and a quantity
of classification and regression trees (CARTs) by combined
bagging, and it is expressed as

h X, θk( ), k � 1, 2, 3, . . .{ }, (4)
where h (X, θk) is the unprocessed categorical regression tree
produced by the CART algorithm, x is the input vector, and θk is
an independently distributed random vector.

A singular decision tree is a poor classifier because of high-
level bias or variance among data. Therefore, random forest

TABLE 2 | Multicollinearity analysis of landslide causative factors.

Landslide causative factors Tolerance (TOL) VIF

Elevation 0.4801 2.0828
Aspect 0.3015 3.3158
Slope 0.1766 5.6616
Plan curvature 0.4199 2.3814
Profile curvature 0.4567 2.1896
NDVI 0.4898 2.0416
Lithology 0.1225 8.1569
Relief amplitude 0.5416 1.8462
Distance to rivers 0.1328 7.5288
Distance to roads 0.2191 5.5630
Distance to faults 0.2792 3.5812

FIGURE 4 | Result of Pearson’s analysis.
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creates multiple decision trees and then calculates the
classification by aggregating these decision trees. The
integrated model is found to perform better than the
individual model (Nhu et al., 2020a). Therefore, creating
decision trees individually to form a random forest is
considered a better approach. In this study, a spatial
training set was created by using the bagging method, and
CARTs were created by 11 different landslide causative factors.
Finally, all the decision trees were combined, and the class with
the most votes was used as the result of the model.

3) Support vector machine: The core idea of the support vector
machine is to classify samples in higher-dimensional space by
converting the initial space to a new higher-dimensional one by
the definition of the inner product function. By means of kernel
functions, the linear classification boundary can be transformed

into a nonlinear classification boundary to obtain better
generalization performance (Sevgen et al., 2019; Sun et al.,
2020). As for this research, the radial basis kernel function
(RBF) (Nhu et al., 2020c) is expressed as follows:

K x, z( ) � exp − ‖x − z‖2/2γ2( )( ), (5)
in which z represents the center of the kernel function and γ
represents the width parameter, which mainly controls the radial
range of action of the function. The best parameters are found
cyclically by using the GridSearchCV method (Vapnik, 1999) in
the sklearn package.

5 RESULTS AND DISCUSSION

5.1 Multicollinearity Analysis of Causative
Factors
Feature selection is particularly important during spatial
prediction of landslides. There are many features to choose,
among which there may be features that are not related to
landslides, and the features may depend on each other. The
more features, the easier it will cause over-fitting and
dimensional disasters, and the more complex the model will
be. In this study, tolerance (TOL), variance inflation factor
(VIF), and Pearson’s correlations (Al-Najjar et al., 2019) are
utilized for the purpose of performing multicollinearity
analysis.

TABLE 3 | Parameter settings of the CNN model.

Parameters Value

Conventional kernel size 3 × 3
Max pooling size 2 × 2
Loss function Cross-entropy
Activation function RELU
Optimizer SGD
Epoch 200
Batch size 64
Learning rate/momentum 0.0001/0.2

FIGURE 5 | Landslide susceptibility maps produced by the CNN model. (A) and (B) are local expansions of two different regions respectively.
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1) VIF and TOL: To evaluate the correlation between the
landslide impact factors, this study calculated the TOL and VIF so
as to confirm the multicollinearity between the different impact
factors. It is statistically demonstrated that the variance of the
parameter estimator of the explanatory variables is expressed as

Var β̂j( ) � σ2

∑x2
j

· 1
1 − R2

j

, (6)

where R2
j is the decidable coefficient about xj of the auxiliary

regression model on the other explanatory variables, and the
second factor 1

1−R2
j
is called the variance inflation factor and is

denoted as VIF, taking 10 as a judgment boundary.

When the VIF is no more than 10, no multicollinearity exists;
when 10 ≤ VIF ≤100, strong multicollinearity exists; and when
VIF exceeds 100, there is severe multicollinearity. The tolerance
level (TOL) is the reciprocal of the VIF and takes a value between
0 and 1. It is usually considered that when the tolerance level is
less than 0.1, there is severe multicollinearity. If the VIF exceeds
10 or TOL is smaller than 0.1, the factor should be detached from
the landslide forecasting model.

2) Pearson’s coefficient: The correlation of factors can be
analyzed using Pearson’s coefficient. The correlation coefficient
R represents the correlation between different factors, and its
value generally ranges between [−1,1]

R x, y( ) � cov x, y( )													
Var x[ ]Var y[ ]√ , (7)

in which cov (x, y) is the covariance of x and y, and Var [x] and
Var [y] are the variances.

Deriving the formula further, x and y are the two landslide
causative factors in this study, and the following equation can be
derived

R x, y( ) � ∑n
i�1 xi − �x( ) yi − �y( )											∑n

i�1 xi − �x( )2
√ 											∑n

i�1 yi − �y( )2√ , (8)

in which �x, �y are their average, and n represents the number of
samples.

The correlation increases as the absolute value of the
correlation coefficient increases. Typically, when the absolute
value of Pearson’s coefficient exceeds 0.8, it indicates that the
correlation is obvious. As for this research, Pearson’s coefficient is
used for the purpose of evaluating the magnitude of correlation
between two causative factors.

3) Results: The final outcomes of multicollinearity analysis for
the 11 landslide causative factors are presented in Table 2. It was
found that the largest VIF value for lithology was 8.1569, but still

FIGURE 6 | Distribution of susceptible areas (in %) produced by different
LSM models.

FIGURE 7 | Landslide susceptibility maps produced by using (A) logistic regression, (B) random forest, and (C) support vector machine.
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less than 10. The VIF and TOL values for the remaining 10
influences were within the normal interval, and the results
indicated that all of the above 11 causative factors could be
included in the susceptibility modeling.

Figure 4 shows the magnitude of correlation between different
causative factors. The correlation to the fault distance and
topographic relief shows a maximum positive correlation of
0.25, and the maximum negative correlation is NDVI with a
plan curvature of −0.29. Typically, when Pearson’s coefficient
exceeds 0.8, it indicates high covariance. The results show that
there is no covariance problem with the influencing factors. The
findings are in line with the validation results of VIF and TOL,
and all the causative factors selected are able to be utilized for
landslide susceptibility modeling, which ensures the accuracy and
precision of the model.

5.2 Landslide Susceptibility Mapping
This subsection conducts experiments on the above-introduced
CNN model and three machine learning models for landslide
susceptibility analysis. Data processing, model building, and
training are implemented in PyTorch by using Python
programing. For the parameters in the CNN model, this study
uses the trial-and-error approach to optimize the main
parameters that may be optimized during the training process,
as detailed in Table 3.

Finally, the trained CNNmodel was applied for the purpose of
producing a landslide susceptibility map. The LSM is described in
Figure 5. The susceptibility was treated with reclassification into
five levels using the Jenks natural fracture approach with ArcGIS
10.8 software, namely, very low, low, moderate, high, and very
high. The LSM of the CNNmodel assumed that the susceptibility
classes of the above-occupied areas of 14%, 9%, 6%, 10%, and 61%
of the research zone, respectively (Figure 6). The very high
susceptibility zones are mainly located in the fault
concentration area (southeast area of Wenchuan County) and
the water system around the region, accounting for 9.4% of the
total area of the research zone (Figure 6). In addition, it can be
noticed that the majority of the landslides are situated in the
susceptibility zones which are very high, and no landslide occurs
in the susceptibility zones which are low, pointing out that the
model which is based on the CNN approach can precisely predict

the majority of the landslides that are witnessed in the high-
susceptibility area.

The landslide susceptibility maps are produced by using three
machine learning models which are LR, RF, and SVM to perform
better comparison (Figure 7). Visually, the very high
susceptibility areas for all three methods are similar to the
CNN model distribution pattern, mainly concentrated in fault
concentration areas and around water systems. In terms of the
susceptibility which is very high, the outcomes of the CNN and
the three machine learning algorithms are basically the same, but
the moderate susceptibility based on the LR method is relatively
scattered. Notably, the CNN-based method generates
significantly lower regions of low susceptibility than the other
three machine learning methods.

5.3 Validation and Comparison of the
Results
The final step in LSM research is to validate the results of the model
(Akinci and Zeybek, 2021). Chung and Fabbri, (2003) states that a
central point in measuring the importance of a prediction is that it
allows for interpretation of the results. If the validation is not carried
out, it is impossible to obtain the explanation and the support for the
approach (Chung and Fabbri, 2003; He and Kusiak, 2017).
Numerous precision evaluation methods were used for the
purpose of assessing the property of the CNN model (Saha et al.,
2021). As shown in Figure 8, the property of the CNN model was
determined by introducing five metrics such as ROC curve and
precision, which were based on the foundation of confusionmatrices
with true positive (TP), false positive (FP), true negative (TN), and
false negative (FN).

As far as the ROC curves are concerned, the area under the
curve (AUC) (Jiao et al., 2019) is the most significant metric
during the course of assessing the precision of the quality of the
susceptibility model. As previously reported, AUC values
between 0.5 and 0.6 show weak performance, 0.6–0.7 indicate
average performance, 0.7–0.8 indicate good performance, 0.8–0.9
indicate very good performance, and 0.9–1.0 indicate excellent
performance (Cao et al., 2020). As shown in Figure 9,
numerically, the CNN structure outperforms the other three
machine learning approaches on the training set and ranks

FIGURE 8 | Confusion matrix and calculation formulas.
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first, with SRC-AUC and PRC-AUC values of 93.14% and
91.81%, respectively. This model is followed by the SVM
(88.36%), RF (86.30%), and LR (84.89%). It is to be noted that
the order of the AUC values on the validation set is not the same.
The CNN model has the highest PRC-AUC value (91.81%), and
SVM (89.75%) has the highest value among the three machine
learning methods, followed by LR (87.87%), and the worst is RF
(86.14%). However, their overall degrees of difference are not
significant, approximately five to six percentage points.

In Table 4, the precision is the proportion of successful
classification of landslide locations (Wang et al., 2019). The

recall is the proportion of landslide points successfully
classified by the CNN model in all landslide locations (Liu
et al., 2020). The F1-score combines the output of precision
and recall, which is defined as the harmonic average of precision
and recall (Fukuda et al., 2013; Li et al., 2022). The higher the F1-
score is, the better the performance of the model will be. The
Matthews correlation coefficient (MCC) is useful in comparing
the binary classification of unbalanced datasets. In addition, its
value range is −1 to 1; the closer to 1, the better of the
classification result will be (Fukuda et al., 2013).

In summary, the CNN model is feasible and effective in LSM,
with excellent goodness-of-fit and predictive power compared to
those of the other three machine learning models.

6 CONCLUSION

This study is one of the few works that analyzes the performance of
CNN models in deep learning compared with common machine
learning approaches, conducting a case study inWenchuan County,
China. We summarize the method of constructing deep learning
datasets in detail, namely, using images as input, which is rarely
found in present studies in the literature. To prepare the training
samples, 11 landslide causative factors, namely, elevation, slope,
aspect, relief amplitude, plan curvature, profile curvature, NDVI,
lithology, distance to roads, distance to rivers, and distance to faults
were selected. A total of 405 landslides were adopted in this research,
and 70% of landslides (283 landslides) were chosen at random to
perform the training models, with the remaining (122 landslides) to
perform the validation. The SRC and PRCwere used for the purpose
of validating the results of the approaches based on the CNN, and
logistic regression, random forest, and support vector machine were
applied for comparison. The results indicated that the CNN-based
approach has excellent goodness-of-fit and strong prediction
capability compared with those of LR, RF, and SVM, exhibiting a
superior SRC-AUC (93.14%) and PRC-AUC (91.81%), with
successful application to landslide susceptibility mapping. In
addition, compared with machine learning methods, CNN’s
precision, recall, F1-score, and MCC also achieve the best results.

We only considered the region of Wenchuan for our study.
It is necessary to conduct the investigation on the incidence of
landslides in other areas of Sichuan for the purpose of
obtaining information that are more relevant. In addition,
the limitation of this study is that the terrain condition
elements used here is all derived from the 30-m resolution
DEM. In future research, higher resolution input data should

FIGURE 9 | Performance analysis of different landslide susceptibility
models. (A) SRC and (B) PRC.

TABLE 4 | Accuracy statistics of the models.

Using the validation dataset

Method Precision Recall F1-score MCC

CNN 0.99* 0.91* 0.94* 0.77*
LR 0.86 0.88 0.86 0.63
RF 0.78 0.89 0.83 0.65
SVM 0.97 0.91* 0.93 0.76

Note: * denotes the best performance.
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be used to deal with the LSM, which may lead to better
performance.
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