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Comparing decision bound and exemplar
models of categorization
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The performance of a decision bound model of categorization (Ashby, 1992a; Ashby & Maddox,
in press) is compared with the performance of two exemplar models. The first is the generalized
context model (e.g., Nosofsky, 1986, 1992) and the second is a recently proposed deterministic
exemplar model (Ashby & Maddox, in press), which contains the generalized context model as
a special case. When the exemplars from each category were normally distributed and the op­
timal decision bound was linear, the deterministic exemplar model and the decision bound model
provided roughly equivalent accounts of the data. When the optimal decision bound was non­
linear, the decision bound model provided a more accurate account of the data than did either
exemplar model. When applied to categorization data collected by Nosofsky (1986,1989), in which
the category exemplars are not normally distributed, the decision bound model provided excel­
lent accounts of the data, in many cases significantly outperforming the exemplar models. The
decision bound model was found to be especially successful when (1) single subject analyses were
performed, (2) each subject was given relatively extensive training, and (3) the subject's perfor­
mance was characterized by complex suboptimalities. These results support the hypothesis that
the decision bound is of fundamental importance in predicting asymptotic categorization perfor­
mance and that the decision bound models provide a viable alternative to the currently popular
exemplar models of categorization.

Decision bound models of categorization (Ashby,
1992a; Ashby & Maddox, in press) assume that the sub­

ject learns to assign responses to different regions of per­
ceptual space. When categorizing an object, the subject
determines in which region the percept has fallen and then
emits the associated response. The decision bound is the
partition between competing response regions. In contrast,

exemplar models assume that the subject computes the
sum of the perceived similarities between the object to
be categorized and every exemplar of each relevant cate­
gory (Medin & Schaffer, 1978; Nosofsky, 1986). Cate­

gorization judgments are assumed to depend on the rela­
tive magnitude of these various sums.

This article compares the ability ofdecision bound and
exemplar models to account for categorization response

probabilities in seven different experiments. The aim is
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not to compare the performance of the decision.bound
model with all versions of exemplar theory; clearly this
is beyond the scope of any single article. Rather, the goal
is to compare the decision bound model with one of the
most highly successful and widely tested versions of ex­
emplar theory-namely, the generalized context model

(GCM; Nosofsky, 1986, 1987, 1989; Nosofsky, Clark,

& Shin, 1989; Shin & Nosofsky, 1992). In addition, a
recently proposed deterministic exemplar model (DEM;

Ashby & Maddox, in press), which contains the GCM
as a special case, will also be applied to the data. The
GCM, which has been applied to a wide variety of cate­
gorization conditions (see Nosofsky, 1992, for a review),

provides good quantitative accounts of the data, in many
instances accounting for over 98% of the variance. There
have been cases, however, in which the model fits were

less satisfactory, accounting for less than 85 % of the vari­
ance in the data (see Nosofsky, 1986, Table 4).

Of the seven experiments, the first five involve cate­

gories in which the exemplars are normally distributed
along each stimulus dimension and single subject analy­
ses are performed. To date, the GeM only has been ap­

plied to data sets in which the category exemplars are not
normally distributed, and in only one of these cases

(Nosofsky, 1986) have single subject analyses been per­
formed. This article provides the first test of the GCM's
ability to account for data from normally distributed cat­
egories. The final two data sets were reported by Nosofsky
(1986, 1989) and involve experiments in which the cate­

gory exemplars are not normally distributed and only a
small number of exemplars were utilized. Three of the

Copyright 1993 Psychonomic Society, Inc.
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four categorization conditions are identical in the two

studies, and the stimulus dimensions are the same. The

main difference between the two studies is that single sub­

ject analyses were performed on the Nosofsky (1986) data,

and the data were averaged across subjects in the Nosofsky

(1989) data.

ical dimensions. In this case, stimulus i (i = A or B) can

be described by the vector

where VI i and V2i are values of stimulus i on physical di­

mensions I and 2, respectively. Decision bound theory

assumes that the subject misperceives the true stimulus

coordinates Vi because of trial-by-trial variability in the

percept (i.e., perceptual noise) and because the mapping

from the physical space to the perceptual may be non­

linear (e.g., because of response compression during sen­

sory transduction).! Denote the subject's mean percept

of stimulus i by Xi. A natural assumption would be that

Xi is related to Vi via a power or log transformation. In

either case, the subject's percept of stimulus i is repre­

sented by

where ep is a random vector that represents the effects

of perceptual noise. 2

Given the Equation 1 model of the perceptual repre­

sentation, the next step in building a theory ofeither iden­

tification or categorization is to postulate a set of appropri­

ate decision processes. The ability to identify or categorize

accurately is of fundamental importance to the survival

of every biological organism. Plants must be categorized

as edible or poisonous. Faces must be categorized as

friend or foe. In fact, every adult has had a massive

amount of experience identifying and categorizing objects

and events. In addition, much anecdotal evidence testi­

fies to the expertise of humans at categorization and iden­

tification. For example, despite years of effort by the ar­

tificial intelligence community, humans are far better at

categorizing speech sounds or handwritten characters than

are the most sophisticated machines.

These facts suggest that a promising method for devel­

oping a theory of human decision processes in identifica­

tion or categorization is to study the decision processes

of the optimal classifier-that is, of the device that max­

imizes identification or categorization accuracy. The op­

timal classifier has a number of advantages over any bio­

logical organism, so humans should not be expected to

respond optimally. Nevertheless, one might expect hu­

mans to use the same strategy as the optimal classifier

does, even if they do not apply that strategy with as much

success.

The optimal classifier was first studied by R. A. Fisher

more than 50 years ago (Fisher, 1936) and today its be­

havior is well understood (see, e.g., Fukunaga, 1990;

Morrison, 1990). Consider an identification or categori­

zation experiment with response alternatives A and B. Be­

cause of the Poisson nature of light, even the optimal clas­
sifier must deal with trial-by-trial variability in the

stimulus information. Suppose the stimulus values re­
corded by the optimal classifier, on trials when stimulus i

DECISION BOUND THEORY

Decision bound theory (also called general recognition

theory) rests on one critical assumption-namely, that

there is trial-by-trial variability in the perceptual infor­

mation associated with every stimulus. In the case of
threshold level stimuli, this assumption dates back to Fech­

ner (1866) and was exploited fully in signal detection the­

ory (Green & Swets, 1966). However, with the high­

contrast stimuli used in most categorization experiments,

the assumption might appear more controversial. There

are at least two reasons, however, why even in this case,

variability in the percept is expected. First, it is well

known that the number of photons striking each rod or

cone in the retina during presentation of a visual stimu­

lus has trial-by-trial variability. In fact, the number has

a Poisson probability distribution (Barlow & Mollon,

1982), and one characteristic of the Poisson distribution
is that its mean equals its variance. Thus, more intense

stimuli are associated with greater trial-by-trial variabil­

ity at the receptor level. Specifically, the standard devia­

tion of the number of photons striking each rod or cone

is proportional to the square root of the mean stimulus

intensity. Second, the visual system is characterized by

high levels of spontaneous activity. For example, ganglion

cells in the optic nerve often have spontaneous firing rates

of as high as 100 spikes per second.

If this argument is accepted, then a second question to

be asked is whether such variability is likely to affect the

outcome of categorization judgments. For example, when

one is classifying pieces of fruit such as apples or oranges,

trial-by-trial variability in perceived color (i.e., in hue)

is unlikely to lead to a categorization error. Even if per­

ceptual variability does not affect the outcome of a cate­

gorization judgment, however, the existence of such vari­

ability has profound effects on the nature of the decision
process. For example, in the presence of perceptual vari­

ability, the decision problem in a categorization task is

identical to the decision problem in an identification task.

In both cases, the subject must learn the many different

percepts that are associated with each response. As a con­
sequence, a theory of identification that postulates per­

ceptual variability needs no extra structure to account for

categorization data. In contrast, the most widely known

versions of exemplar theory, including the context model

. (Medin & Schaffer, 1978) and the generalized context

model (Nosofsky, 1986), postulate a set of decision pro­

cesses that are unique to the categorization task.

To formalize this discussion, consider an identification

task with two stimuli, A and B, which differ on two phys-

Xpi = Xi + ep , (1)
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(2)

Figure 1. Representative stimuli from (a) Condition R (rectangular
stimuli) and (b) Condition C (circular stimuli) of Application I: Data
Sets 1-5.

ment, Ashby and his colleagues tested whether each sub­

ject's A and B responses were best separated by the

optimal bound 4 or by a bound predicted by one of sev­

eral popular categorization models (e.g., prototype, in­

dependent decisions, and bilinear models). Although sub­

jects did not respond optimally, the best predictor of the

categorization performance of experienced subjects,

across all the experiments, was the optimal classifier.
When subjects responded differently than the optimal clas­

sifier, the bound that best described their performance was

always of the same type as the optimal bound. Specifi­

cally, when the optimal bound was a quadratic curve, the

best-fitting bound was a quadratic curve, and when the

optimal bound was linear, the best-fitting bound appeared
to be linear.

These facts suggest that the notion of a decision bound

may have some fundamental importance in human cate­

gorization. That is, rather than compute similarity to the

category prototypes, or add the similarity to all category

exemplars, perhaps subjects behave as the optimal clas­

sifier and refer directly to some decision bound. Accord­

ing to this view, experienced categorization (i.e., after

the decision bound is learned) is essentially automatic.

When faced with a stimulus to categorize, the subject de­

termines the region in which the stimulus representation

has fallen and then emits the associated response. Exem­
plar information is not needed; only a response label is

2

2

D
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a

is presented, are denoted by Wj. Then the optimal classi­

fier constructs a discriminant function ho(wj) and responds

A or B according to the rule:

!
< 0; then respond A

if ho(wj) = 0; then guess

> 0; then respond B

The discriminant function partitions the perceptual space

into two response regions. In one region [where ho(wj) <
0], response A is given. In the other region [where

ho(Wi) > 0], response B is given. The partition between

the two response regions [where ho(wj) = 0] is the deci­

sion bound. The position and shape of the decision bound

depends on the stimulus ensemble and on the exact dis­

tribution of noise associated with each stimulus. If the

noise is normally distributed and the task involves only

two stimuli, the optimal bound is always either a line or
a quadratic curve. 3 .

Although identification and categorization are treated

equivalently by the optimal classifier, in practice these

two tasks provide insights about different components of

processing. Identification experiments are good for study­

ing the distribution of perceptual noise (Ashby & Lee,

1991). This is because, with confusable stimuli, small

changes in the perceptual distributions can have large ef­

fects on identification accuracy (Ennis & Ashby, in press).

In contrast, in most categorization experiments, overall
accuracy is relatively unaffected by small changes in the

perceptual distributions. Most categorization errors oc­

cur because the subject incorrectly learned the rule for

assigning stimuli to the relevant categories. Thus, cate­

gorization experiments are good for testing the hypothe­

sis that subjects use decision bounds.

In many categorization experiments, each category con­

tains only a small number of exemplars (typically fewer

than seven). Such a design is not the best for investigat­

ing the possibility that subjects use decision bounds, be­

cause with such few stimuli, many different bounds will

typically yield identical accuracy scores. Ideally, each cat­
egory would contain an unlimited number of exemplars

and competing categories would overlap. In such a case,

any change in the decision bound would lead to a change
in accuracy.

Ashby and his colleagues (Ashby & Gott, 1988; Ashby

& Maddox, 1990, 1992) have reported the results of a
number of categorization experiments in which the ex­

emplars in each category had values on each stimulus di­

mension that were normally distributed. All experiments

involved two categories and stimuli that varied on two

dimensions. Representative stimuli are shown in Figure 1.

For example, in an experiment with the circular stimuli,
on each trial a random sample is drawn from either the

Category A or the Category B (bivariate) normal distri­

bution. This specifies an order pair (VIi, V2j). A circle is

then presented with diameter VI j and with a radial line
of orientation V2 j. The subject's task is to determine

whether the stimulus is a member of Category A or Cat­

egory B. Feedback is given on each trial. In each experi-
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retrieved. This does not mean that exemplar information

is unavailable, however, because presumably exemplar

information is used to construct the decision bound.

Although the data provide tentative support for the no­

tion of a decision bound, the data also suggest that subjects

do not respond optimally. A theory of human categoriza­

tion must account for the fundamental suboptimalities of

human perceptual and cognitive processes.

Decision bound theory assumes that subjects attempt

to respond optimally but fail because, unlike the optimal

classifier, humans (1) do not know the locations ofevery

exemplar within each category, (2) do not know the true

parameters of the perceptual noise distributions, (3) some­

times misremember or misconstruct the decision bound­

ary, and (4) sometimes have an irrational bias against a

response alternative.

The first two forms of suboptimality cause the subject
to use a decision bound that is different from the optimal

bound. Specifically, decision bound theory assumes that

rather than using the optimal discriminant function ho(Xpi)

in the Equation 2 decision rule, the subject uses a sub­

optimal function h(Xpi) that is of the same functional form

as the optimal function (i.e., a quadratic curve when the

optimal bound is a quadratic curve, and a line when the

optimal bound is linear). The third cause of suboptimal

performance in biological organisms is imperfect mem­

ory. Trial-by-trial variability in the subject's memory of

the decision bound is called criterial noise. In decision

bound theory, criterial noise is represented by the ran­

dom variable ec (normally distributed with mean 0 and

variance aD, which is assumed to have an additive effect

on the discriminant value h(Xpi). A final cause of subop­

timality is a bias against one (or more) response alterna­

tive. A response bias can be modeled by assuming that

rather than compare the discriminant value to zero, as in

the Equation 2 decision rule, the subject compares it to

some value o. A positive value of 0 represents a bias

against response alternative B.

In summary, decision bound theory assumes that rather
than use the optimal decision rule of Equation 2, the sub- .

ject uses the following rule:

1
< 0; then respond A

if h(Xpi) + ec = 0; then guess .

> 0; then respond B

As a consequence, the probability of responding A on trials

when stimulus i is presented is given by

P(A 1stimulus i) = P[h(xpi)+ec < 01 stimulus i]. (4)

Several versions of this model can be constructed, de­

pending on the form of the decision bound. In this article,

we consider (1) the general quadratic classifier, (2) the

general linear classifier, and (3) the optimal decision
bound model (not to be confused with the optimal classi­

fier discussed above). The three versions will be only

briefly introduced here. More detailed derivations of each

of these three models is given in Ashby and Maddox (in

press).

In an experiment with normally distributed categories,
the optimal classifier uses a quadratic decision bound if

stimulus variability within Category A differs from the

variability within Category B along any stimulus dimen­

sion or if the two categories are characterized by a dif­

ferent set of covariances. The general quadratic classi­

fier assumes that the subject attempts to respond optimally

but misestimates some of the category means, variances,

or covariances and therefore uses a quadratic decision

bound that differs from the optimal.

With the two perceptual dimensions X t and X2, the de­

cision bound of the general quadratic classifier satisfies

h(X]'X2) = atxt + a2x~ + a3XtX2

+ btXt + b2X2 + Co (5)

for some constants a], a2, a3, b], b2, and Co. An impor­

tant property of this model is that the effects of percep­

tual and criterial noise can be estimated uniquely. Sepa­

rate estimates of perceptual and criterial noise have been

obtained in the past (see, e.g., Nosofsky, 1983), but these

have required a comparison of performance across sev­
eral different experiments.

If the variability within Category A is equal to the vari­

ability within Category B along both dimensions, and if

the two categories are characterized by the same covari­

ance, then the decision bound of the optimal classifier is

linear. The general linear classifier assumes that the sub­

ject makes the inference (perhaps incorrectly) that these

conditions are true, so he or she chooses a linear deci­
sion bound; but because the category means, variances,

and covariance are unknown, a suboptimal linear bound

is chosen. The general linear classifier is a special case

of the general quadratic classifier in which the coefficients

a], a2, and a3 in Equation 5 are zero.

At this point, decision bound theory makes no assump­

tions about categorization at the algorithmic level-that

is, about the details of how the subject comes to assign

responses to regions. There are a number of possibilities.5

Some require little computation on the part of the sub­

ject. Specifically, it is not necessary for the subject to es­
timate category means, variances, covariances, or likeli­

hoods, even when responding optimally. In this case, the

only requirement is that the subject be able to learn

whether a given percept is more likely to have been gener­

ated by an exemplar from Category A or B.

EXEMPLAR THEORY

Generalized Context Model

Exemplar theory (see, e.g., Estes, 1986a, 1986b; Smith

& Medin, 1981) assumes that, on each trial of a catego­

rization experiment, the subject performs some sort of

global match between the representation of the presented

stimulus and the memory representation of every exem­
plar of each category and chooses a response on the basis

of these similarity computations. The assumption that the
global matching operation includes all members of each
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In contrast, the Gaussianfunction assumes (e.g., Ennis,

1988; Ennis, Mullen, & Frijters, 1988; Nosofsky, 1988a;

Shepard, 1986, 1987, 1988) that

T/ij = exp( -d:j ). (9)

In most applications of the GeM, the exponential simi­

larity function is paired with either the city-block or the

Euclidean distance metric or else the Gaussian similarity

function is paired with the Euclidean metric (e.g.,

Nosofsky, 1986, 1987). The GCM has accounted success­

fully for the relationship between identification, catego­

rization, and recognition performance with stimuli con­

structed from both separable and integral dimensions

under a variety of different conditions (see Nosofsky,

1992, for a review).

A Deterministic Exemplar Model
The act of categorization can be subdivided into two

components (see, e.g., Massaro & Friedman, 1990). The

first involves accessing the category information that is

assumed relevant to the decision-making process, and the

second involves using this information to select a re­

sponse. The decision bound model and the GCM differ

on both of these components. First, the decision bound

model assumes that the subject retrieves the response label

associated with the region in which the stimulus repre­

sentation falls, whereas the GCM assumes that the sub­

ject performs a global similarity match to all exemplars

of each category. Second, the decision bound model as­

sumes a deterministic decision process (i.e., Equation 3),

whereas the GCM assumes a probabilistic decision pro­

cess (i.e., Equation 6) that is described by the similarity­

choice model of Luce (1963) and Shepard (1957). In a

deterministic decision process, the subject always gives

the same response, given the same perceptual and cogni­

tive information. In a probabilistic process, the percep­

tual and cognitive information is used to compute the prob­

ability associated with each response alternative. Thus,

given the same information, sometimes one response is

given and sometimes another. A poor fit of one model

relative to the other could be attributed to either compo­

nent. Thus, it is desirable to investigate a model that

differs from both the GCM and the decision bound model

on only one of these two components.

Probabilistic versions of the decision bound model could

be constructed and so could deterministic versions of ex­

emplar theory. As we will see in the next section, how­

ever, the data seem to support a deterministic decision

process, and for this reason, it is especially interesting

to examine a deterministic version of exemplar theory.

Nosofsky (1991) proposed a deterministic exemplar

model in which the summed similarity of the probe to all

exemplars of each category are compared and the response

associated with the highest summed similarity is given.

This model, however, does not contain the GeM as a spe­

cial case. Ashby and Maddox (in press) proposed a de­

terministic exemplar model in which the relevant cate­

gory information is the log of the summed similarity of

the probe to all exemplars of each category. Specifically,

the model assumes that the subject uses the decision rule

Respond A if 10g(ET/iA) > 10g(1)liB);

Otherwise respond B, (10)

where ET/iJ represents the summed similarity of stimu-

(8)

(6)

T/ij = exp( -di).

P(A Ii)

category seems viable in the kinds of categorization tasks

used in many laboratory experiments, because it is a com­

mon experimental practice to construct categories with

only four to six exemplars. With natural categories, how­

ever, the assumption seems less plausible. For example.

when one is deciding that a chicken is a bird, it seems

unlikely that one computes the similarity of the chicken

in question to every bird one has ever seen. Of course,

if performed in parallel, this massive amount of compu­
tation may occur, but it certainly disagrees with introspec­

tive experience.
Perhaps the most widely known of the exemplar models

is the GCM, developed by Medin and Schaffer (1978) and

elaborated by Estes (1986a) and Nosofsky (1984, 1986).

According to the GCM, the probability that stimulus i is

classified as a member of Category A, P(A Ii), is given by

(3 E T/i)
jEC

A

where} E CJ represents all exemplars of Category J, T/ij

is the similarity of stimulus i to exemplar}, and (3 is a

response bias. The similarity T/i) between a pair of stim­

uli is assumed to be a monotonically decreasing function

of the psychological distance between point representa­

tions of the two stimuli. Thus, the GCM assumes no trial­

by-trial variability in the perceptual representation. The

psychological distance between stimuli i and} is given by

dij = c[wlxti-xtjl' + (l-w) IX2i-X2jIT/" (7)

where w is the proportion of attention allocated to Dimen­

sion 1 and the nonnegative parameter c scales the psy­

chological space. The parameter c can be interpreted as

a measure of overall stimulus discriminability and should

increase with increased exposure duration or as subjects

gain experience with the stimuli (Nosofsky, 1985, 1986).

The exponent r ~ 1 defines the nature of the distance

metric. The most popular cases occur when r = 1 (city­

block distance) and when r = 2 (Euclidean distance).

Two specific functions relating psychological distance

to similarity are popular. The exponential decay function

assumes that the similarity between stimuli i and} is given

by (e.g., Ennis, 1988; Nosofsky, 1988a; Shepard, 1957,

1964, 1986, 1987, in press)
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where

MODEL FITTING AND TESTING

(13)

-21nL; + 2N;

Gt + 2N;,

AICCM;)

model is correct, the statistic G 2 = - 21nL(r) has an

asymptotic chi-square distribution with degrees of free­

dom equal to the number of experimental trials (n) minus

the number of free parameters in the model. Rather than

assess the absolute ability of a model to account for a set

of data, it is often more informative to test whether a more

general model fits significantly better than a restricted

model. Consider two models, M, and M2 • Suppose

Model M, is a special case of Model M2 (i.e., M, is nested
within M2 ) in the sense that M, can be derived from M2

by setting some of the free parameters in M 2 to fixed

values. Let Gf and G ~ be the goodness-of-fit values as­

sociated with the two models. Because M, is a special case

of M 2 , note that G ~ can never be larger than Gf. IfModel

M, is correct, the statistic G ~ - Gf has an asymptotic

chi-square distribution with degrees of freedom equal to

the difference in the number of free parameters between

the two models. Using this procedure, one can therefore

test whether the extra parameters of the more general

model lead to a significant improvement in fit (see

Wickens, 1982, for an excellent overview of parameter

estimation and hypothesis testing using the method of max­

imum likelihood).

The G 2 tests work fine when one model is a special case

of the other. For example, G 2 tests can be used to deter­

mine whether the extra parameters of the general quadratic

classifier provide a "significant" improvement in fit over

the general linear classifier. One goal of this article, how­

ever, is to test models that are not special cases of one

another (i.e., models that are not nested), such as the pro­

posed comparisons between the exemplar and decision

bound models. Fortunately, a goodness-of-fit statistic

called Akaike's (1974) information criterion (AIC) has

been developed that allows comparisons between models

that are not nested, such as the exemplar and decision

bound models. The AlC statistic, which generalizes the

method of maximum likelihood, is defined as

where N; is the number of free parameters in Model M;

and InL; is the log likelihood of the data as predicted by

Model i after its free parameters have been estimated via

maximum likelihood. By including a term that penalizes
a model for extra free parameters, one can make a com­

parison across models with different numbers of param­

eters. The model that provides the most accurate account

of the data is the one with the smallest Ale. (See

Sakamoto, Ishiguro, & Kitagawa, 1986, or Takane &
Shibayama, 1992, for a more thorough discussion of the

minimum AlC procedure.)

(12)peA Ii)

Otherwise respond B, (II)

where the subject is biased against B if 0 < o. Now, if

ec has a logistic distribution with a mean of 0 and vari­

ance a ~ , then the probability of responding A given stim­

ulus i can be shown to equal (Ashby & Maddox, in press)

/3(E1/iA)Y

Ius i to all members of Category J. The log is important

because the resulting model contains the GCM as a spe­

cial case. With criterial noise and a response bias 0, the

Equation 10 decision rule becomes

Respond A if log(E1/iA)-log(E1/iB) > o+ec ;

7r eO~

'Y = -- and /3 =
.J3ac I +eo~ .

Thus, this model is equivalent to the GCM when 'Y = I.

In other words, the GCM can be interpreted as a deter­

ministic exemplar model in which the criterial noise vari­

ance a ~ = 7r
2 /3.

The 'Y parameter indicates whether response selection

is more or less variable than is predicted by the GCM.

If 'Y < I, the transition from a small value of peA Ii) to

a large value is more gradual than is predicted by the

GCM; response selection is too variable. If 'Y > I, re­
sponse selection is less variable than the GCM predicts.

When testing the validity of a model with respect to a

particular data set, one must consider two problems. The
first is to determine how unknown parameters will be es­

timated; the second is to determine how well the model

describes ("fits") the data. The method ofmaximum likeli­
hood is probably the most powerful method (see Ashby,

1992b; Wickens, 1982).6 Consider an experiment with

Categories A and B and a set of n stimuli, Sh S2' ... ,
Sn. For each stimulus, a particular model predicts the
probabilities that the subject will respond A and B, which

we denote by peA IS;) and PCB IS;), respectively. The re­

sults of an experimental session are a set of n responses,

r" r2, ... , rn , where we arbitrarily set r; = 1 if response

A was made to stimulus i and ri = 0 if response B was

made. According to the model, and assuming that the re­
sponses are independent, the likelihood of observing this

set of n responses is

The maximum likelihood estimators are those values of

the unknown parameters that maximize L(r" r2, ... , rn)

[denoted L(r) for short].

Maximum likelihood estimates are also convenient

when one wishes to evaluate the empirical validity of a

model. For example, under the null hypothesis that the

APPLICATION 1

NORMALLY DISTRIBUTED CATEGORIES

This section reports the results of fitting decision bound

and exemplar models to the data from five experiments
with normally distributed categories. In each experiment,
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Figure 2. Contours of equal likelihood and optimal decision bounds
(broken lines) for Application 1: (a) Data Set 1 and (b) Data Set 2.

eral quadratic classifier. Each model assumed that the

amount of perceptual noise did not differ across stimuli

or stimulus dimensions. In both experiments, exemplars

from each category were presented equally often, so there

was no a priori reason to expect a response bias toward

either category. Thus, the response bias was set to zero

in all three models. The general linear classifier has three

free parameters: a slope and intercept parameter that de­

scribe the decision bound, and one parameter that repre­

sents the combined effect of perceptual and criterial
noise. 8 Because the optimal decision bound model uses

the decision bound of the optimal classifier, the slope and

intercept are constrained by the shape and orientation of

the category contours of equal likelihood; thus, the model

has only one free parameter, which represents the sum

of the perceptual and criterial noise (see Note 8). The gen­

eral quadratic classifier has seven parameters: five of the

six parameters in Equation 5 (one can be set to 1.0 with­

out loss of generality), a perceptual noise parameter, and

a criterial noise parameter.

In both experiments, the optimal classifier uses a linear

decision bound, and thus decision bound theory predicts

stimuli like those shown in Figure 1 were used. The di­

mensions of the rectangles (height and width) have been

found to be integral (e.g., Garner, 1974; Wiener-Erlich,

1978), whereas the dimensions of the circles (size and

orientation) have been found to be separable (Garner &
Felfoldy, 1970; Shepard, 1964). In all experiments, each

category was defined by a bivariate normal distribution.

Such distributions can be described conveniently by their

contours ofequal likelihood, which are always circles or

ellipses. Although the size of each contour is arbitrary,

the shape and location conveys important category infor­

mation. The center of each contour is always the cate­

gory prototype (i.e., the mean, median, or mode), and

the ratio formed by dividing the contour width along Di­

mension 1 by the width along Dimension 2 is equal to the

ratio of the standard deviations along the two dimensions.
Finally, the orientation of the principle axis of the ellipti­

cal contour provides information about the correlation be­

tween the dimensional values.

Data Sets 1 and 2:
Linear Optimal Decision Bound

The contours of equal likelihood that describe the cat­

egories of the first two data sets are shown in Figure 2.

Note that, in both experiments, variability within each cat­

egory is equal on the two dimensions, and the values on

the two dimensions are uncorrelated. In both experiments,

the optimal stimulus bound (represented by the broken

line in Figure 2) is linear (V2 = VI and V2 = 450 - Vh

for the first and second experiments, respectively, where

VI corresponds to the width or size dimension, and V2 cor­

responds to the height or orientation dimension). A sub­

ject perfectly using the optimal bound would correctly

classify 80% of the stimuli in each experiment. 7

Six subjects participated in each experiment, 3 with the

rectangular stimuli (Condition R; see Figure la) and 3

with the circular stimuli (Condition C; see Figure lb).

At the beginning of every experimental session, each sub­

ject was shown the stimulus corresponding to the Cate­

gory A and Category B distribution means, along with

their category labels. Each of these stimuli were presented

5 times each in an alternating fashion, for a total of 10

stimulus presentations. This was followed by 100 trials

of practice and then 300 experimental trials. Feedback

was given after every trial. Only the experimental trials

were included in the subsequent data analyses. The exact

experimental methods were identical to those described

by Ashby and Maddox (1992, Experiment 3). All sub­

jects using the circular stimuli completed three experimen­

tal sessions. For the rectangular stimuli, 2 subjects from

Experiment 1 completed two sessions and 1 subject com­

pleted one session, whereas the 3 subjects from Experi­

ment 2 completed four, two, and three sessions, respec­

tively. All subjects achieved at least 75 % correct during

their last experimental session.

Three decision bound models were fit to the data from

each subject's last experimental session: the general linear

classifier, the optimal decision bound model, and the gen-
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that subjects will use some linear decision bound in both

experiments. If the theory is correct, the extra parame­

ters of the general quadratic classifier should lead to no

significant improvement in fit. Goodness-of-fit tests (G2)

strongly supported this prediction. For 10 of the 12 sub­

jects, the three-parameter general linear classifier and the

seven-parameter general quadratic classifier yielded iden­

tical G 2 values. For the other 2 subjects (both from Ex­

periment 2), the general quadratic classifier provided a

slightly better absolute fit to the data, but in both cases,

the improvement in fit was not statistically significant

(p > .25). In order to detennine the absolute goodness­

of-fit of the general linear classifier, G 2 tests were per­

fonned between the general linear classifier and the

"null" model (i.e., the model that perfectly accounts for

the data). For all 12 subjects, the G 2 tests were not sta­

tistically significant (p > .25). (In other words, the null

hypothesis that the general linear classifier is correct could
not be rejected.) In addition, for 9 of the 12 subjects, the

fits of the general linear classifier were significantly bet­

ter (p < .05) than those for the optimal decision bound

model. Thus, these analyses strongly support the hypoth­

esis that subjects used a suboptimal decision bound that

was of the same fonn as the optimal bound (in this case,
linear).

The DEM has four parameters in this application: a

scaling parameter c; a bias parameter Band attention pa­

rameter W, and the response selection parameter "I (see

Equations 7 and 12). The GCM has only the first three

of these free parameters ("I = 1 in the GCM). Three ver­
sions of each model were tested. One version assumed

city-block distance and an exponential decay similarity

function; one version assumed Euclidean distance and a

Gaussian similarity function; and the third assumed Eu­

clidean distance and an exponential similarity function.

Krantz and Tversky (1975) suggested that the percep­

tual dimensions of rectangles may be shape and area rather

than height and width. A transfonnation from the dimen­

sions of height and width to shape and area is accomplished

by rotating the height and width dimensions by 45°. In

order to test the shape-area hypothesis, versions of the

GeM and DEM that included an additional free parameter

corresponding to the degree of rotation were also applied

to the data. 9 The resulting models, which we call the

GeM(O) and DEM(O), were fitted to the data by using the

three distance-similarity function combinations described

above. The details of the fitting procedure are described

in the Appendix.

Of the three distance-similarity function combinations
tested, the Euclidean-Gaussian version of the GeM and

GeM(O) provided the best account of the data for both the

rectangular (8 of 12 cases) and circular (10 of 12 cases)

stimuli. The Euclidean-Gaussian version of the DEM and

DEM(O) provided the best account of the data for the circu­
lar stimuli (11 of 12 cases), and the Euclidean-exponential

version fitted best for the rectangular stimuli (9 of 12

cases).

Table 1 presents the goodness-of-fit values for the gen­

erallinear classifier and for the best-fitting versions of

Table 1
Goodness-of-Fit Values (AIC) for Application 1: Data Sets 1 and 2

Conditionl

Subject GLC GCM DEM GCM(O) DEM(O)

Data Set I

R/I 120.8 153.8 119.9 143.5 118.9
R/2 119.5 177.3 135.3 159.5 127.9
R/3 69.1 138.0 70.7 131.2 72.8
Mean 103.1 156.4 108.6 144.7 106.5

C/I 167.5 195.3 169.3 187.0 171.7
C/2 251.1 250.0 245.1 249.0 246.0
C/3 179.3 199.3 181.9 196.5 183.1

Mean 199.3 214.9 198.8 210.8 200.3

Data Set 2

R/I 129.0 155.0 133.6 154.7 131.5
RI2 191.8 208.5 195.0 194.7 197.1
R/3 221.2 226.9 223.2 224.2 220.7
Mean 180.7 196.8 183.9 191.2 183.1

CIl 172.1 195.8 176.3 182.6 178.8
C/2 218.4 229.2 219.7 225.8 221.0
C/3 248.2 248.0 250.2 250.7 252.7
Mean 212.9 224.3 215.4 219.7 217.5

Mean* 174.0 198.1 176.7 191.6 176.9

Note-Rows correspond to subjects and columns to models. GLC. gen­

eral linear classifier; GCM. generalized context model; DEM. deter­
ministic exemplar model; GCM(O). GeM with additional 0 parameter;

DEM(O). DEM with additional 0 parameter. *Across 12 subjects.

the GCM, DEM, GCM(O), and DEM(O). The DEM [or

DEM(O)) provides the best fit for 3 subjects, and the GeM
provides the best fit for 1 subject. For the remaining 8

subjects, the general linear classifier provides the best fit.
Note, however, that the general linear classifier perfonns

only slightly better than the DEM or DEM(O).

In general, the fits of the GeM [and GeM(O)] are worse

than those for the DEM [and DEM(O)]. In fact, the DEM

fits better than the GCM(O) for 11 of the 12 subjects, sug­

gesting that the GCM is more improved by the addition

of the 'Y parameter (a parameter associated with the deci­

sion process) than by the addition of the 0 parameter (a

parameter associated with the perceptual process). The
poor perfonnance of the GCM [and GCM(O)] apparently

occurs because response selection was less variable than

predicted by these models; a fact that is reflected in the

estimates of the DEM's 'Y parameter. Table 2 presents the

median 'Y estimates for the best-fitting DEM and DEM(O)

from Table 1. As predicted, in every case the median

"I ~ 1. The "I values are quite large for Data Set 1, espe-

Table 2

Median 'Y Estimates for Best-Fitting DEM and DEM(O)
Reported in Table 1

Data Set I Data Set 2

Stimuli DEM DEM(!J) DEM DEM(!J)

Rectangles 5.12 2.59 2.13 1.00

Circles 2.27 2.46 1.40 1.49

Note-Rows correspond to stimuli and columns to models. DEM. de­
terministic exemplar model; DEM(!J), DEM with additional 0parameter.
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ported in Table 3, confirm the superiority of the general
quadratic classifier with these data.

There is evidence that 3 subjects in Data Set 3 used

linear bounds during their first session, but, for the data

from the last session, the general linear classifier is re­

jected in every case. The superiority of the general qua­

dratic classifier over the optimal decision bound model

Figure 3. Contours of equal likelihood and optimal decision bouncl'i

(broken lines) for Application 1: (a) Data Set 3, (b) Data Set 4, and
(c) Data Set S.

cially for the rectangular stimuli. As one might expect,

given this result, the difference in goodness of fit between

the DEM and GCM(O) is also quite large in Data Set I.

Two important conclusions can be drawn from these

data. First, the superior fits of the general linear classi­

fier and the DEM over the GCM suggest that response

selection is less variable than that predicted by the GCM,

especially in Data Set I. Second, when the optimal deci­

sion bound is linear, it is difficult to distinguish between

the performance of a deterministic exemplar model and

a decision bound model that assumes subjects use linear

decision bounds in the presence of perceptual and criterial

noise.

Data Sets 3-5:
Nonlinear Optimal Decision Bound

If the amount of variability along any dimension or if

the amount of covariation between any pair of dimensions

differs for the two categories, then the optimal bound will

be nonlinear (Ashby & Gott. 1988; Morrison, 1990). To

examine the ability of subjects to learn nonlinear deci­

sion bounds, Ashby and Maddox (1992) conducted three

experiments using normally distributed categories. Both

experiments involved two conditions: one with the rect­
angular stimuli (Condition R; see Figure la) and one with

the circular stimuli (Condition C; see Figure lb). Four

subjects participated in each condition. Each subject com­

pleted between three and five experimental sessions.

The contours of equal likelihood used in Data Sets 3-5

(Ashby & Maddox, 1992, Experiments 1-3) are shown

in Figures 3a-3c, respectively. Because the shape and

orientation of the Category A and B contours of equal

likelihood differ, the optimal bound is highly nonlinear

(represented by the broken line in Figures 3a-3c). A sub­

ject perfectly using this bound would correctly classify

90%, 78%, and 90% of the stimuli in Data Sets 3-5,

respectively. In contrast, a subject perfectly using the most

accurate linear bound would correctly classify 65 %, 60%,

and 75 % of the stimuli in the three experiments, respec­

tively. There were large individual differences in accuracy

during the final session, but, for 23 of 24 subjects, ac­

curacy exceeded that predicted by the most accurate linear
bound. Accuracy ranged from 68 % to 82 %, 59% to 73 %,

and 81 % to 91 %, for Data Sets 3-5, respectively. De­

tails of the experimental procedure and summary statis­

tics are presented in Ashby and Maddox (1992) and will

not be repeated here.

The three decision bound models described in the last
section were fitted separately to the data from each sub­

ject's first and last experimental sessions. Decision bound

theory predicts that the best-fitting model should be the

general quadratic classifier because the optimal bounds

are all quadratic.

With normally distributed categories, the optimal de­

cision bound model and the general linear classifier are

a special case of the general quadratic classifier, so G 2

tests were performed to determine whether the extra pa­

rameters of the general quadratic classifier led to a sig­

nificant improvement in fit. These results, which are re-
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Table 3 Data Set 3 (p < .05). Thus, in addition to being the best
Proportion of Times That the General Quadratic Classifier Fits of the three decision bound models, the general quadratic
Significantly Better (p < .05) Than the General Linear Classifier

classifier also provides an adequate absolute account of
or Optimal Decision Bound Model

Optimal Decision
the data. These results support the hypothesis that sub-

Data General Linear Classifier Bound Model jects use a suboptimal decision bound of the same form

Set First Session Last Session First Session Last Session
as the optimal bound (in this case, quadratic).

3 5/8 8/8 7/8 8/8
For the GCM [and GCM(O)], the Euclidean-exponential

4 8/8 8/8 8/8 8/8
version provided the best fit for 38 % and 39 % of the sub-

5 8/8 8/8 7/8 6/8 jects who classified the rectangular and circular stimuli,

respectively. The Euclidean-exponential version of the

DEM [and DEM(O)] also provided the best fit for 38%
suggests that, except for 2 subjects in Data Set 5, the sub- and 44 % of the subjects who classified the rectangular

jects did not use optimal bounds. and circular stimuli, respectively.

Over the three data sets, the best fit clearly is provided Table 4 compares the goodness-of-fit values for the gen-

by the general quadratic classifier. In fact, the null hy- eral quadratic classifier, and the Euclidean-exponential

pothesis that this is the correct model could not be rejected version of the GCM, DEM, GCM(O), and DEM(O). For

for any of the subjects in their last session. For the first the data from the first session, the general quadratic clas-
session, the model was rejected only for 3 subjects in sifier fits best in 16 of 24 cases, the DEM [or DEM(O)]

Table 4

Goodness-of-Fit Values (AlC) for Application 1: Data Sets 3-5

GQC GCM DEM GCM(8) DEM(8)

CIS First Last First Last First Last First Last First Last

Data Set 3

R/I 291.6 326.3 344.5 327.6 337.3 329.4 344.1 323.3 325.2 325.7

RI2 271.6 306.3 296.7 312.4 295.5 314.0 288.5 311.3 291.1 307.3

R/3 365.3 199.9 367.2 206.5 368.4 208.4 361.8 197.2 358.6 198.9

R/4 285.2 255.9 352.2 268.4 312.9 269.1 353.9 261.1 302.6 260.7

Mean 303.4 272.1 340.2 278.7 328.5 280.2 337.1 273.2 319.4 273.2

CII 410.1 273.3 402.4 295.9 404.4 284.1 404.4 296.3 405.6 285.2

C/2 312.3 216.2 370.0 212.1 371.8 213.2 360.8 213.2 363.6 215.1

C/3 326.2 217.9 322.4 246.3 319.8 236.8 324.4 238.1 321.6 231.2

C/4 386.2 273.8 405.8 280.9 402.4 279.1 407.4 281.8 403.3 280.8

Mean 358.7 245.3 375.2 258.8 374.6 253.3 374.3 257.4 373.5 253.1

Data Set 4

RII 326.1 290.7 384.1 304.3 370.6 289.9 384.0 306.5 365.6 287.7

R/2 294.6 297.9 340.6 325.9 320.1 325.6 331.2 327.2 302.1 319.1

R/3 246.8 259.6 358.0 275.7 327.6 275.5 345.8 276.5 331.2 275.4

R/4 312.0 336.8 349.0 362.9 345.4 340.4 346.0 365.2 337.5 342.3

Mean 294.9 296.3 357.9 317.2 340.9 307.9 351.8 318.9 334.1 306.1

Cl1 257.8 212.2 361.1 338.6 299.1 229.7 359.0 341.3 291.0 217.6

C/2 328.4 207.7 379.0 286.2 371.8 246.3 381.0 288.3 358.6 239.9

C/3 242.2 215.2 316.3 282.2 293.0 227.0 318.8 284.3 266.4 232.1

C/4 185.1 224.5 317.9 341.0 178.1 331.2 321.2 342.8 180.3 309.5

Mean 253.4 214.9 343.6 312.0 285.5 258.6 345.0 314.2 274.1 249.8

Data Set 5

R/l 203.2 112.5 209.8 119.4 207.9 110.4 182.4 116.3 184.2 94.1

R/2 257.1 114.2 241.2 161.9 243.2 146.1 236.4 148.4 226.7 146.7

R/3 210.0 133.9 204.2 165.5 194.9 160.6 184.6 144.1 187.1 132.2

R/4 189.7 219.1 205.4 207.3 206.1 206.5 205.4 208.4 206.9 207.7

Mean 215.0 144.9 215.2 163.5 213.0 155.9 202.2 154.3 201.2 145.2

C/1 190.9 128.8 213.7 144.5 205.9 143.9 216.2 147.6 207.5 145.8

C/2 113.5 57.5 93.7 51.3 95.5 42.5 91.4 52.6 92.8 41.3

C/3 63.0 122.3 75.3 152.1 75.9 127.5 73.8 136.9 77.0 124.1

C/4 91.6 79.4 100.9 88.9 102.3 84.4 97.6 91.5 97.1 87.2

Mean 114.8 97.0 120.9 109.2 119.9 99.6 119.8 107.2 118.6 99.6

Mean* 256.7 211.8 292.2 239.9 277.1 225.9 288.4 237.5 270.2 221.2

Note-Rows correspond to subjects and columns to models. GQC, general quadratic classifier; GMC, generalized context

model; DEM, deterministic exemplar model; GCM (8), GCM with additional 8 parameter; DEM(8), DEM with additional

8 parameter. *24 subjects
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fits best in 4 cases, and the GCM [or GCM(O)] fits best

in 4 cases. For the data from the last session, the general

quadratic classifier fits best in 16 of 24 cases, the DEM

[or DEM(O)] fits best in 5 cases, and the GCM [or

GCM(O)] fits best in 3 cases.

In Data Sets 1 and 2, where the optimal decision bound

was linear, the general linear classifier fits only slightly

better than the DEM [or DEM(O)]. In fact, the average

goodness-of-fit value of the general linear classifier was

less than 3 AlC points better than the average goodness­

of-fit value of the DEM. However, in Data Sets 3-5,

where the optimal decision bound is nonlinear, the deci­

sion bound model enjoys a clear advantage over the DEM

and DEM(O). For the data from the first experimental ses­

sion, the average goodness-of-fit value of the general qua­

dratic classifier is more than 20 AIC points better than

the average value of the DEM [and about 14 AlC points

better than the DEM(O)]. For the final experimental ses­

sion, the general quadratic classifier betters the DEM by

about 14 AIC points and the DEM(O) by about 10 AIC
points. 10

As with Data Sets 1 and 2, the GCM and GCM(O) fits

are worse than the DEM [and DEM(O)] fits. However,

a closer examination reveals that the largest discrepancy

occurs in Data Set 4. One possible explanation for this

result is that response selection is less variable in Data

Set 4 than in Data Sets 3 and 5. Since larger values of

'Yare associated with less variability in response selec­

tion, this hypothesis predicts that the 'Y values for Data

Set 4 should be larger than those for Data Sets 3 and 5.

Table 5 presents the median 'Y estimates for the best-fitting

DEM and DEM(8) from Table 4. As predicted, the larg­

est median 'Y values occurred in Data Set 4. Note also that

in 9 of the 12 cases reported in Table 5, the median 'Y

value increased from the first to the last experimental

session.

Several important conclusions can be drawn from the

quantitative analysis ofApplication 1. First, the GCM was

consistently outperformed by the DEM and by the deci­

sion bound model. Much of this disparity can be attributed

to the fact that when the optimal decision bound was

linear, response selection was less variable than predicted

by the GCM. When the optimal decision bound was non­

linear, both the GCM and the DEM were outperformed

by the decision bound model.

Table 5
Median 'Y &timates for Best-Fitting DEM and DEM(6)

Reported in Table 4

DEM DEM (6)

Stimuli Data Set First Last First Last

Rectangles 3 1.59 1.07 1.25 1.51
4 2.71 2.19 2.62 2.80
5 1.14 1.46 1.13 1.90

Circles 3 1.85 1.61 1.60 2.07
4 3.45 4.48 4.29 5.67
5 1.03 2.12 1.30 1.65

Note-Rows correspond to stimuli and columns to models. DEM, de­

terministic exemplar model; DEM(6). DEM with additiona16 parameter.

One might ask why the DEM performed more poorly

than the decision bound model when the optimal decision

bound was nonlinear. One way to answer this question

is to compare their respective P(A Ix) = .5 contours [i.e.,

the set of all x for which P(A) = .5], under the assump­

tion that no response bias exists. The points that make

up this contour favor the two response alternatives equally,

in other words, they are equivocal with respect to cate­

gory membership. As a result, we call such a contour the

equivocality contour (Ashby & Maddox, in press). In the

decision bound model, the equivocality contour is the un­

biased decision bound. In the exemplar model, the equivo­

cality contour is the set of coordinates for which summed

similarity to the two categories is equal (i.e., the set of

all x satisfying 1:1/1.4 = 1:1/xB). If the equivocality con­

tours for the decision bound model and the exemplar

model agree, then the performance of the models should

be similar.

As throughout this article, assume that the amount of

perceptual noise is constant across all perceptual dimen­

sions and is uncorrelated. Ashby and Maddox (in press;

see also Nosofsky, 1990) showed that, under these con­

ditions, there exist parameter values that allow the

Euclidean-Gaussian exemplar models to mimic exactly

the equivocality contour of the optimal decision bound

model (in the perceptual space). Thus, if subjects respond

optimally, it should be very difficult to discriminate be­

tween decision bound and exemplar models.

Although the equivocality contours for the optimal de­

cision bound model and the Euclidean-Gaussian exem­

plar models are identical in the case of independent per­

ceptual noise, the decision bound and exemplar models

treat suboptimality differently. The exemplar models

stress the importance of selective attention (Le., the

stretching and shrinking of the perceptual dimensions),

which indirectly affects the equivocality contour. The de­

cision bound model assumes that the subject operates on

the decision bound directly. When the optimal bound is

linear, as in Data Sets 1 and 2, manipulating attention is

essentially equivalent to changing the decision bound slope

and intercept. However, if the optimal bound is nonlinear,

the effects of manipulating attention will be limited. In

this case, the general quadratic classifier is more power­

ful than the exemplar models. Of course, if the direct ac­

tion of the subject is one of selective attention, the extra

power of the general quadratic classifier (in the form of

extra free parameters) is wasted. The success of the gen­

eral quadratic classifier in Data Sets 3-5 supports the hy­

pothesis that the decision bound is a fundamental construct

of human categorization.

A second conclusion to be drawn from Application 1

is that the decision bound model consistently outperformed

the GCM and DEM. Of course, these results do not fal­

sify exemplar theory. Although we tested an important

class of exemplar models, other versions may have been

more successful. We can conclude, however, that the de­

cision bound models provide a viable alternative to the

exemplar-similarity-based models of categorization.
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One weakness of the present analysis is that some rather

strong assumptions were needed about the mapping from

the stimulus space to the perceptual space. When fitting

the GCM, it is cornmon practice to first collect similarity
judgments or identification responses on the stimulus en­

semble and then to subject the data to some sort of multi­

dimensional scaling (MDS) analysis. The coordinates of

the stimuli from the MDS solution are then assumed to

estimate the coordinates of the stimuli in the perceptual

space of the categorization task (e.g., Nosofsky, 1986).11

This approach is untenable with normally distributed cat­

egories, owing to the unlimited number of exemplars. To

test the decision bound model more completely, it is of

interest to apply the model to data where this sort of MDS­

based analysis was performed. Data of this sort are ex­

amined in Application 2, to which we tum now.

APPLICATION 2

NONNORMALLY DISTRIBUTED CATEGORIES

This section compares the performance of the decision

bound model with that of the GCM and DEM at predict­

ing categorization data from experiments in which the cat­
egory exemplars are not normally distributed and con­

tain only a small number of exemplars. Two data sets

collected by Nosofsky (1986, 1989) were chosen. In both

cases, the complete stimulus ensemble consisted of 16 cir­

cles of the type shown in Figure I (constructed by com­

bining factorially 4 levels of each dimension). All cate­

gorization conditions involved two categories with four

exemplars each. Thus, the training ensemble contained

8 stimuli. Feedback was given on each trial. After cate­

gorization accuracy reached a criterion level, the ensemble

was enlarged to include a1l16 stimuli (the additional 8 stim­

uli were termed "transfer" stimuli by Nosofsky, 1986).

In the Nosofsky (1986) experiment, 2 highly practiced

subjects participated in a large number of identification

sessions, followed by several sessions of categorization.

Because decision bound theory is a theory of the perfor­

mance of individual subjects, these data are highly ap­

propriate as a test of the theory. The second data set

(Nosofsky, 1989), which consists of data averaged across

a large number of inexperienced subjects, is less appropri­

ate for testing decision bound theory, but will serve to

test the theory's generalizability.

In the Nosofsky experiments (1986, 1989), decision

bound theory predicts that the optimal decision bound is

neither a linear nor a quadratic function of the dimensional

values. Even so, it seems reasonable to assume that sub­

jects might use linear or quadratic bounds in these exper­

iments. This is because it has been hypothesized that the

multivariate normal distribution provides a good model

of many natural categories (Ashby, 1992a; see also Fried
& Holyoak, 1984), and with normally distributed cate­

gories, the optimal decision bound is always linear or qua­

dratic. Thus, if humans frequently categorize at near­

optimal levels, they will have much experience with linear

and quadratic bounds. If so, it makes sense that they would

use these bounds when confronted with the artificial cat­

egories constructed by Nosofsky (1986, 1989). We be­

gin by describing the general method used in fitting the

various models and then tum to the model comparisons.

General Method

Application of the exemplar models is straightforward.

The MDS solution derived from the identification condi­

tions of Nosofsky (1986,1989) will be used in conjunc­

tion with Equations 6, 7, 9, and 12 to generate predicted

response probabilities. Following Nosofsky (1986, 1989),

the Euclidean distance metric and Gaussian similarity

function are assumed. Two augmented versions of the

GCM and DEM were applied to the data as well. The

first, proposed by Ashby and Maddox (in press), allowed

for oblique perceptual dimensions. The second allowed

the scaling constant c (from Equation 7) to differ for train­

ing and transfer stimuli. One hypothesis is that experience

with category exemplars increases their perceptual dis­

similarity (Nosofsky, 1986). If so, c should be larger for

training than for transfer stimuli. In many cases, the

goodness-of-fit values for these two models were worse

than those for the standard GCM and DEM. When the

goodness of fit was improved, however, inclusion of these

models never affected the qualitative results (see Tables

6 and 9), so they will not be discussed further.

When applying the decision bound model, the MDS

coordinates Nosofsky (1986, 1989) obtained from the

identification confusions were used as estimates of the per­

ceptual means (i.e., Xi from Equation I). As in Applica­
tion I, perceptual variability was assumed to be constant

across dimensions, and to be uncorrelated. Thus, only one

perceptual variance parameter was estimated. This is the

simplest perceptual representation allowed in decision

bound theory, and in light of the results of Ashby and

Lee (1991; see Figure 6, p. 161), it is surely incorrect.

We chose this perceptual representation for two reasons.

First, Ashby and Perrin (1988) showed that these distribu­

tional assumptions produce a dissimilarity metric that is

equivalent to the measure used by the GCM and DEM

when equal amounts ofattention are allocated to each stim­
ulus dimension (i.e., when w = .5; see Equation 7).

Nosofsky (1986, 1989) argued that it is necessary to in­

corporate selective attention components (at least within

the framework of the exemplar-similarity model) in order

to predict data from several of the "dimensional" (i.e.,

size and angle) categorization conditions (Nosofsky, 1986,

1989; see Figures 4-6 in the present paper). This selec­

tive attention manifests itself as a stretching of distance

relations along the attended dimension, and a shrinking

of distance relations along the unattended dimension.

Ashby and Lee (1991, 1992) argue that data in these "di­

mensional" categorization conditions can be accounted

for equally well (at least within a framework of the deci­

sion bound model) without postulating any stretching or

shrinking of distance relations (i.e., selective attention),

but rather by acknowledging the different decision bounds
required for identification and categorization. The fact that
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the decision bound model we propose predicts identical

similarity relations as the GCM with no selective atten­

tion allows a test of this hypothesis. Second, such a sim­

ple perceptual representation forces the decision bound

to account for most of the variance in the data. There­

fore, this is a good method for testing the hypothesis that

the decision bound is of fundamental importance in pre­

dicting asymptotic categorization performance.

Data Set 6: Nosofsky (1986)

The stimulus dimensions used by Nosofsky (1986) were

the same as those shown in Figure Ib, except that only

the upper half of the circle and radial line were presented

(see Nosofsky, 1989, Figure 2, for an example). Sixteen

stimuli were constructed from the factorial combination

of 4 levels of circle size and 4 levels of orientation of the

radial line. Two subjects participated in a large number

of identification sessions, followed by several sessions of

categorization.

In the categorization conditions, 4 stimuli were assigned

to Category 1 and a different 4 were assigned to Cate-

gory 2. During the training phase of the experiment, any

of these 8 stimuli could appear on a given trial and cor­

rective feedback was provided following the subject's re­

sponse. During the transfer phase of the experiment, all

16 stimuli were included, and subjects were given cor­

rective feedback only when a training exemplar was pre­

sented. The data of interest are those collected during the

transfer phase only.

The following four categorization conditions, illustrated

in Figure 4 (ignore the line or curve, which will be dis­

cussed later), were utilized. (1) Size: Category 1 exem­

plars were small in size, whereas Category 2 exemplars

were large in size. (2) Criss-cross: Category I contained

exemplars with large size/small angle or small sizellarge

angle, whereas Category 2 contained exemplars with large

size/large angle or small size/small angle. (3) lnterior­
exterior: Category 1 contained exemplars with intermedi­

ate size and angles, whereas Category 2 contained exem­

plars with extreme values on each dimension. (4) Diag­
onal: Category 1 contained exemplars that fell below a

line with a slope of approximately -1, whereas Cate-

NosofskyO 986) Categorization Conditions. Subject 1

Figure 4. MDS coordinates (Euclidean distance) for Nosofsky (1986), Subject 1.

Labeled exemplars were presented during training and transfer for each of the
four categorization conditions. The line or curve denotes the decision bound pre­
dicted by the best-fitting decision bound model.
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Table 6
Goodness-of-Fit Values (AlC) for Application 2, Data Set 6 (Nosofsky, 1986)

Subject I Subject 2

Criss- Interior- Criss- Interior-
Size Cross Exterior Diagonal Size Cross Exterior Diagonal

Exemplar Models

GCM 70.4 208.3 247.7 131.9 102.6 275.8 231.3 130.3
DEM 71.9 183.6 185.7 129.4 104.8 277.3 224.2 118.4

Decision Bound Models

GQC 76.7 112.3 135.6 110.5 102.6 119.2 111.6 105.8
GLC 73.4 1,925.0 971.0 146.2 97.6 1,237.0 614.0 103.4

Note-Rows correspond to models and columns to subjects and conditions. GCM, generalized
context model; DEM, deterministic exemplar model; GQC, general quadratic classifier; GLC,
general linear classifier.

gory 2 contained exemplars that fell above the line. In

Figure 4, each training exemplar is labeled with a 1 or

2, depending on its category membership.

Model Fits and Comparisons

Table 6 presents the goodness-of-fit values for the

GCM, OEM, general quadratic classifier, and general

linear classifier for each subject and categorization con­

dition. The GCM provides the best fit for Subject I in

the dimensional condition, but in the seven other appli­

cations, a decision bound model provides the best account

of the data. In the criss-cross, interior-exterior, and diag­

onal conditions, the decision bound model performed sub­

stantially better than the GCM or OEM. In fact, across

both subjects, the average fit value in these three condi­

tions was 115.4,204.2, and 186.4 for the decision bound

model, the GCM, and the OEM, respectively.12

Table 7 presents the observed probability of respond­

ing "1" for each of the 16 stimuli by subject and condi­

tion. In addition, the predicted probability of responding

"I" is presented below the observed response probabili­

ties for the best-fitting decision bound model, GCM, and

OEM, respectively. Figures 4 and 5 present the MDS co­

ordinates for each stimulus and the decision bound pre­

dicted by the best-fitting decision bound model for each

subject in each categorization condition.

The predictions of the three models are most dissimi­

lar for the criss-cross and interior-exterior conditions, so

we will examine these conditions in greater detail. For

purposes of elaboration, the stimuli can be numbered from

1 to 16. The numbering scheme for the stimuli is pre­

sented in Table 8.

First, consider the interior-exterior condition. Stimuli

3, 5, 12, and 14 are all exemplars of Category 2, and they

all have approximately the same similarity relations to the

exemplars of Category 1. Therefore, exemplar models

predict that accuracy should be nearly equal for these stim­

uli, a prediction that is not supported by the data. The

average accuracy for Stimuli 3,5, and 12 was 72%, but

for Stimulus 14 it was only 50%. As a consequence, the

exemplar models failed badly for Stimulus 14. The GeM

predicted an average accuracy to Stimulus 14 of 72 %, and

the OEM predicted 67 %. In contrast, the decision bound

model successfully predicted the low accuracy to Stimu­

lus 14. (The decision bound model predicted an average

accuracy of 51 %.) It did this by assuming that the deci­

sion bound passed close to the mean of the Stimulus 14
perceptual distribution.

Next, consider the criss-cross condition. For each of

the transfer stimuli, the two nearest training exemplars

are always from the same category, and the average ob­

served probability with which the subjects assigned these

stimuli to the same category as these nearest neighbors

was .755. The exemplar models can account for these high

observed probabilities, but if they do, they must predict

that accuracy is near chance for training Stimuli 6, 7, 10,

and 11. This is because these stimuli have the property

that the two nearest training exemplars are from the con­

trasting category. Exemplar models predict that ifthe re­

sponse probabilities of transfer stimuli are dominated by

the category membership of their nearest neighbors, it

must make the same predictions for training stimuli. In

fact, average accuracy for responses to Stimuli 6, 7, 10,

and II was 67.5 % but the GCM predicted an average ac­

curacy of only 55.5 %. In contrast, the decision bound

model predicted an average accuracy for responses to

Stimuli 6, 7, 10, and 11 of 65.5%.

These results agree with those from Application I.

When the best-fitting decision bound was linear (or nearly

linear), the goodness-of-fit difference between the exem­

plar and decision bound models was small. However,

when the best-fitting decision bound was highly nonlinear

(as in the criss-eross and interior-exterior conditions), the

decision bound model fitted substantially better than the

exemplar models.

There is good evidence that both subjects responded

suboptimally in this experiment. 13 Suppose that they used

a suboptimal decision bound. The only way the exemplar

models can account for this fact is by uniformly expand­

ing or contracting the space (by manipulating the param­

eter c), by stretching or shrinking one of the perceptual

dimensions (by manipulating the attention weight w), or

by changing the intercept of the P(A) = .5 contour (by

manipulating the response bias (3). If the subject's bound
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Table 7

Observed and Predicted Probability of Responding "I" by Subject and

Categorization Condition for Nosofsky (1986)

Subject I Subject 2

Criss- Interior- Criss- Interior-

Stimulus Size Cross Exterior Diagonal Size Cross Exterior Diagonal

.982 .033 .074 1.000 .966 .136 .096 .986

.989 .032 .066 .994 .982 .105 .112 .994

.994 .016 .111 .993 .985 .082 .150 .992

.993 .018 .076 .994 .986 .081 .120 .993

2 .996 .126 .325 .920 .979 .371 .372 .930

.992 .131 .288 .944 .969 .399 .288 .934

.996 .242 .485 .918 .970 .359 .401 .936

.995 .235 .459 .933 .971 .358 .390 .925

3 .990 .750 .296 .705 .960 .863 .318 .706

.992 .766 .375 .711 .972 .798 .282 .644

.996 .830 .309 .610 .972 .689 .294 .649

.995 .816 .410 .624 .973 .686 .331 .613

4 .995 .958 .229 .354 .961 .932 .169 .174

.993 .952 .178 .385 .964 .906 .189 .203

.996 .971 .266 .296 .961 .853 .338 .220

.996 .965 .227 .294 .962 .856 .344 .213

5 .765 .264 .143 .973 .852 .421 .264 .976

.764 .293 .206 .970 .831 .416 .303 .984

.759 .215 .199 .974 .824 .325 .210 .978

.762 .218 .209 .968 .824 .324 .207 .984

6 .804 .326 .713 .755 .811 .407 .704 .843

.815 .291 .663 .766 .797 .435 .737 .820

.805 .401 .713 .833 .783 .504 .703 .814

.808 .370 .728 .835 .783 .502 .709 .816

7 .824 .738 .712 .419 .734 .689 .618 .229

.834 .710 .722 .360 .786 .680 .661 .304

.821 .627 .658 .425 .765 .624 .702 .365

.823 .645 .712 .440 .766 .621 .719 .322

8 .818 .799 .384 .172 .764 .732 .293 .061

.812 .827 .394 .124 .710 .745 .310 .052

.794 .733 .425 .143 .686 .640 .506 .073

.797 .749 .410 .158 .688 .636 .509 .064

9 .110 .902 .241 .912 .330 .775 .424 .948

.089 .885 .246 .903 .349 .797 .400 .964

.100 .822 .321 .894 .392 .719 .330 .959

.098 .829 .273 .882 .386 .717 .305 .966

10 .143 .697 .769 .444 .426 .526 .891 .693

.134 .705 .746 .462 .367 .508 .887 .649

.147 .614 .688 .528 .397 .601 .704 .577

.145 .649 .723 .514 .394 .599 .715 .622

II .140 .229 .695 .105 .297 .290 .731 .157

.156 .303 .742 .134 .334 .332 .663 .126

.167 .393 .652 .138 .354 .482 .635 .151

.164 .367 .679 .150 .353 .477 .653 .127

12 .181 .300 .402 .047 .254 .338 .252 .025

.155 .257 .362 .042 .248 .329 .261 .020

.162 .221 .279 .033 .262 .330 .309 .027

.159 .204 .301 .041 .262 .324 .316 .022

13 .000 .982 .119 .836 .045 .896 .274 .887

.003 .968 .135 .814 .048 .899 .261 .884

.001 .989 .218 .785 .047 .932 .227 .910

.001 .988 .143 .781 .045 .935 .198 .917

14 .000 .772 .504 .271 .060 .547 .497 .344

.005 .754 .470 .293 .056 .535 .514 .358

.002 .785 .282 .331 .053 .669 .277 .280

.002 .800 .354 .295 .051 .669 .304 .353
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Stimulus

15

16

Table 7 (continued)

Subject 1 Subject 2

Criss- Interior- Criss- Interior-

Size Cross Exterior Diagonal Size Cross Exterior Diagonal

.000 .141 .425 .058 .035 .100 .252 .025

.007 .139 .449 .067 .054 .112 .314 .045

.003 .191 .421 .054 .047 .265 .359 .045

.004 .197 .379 .045 .046 .258 .334 .039

.000 .057 .149 .012 .020 .076 .108 .012

.007 .035 .144 .017 .024 .046 .093 .005

.004 .021 .158 .007 .015 .049 .157 .005

.004 .025 .113 .007 .014 .044 .124 .004

Note-Rows correspond to stimuli and columns to categorization conditions. Top row: observed

probability of responding" I." Second row: predicted probability of responding" I" for the best­

fitting decision bound model. Third row: predicted probability of responding" I" for the GCM.

Bottom row: predicted probability of responding" I" for the OEM.

NosofskyO 986) Categorization Conditions. Subject 2
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Figure S. MDS coordinates (Euclidean distance) for Nosofsky (l9ll6), Subject 2.

Labeled exemplars were presented during training and transfer for eacb of the

four categorization conditions. The line or curve denotes the decision bound pre­

dieted by tbe best-fitting decision bound model.
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Note-Nosofsky (1986, 1989) for the specific size and angle values.

Table 8

Numbering Scheme for Stimuli From Application 2,
Data Sets 6 and 7 (Nosofsky, 1986, 1989)

is linear, these transformations will be effective, but if

the bound is highly nonlinear, these transformations will

often be too crude.

Data Set 7: Nosofsky (1989)
Our final empirical application is to the categorization

data collected by Nosofsky (1989). The stimulus dimen­

sions used by Nosofsky (1989) were identical to those

from the 1986 study, although the actual stimuli were

somewhat more discriminable. The experimental proce­

dure was the same, but with three important exceptions.

First, a large number of subjects were run, and different

subjects participated in the identification and categoriza­

tion conditions. Second, each subject received little train­

ing (only one experimental session). Finally, the data were

collapsed across subjects. In addition, the interior-exterior

condition was replaced with another dimensional condi­

tion in which angle was relevant (see Figure 6).

The fact that the categorization data were averaged

across subjects causes problems for the decision bound

models, because decision bound theory is a theory of in­

dividual categorization performance. The theory assumes

that the experienced subject utilizes a fixed decision bound

and that trial-by-trial fluctuations in performance are due

to the effects of perceptual and criterial noise. If 2 sub­

jects each use a linear bound with a different slope, the

averaged data will be inconsistent with any linear (or qua­

dratic) bound. In fact, the averaged data will be consis­

tent with decision bound theory only in the special case

in which each subject uses a bound that is a simple inter­

cept shift of the others. In this case, the intercept shifts

will be absorbed into the criterial and perceptual noise

parameters. In the simpler categorization conditions, such

as the dimensional (size and angle) conditions, it seems

plausible that subjects will use bounds of the same shape

16

12

8

4

15

II

7

3

14

10

6
2

t---__ . ~ ~ ~ ~ A _ n __g'_le~~~~~~____1

13

9
5
I

Size

Nosofsky(989) Categorization Conditions
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Figure 6. MDS coordinates (Euclidean distance) for Nosofsky (1989). Labeled

exemplars were presented during training and transfer for each of the four cate­
gorization conditions. The line or curve denotes the decision bound predicted by
the best-fitting decision bound model.
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but with simple intercept shifts, and so the decision bound Table 10

models should do better in these conditions than in the Observed and Predicted Probability of Responding "."

criss-eross and diagonal conditions. Certainly, though, we
by Subject and Categorization Condition for Nosofsky (1989)

expect performance of the decision bound models to be Criss-
Stimulus Size Angle Cross Diagonal

poorer when the data are averaged across subjects.
.973 .963 .222 .465

Model Fits and Comparisons
.989 .943 .240 .497
.992 .933 .219 .435

Table 9 presents the goodness-of-fit values for the .991 .937 .220 .434

GCM, DEM, general quadratic classifier, and general 2 .985 .572 .405 .775

linear classifier for each categorization condition. The .989 .596 .397 .767

GeM provides the best fit for the criss-eross and diagonal .991 .554 .367 .782

conditions, and the general linear classifier provides the
.990 .561 .371 .782

3 .973 .157 .608 .906
best fit for the two dimensional (size and angle) conditions. .985 .174 .584 .884

Table 10 presents the observed probability of respond- .986 .191 .551 .892

ing "1" for each of the 16 stimuli by subject and condi- .986 .193 .552 .892

tion. In addition, the predicted probability of responding 4 .987 .024 .768 .%5

"1" is presented (below the observed probabilities) for .985 .015 .783 .966

the best-fitting decision bound model (general quadratic
.986 .014 .762 .961
.985 .014 .755 .961

classifier or general linear classifier), GCM, and DEM,
5 .870 .988 .460 .222

respectively. Figure 6 presents the MDS coordinates for .868 .955 .443 .219
each stimulus and the best-fitting decision bound for each .865 .956 .400 .219

categorization condition. .873 .959 .419 .219

The modeling results for Nosofsky (1989) differ in sev- 6 .892 .662 .460 .570

eral important ways from the results for Nosofsky (1986). .848 .644 .502 .474

.839 .608 .489 .514
First, the DEM never fit the Nosofsky (1989) data better .848 .617 .496 .514
than the GCM. This result suggests that response selec- 7 .842 .229 .575 .700
tion was neither more nor less variable than predicted by .828 .210 .556 .688

the GCM. The 'Y values, which ranged from .98 for the .814 .224 .555 .689

angle condition to 1.28 for the criss-cross condition, sup- .823 .227 .554 .689

port this hypothesis. In contrast, the DEM provided a bet- 8 .853 .024 .635 .814

ter fit than did the GeM in several of the Nosofsky (1986)
.842 .028 .626 .876

.825 .031 .601 .852
conditions (see Table 6). In each of these cases, the 'Y .831 .031 .606 .852
values differed considerably from 'Y = 1 (Subject 1, criss- 9 .311 .913 .716 .093

cross, 'Y = .21, interior-exterior, 'Y = 3.07; Subject 2, .291 .915 .670 .107

interior-exterior, 'Y = 1.57, diagonal, 'Y = 1.51). In light .313 .916 .632 .131

ofthese results, it is likely that the Nosofsky (1989) re- .325 .921 .648 .131

sults are due to the small amount of training given each 10 .243 .573 .538 .213

.307 .556 .555 .267
subject, to the fact that the data were averaged across sub- .327 .532 .572 .286
jects, or to some combination of both. .339 .541 .572 .286

Second, in each condition, the goodness-of-fit values 11 .244 .134 .446 .488

for the best-fitting exemplar and decision bound models .263 .119 .431 .503

.282 .134 .474 .465

.292 .138 .476 .466

Table 9
12 .245 .015 .324 .748

.257 .010 .344 .788
Goodness-of-Fit Values (AlC) for Application 2,

.277 .007 .358 .777
Data Set 7 (Nosofsky, 1989)

.285 .007 .367 .777
Criss- 13 .027 .927 .776 .035

Size Angle Cross Diagonal .037 .963 .794 .072

Exemplar Models .026 .974 .808 .035

GeM 81.5 95.0 101.4 102.4
.032 .976 .811 .035

OEM 87.7 %.9 102.2 104.6 14 .034 .573 .595 .100
.028 .560 .524 .100

Decision Bound Models .020 .542 .564 .098
GQC 80.8 86.5 101.9 105.3 .024 .553 .565 .098
OLC 77.4 84.3 483.5 104.0 15 .041 .096 .283 .253
Note-Rows correspond to mJdels and columns to conditions. GeM, .020 .118 .295 .230
generalized context model; OEM, deterministic exemplar model; GQC, .014 .130 .329 .205

general quadratic classifier; OLC, general linear classifier. .017 .135 .326 .206
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Table 10 (Continued)

Criss-

Stimulus Size Angle Cross Diagonal

16 .041 .024 .174 .640

.025 .012 .172 .527

.022 .009 .186 .559

.026 .009 .181 .560

Note-Rows correspond to stimuli and columns to categorization con­

ditions. Top row: observed probability of responding " .. " Second row:

predicted probability of responding "I" for the best-fitting decision

bound model. Third row: predicted probability of responding "I" for

the GCM. Bottom row: predicted probability of responding "I" for

the DEM.

are very similar. The biggest difference occurs in the an­

gle condition, where the goodness-of-fit value of the gen­

eral linear classifier is 10.1 AIC points better than the

goodness-of-fit value of the GCM. This difference is sub­

stantially smaller than the differences observed in the

Nosofsky (1986) experiment, where the best and worst

AlC values differed by as much as 100 or more points.
Third, the exemplar models fit the averaged data from

the criss-eross and diagonal conditions (i.e., the Nosofsky,

1989 data) better than the single subject data from these

same two conditions (i.e., the Nosofsky, 1986 data). For

the decision bound models, however, the fits were simi­

lar for the averaged and single subject data sets. For the

dimensional (size and angle) conditions, each of the

models fit the averaged data about as well as the single

subject data. This suggests that in complicated categori­

zation tasks (such as the criss-cross and diagonal condi­

tions), exemplar models may fit data averaged across sub­

jects better than the data of any single subject.
Finally, the fact that the decision bound model ac­

counted for the two dimensional (size and angle) catego­

rization conditions better than the GCM or DEM supports

the claim that, at least within the framework of a deci­

sion bound approach to categorization, shifts in the deci­

sion bound are more important than shifts in selective at­

tention. However, it is possible, as suggested by Nosofsky

(1989; see also Ashby & Lee, 1992; Nosofsky & Smith,

1992), that other decision bound models, which assume

selective attention shifts (see Nosofsky, 1989, Figure 7,

p. 288) might also provide good fits to these data.

SUMMARY AND CONCLUSIONS

The goal of this article was to develop and test a deci­

sion bound theory of categorization by: (1) applying the

model to data from normal, as well as nonnormally dis­

tributed categories, and (2) comparing the performance

of the model with a currently popular exemplar model

of categorization. In Application 1, the models were fit

to data from five categorization experiments (36 subjects

total). In every experiment, the category exemplars were

normally distributed and each subject was given exten­

sive training. The performance of the decision bound

model was compared with the currently popular and

widely tested GCM (see Nosofsky, 1992, for an exten­

sive review) and with a deterministic exemplar model

(DEM; Ashby & Maddox, in press) that contains the

GCM as a special case, but includes a parameter that al­

lows it to predict data in which response selection is either

more or less variable than what is predicted by the GCM.

When the optimal decision bound was linear, the DEM

and a decision bound model (the general linear classifier)

provided nearly equivalent accounts of the data, and they

both significantly outperformed the GCM. When the op­

timal decision bound was highly nonlinear, both the GCM

and the DEM were outperformed by a decision bound

model that postulated quadratic decision bounds. Taken

together, these results suggest (1) that the poor perfor­

mance of the GCM is due partly to the fact that it postu­

lates a probabilistic rather than a deterministic decision

rule, and (2) that the exemplar models have only a lim­

ited ability to account for suboptimal performance. In par­

ticular, they are inferior to the decision bound model at

accounting for complex suboptimalities.

In Application 2, we began a preliminary investigation

of the ability of the decision bound models to account for

categorization data in which the exemplars from each cat­

egory were not normally distributed. When applied to data

in which single subjects were given extensive training

(Nosofsky, 1986), the decision bound model provided ex­

cellent accounts of the data, and in many cases it signifi­

cantly outperformed the GCM and DEM. When applied

to data that were averaged across subjects, each of whom

received little training, the performance of the decision

bound model was still quite impressive, especially when

applied to data from conditions in which only one stimu­

lus dimension was relevant.

Future research could extend the present work in a num­

ber of directions. First, it would be interesting to expand

the type of analysis presented in Application 2 to other

categorization conditions and stimulus dimensions. Sec­

ond, it would be of interest to examine the tradeoff be­

tween parameters associated with perceptual and deci­

sional processes. Throughout this article, we assumed a

very restricted perceptual representation. Although this

was appropriate for the goals of the article and yielded

good accounts of the data, it is possible that models with

more general perceptual representations might provide

better fits to the present data sets and might be necessary

to predict data from other experiments, especially those

involving highly confusable stimuli.
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NOTES

I. It may be inaccurate to define a nonlinear mapping from the phys­

ical space to the perceptual space as a misperception of the true dimen­

sional values. Although it is true that a psychophysical mapping of this

sort may yield a dimensional representation that differs from the physi­

cal dimensions of the stimulus, it is generally assumed (e.g., Stevens,

1975) that this mapping is one to one. In other words, each set of phys­

ical coordinates corresponds to a unique set of perceptual coordinates.

Perceptual noise, on the other hand, is assumed to have a one-to-many

mapping (i.e., each presentation of the same stimulus yields a unique

perceptual effect).

2. Throughout this article we assume that perceptual noise, repre­

sented by the random variable ep, is multivariate normally distributed

with mean 0 and variance ( } ~ .

3. With normally distributed categories, the optimal decision bound

is always quadratic. In 2 dimensions, the general quadratic equation is

written ho(wi) = a,wf; + a,wl; + a'WIiW'; + b,w'i + b,w,; + co'

The equation for an ellipse, a circle, and a line are a special case of

the general quadratic equation. For example, when the coefficients u"

a" and u, are zero, ho(wi) is linear.
4. In the Ashby and Gott (1988) and Ashby and Maddox (1990) ex­

periments' the optimal bound was linear. In the Ashby and Maddox

(1992) experiments, the optimal bound was a quadratic curve.

5. An example is Busemeyer and Myung's (1992) rule competition

model, which is composed of two parts. The first is an adaptive net­

work model that describes how individuals choose different types of

decision bounds (e.g., linear or quadratic). The second part uses a "hill

climbing" algorithm to predict how subjects learn to fine tune their de­

cision rule by adjusting the decision bound parameters.

6. Maximum likelihood estimators have many desirable properties.

First, they are always consistent. Second, if an efficient unbiased esti­

mator exists, maximum likelihood estimation will generally find it.

7. When calculating the optimal bound for the circular stimuli, we

arbitrarily assumed that one quarter of a semicircle (i.e., 1r/4 radian)

is psychologically equal to one quarter of the screen width (i.e., 250

pixels). If the subject assumes some other relation between the two

dimensions, the optimal bound in the perceptual space will have some

nonunit slope (see Ashby & Maddox, 1992, for a fuller discussion of

this point).

8. In the general linear classifier, the separate effects of perceptual

and criterial noise cannot be estimated due to the nonidentifiability of

these two parameters.

9. This transformation was accomplished by premultiplying the di­

mensional values by the matrix

W = [COSO -SinO],

cos 0 sin 0

which rotates the perceptual dimensions by 0°.

10. As in Data Sets I and 2, the general quadratic classifier was fit

with the response bias parameter () = 0, whereas the fits of the exem­

plar models include a bias parameter. It is possible that the fits of the

exemplar models could be reduced by up to 2 AlC points if one assumes

no response bias (i.e., (3 = .5). There were two cases in which the fit

of the DEM(O) was within 2 AIC points of that for the general qua­

dratic classifier. Refitting the data for these 2 subjects, under the as­

sumption that (3 = .5, did not improve the fit.

II. Tversky (1977) and many others have argued that this method

of data analysis also involves strong (and, in general, untenable) as­

sumptions about the mapping from the stimulus space to the perceptual

space.

12. Because category base rates are equal in these data sets, it is pos­

sible, as in Application I, that assuming no response bias could improve

the fit of the GCM and DEM. However, even if the bias and attention

weight parameters were set equal to .5, the maximum improvement in

fit would be 4 Ale points, which would not change any of the qualita­

tive results in Table 6.

13. Ashby and Lee (1991) fitted the optimal decision bound model

to these data. Although it performed somewhat better than the GCM,

the optimal model performed more poorly than the suboptimal decision

bound models of Table 6.

APPENDIX
Fitting the Exemplar Models

This appendix describes the specific techniques used in fit­

ting the GCM, GCM(O), DEM, and DEM(O) to Application I:

Data Sets 1-5. Two considerations are important. First, one must

determine whether repeated presentations of a given exemplar

should lead to independent memory traces (e.g., Hintzman,

1986) or to a single memory trace. Exemplar models that as­

sume independent memory traces are called token exemplar

models, whereas those that assume a single memory trace are

called type exemplar models. Because token models are fre­

quency sensitive (Nosofsky, 1988b) and are thus more power­
ful, token exemplar models were fitted to the data.

Second, one must decide which exemplars to include in the

summed similarity computations. The answer to this question

differed for the data from the first and last experimental ses­

sions, so each is dealt with in turn.

First Experimental Session

Each experimental session consisted of 5 presentations of the

stimulus corresponding to the Category A and B means (10 pre­

sentations total), 100 practice trials, and 300 experimental trials.

Although the probability of responding Category A for stimu­

lus i, PeA Ii) was estimated for the 300 experimental trials only,
it was assumed that a unique memory trace was formed for the

110 exemplars presented during the preexperimental learning

sessions, and thus, these were included in the summed similar­

ity computations. When estimating PeA Ii) on the ith experimen­
tal trial, all exemplars presented on Trials I through (i - 1), as

well as those presented during the preexperimentallearning ses­
sions, were included in the Equation 6 and 12 sums.

Final Experimental Session

Ideally, when fitting the exemplar models to the data from

the last experimental session, one might like to include the mem­

ory trace of all exemplars encountered by the subject up to that

point in the experiment. By the last trial of a fifth experimental

session, however, a subject will have seen 2,049 exemplars. It

seems plausible that at some sample size, predictions of the ex­

emplar models will asymptote. The most efficient fitting al­

gorithm uses the smallest sample size after asymptote occurs.

To determine the point at which additional exemplar infor­
mation provided no improvement in fit, the data from 8 sub­

jects (those with the highest and lowest accuracies from each

experiment and each condition of Data Sets 3 and 4) were fit

using a procedure where the similarity of stimulus i was taken

with respect to all 410 exemplars from the last session. The AlC
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value for this model was compared with the AIC value for a
model where the similarity was taken with respect to the 820

exemplars from the final and penultimate sessions. This proce­

dure was repeated for the three versions of the GCM model (city­

block-exponential, Euclidean-Gaussian, and Euclidean­

exponential). The difference between the AIC for both meth­

ods was computed for each of the 24 cases (8 subjects x 3 ver­
sions). The mean AIC difference was - .044, the standard devi­

ation was 3.013, and the range was -4.4 to 6. These results

suggest exemplar information asymptotes at or before 410 sam­

ples, and so the similarity computations were taken with respect

to the 410 exemplars during each subject's last experimental

session.

The Local Minima Problem

To reduce the possibility of local minima in the exemplar

model fits, a grid search of the parameter space was conducted.

For the GCM, 10 values of each parameter were chosen. The

fit of the model was then recorded at each of these 1,000
(10 x 10 x 10) locations, and the parameter values correspond­

ing to the minimum of these 1,000 values were then used as

starting values for the minimization routine. Because the GCM

is a special case of the GCM(O) and DEM, the best-fitting values

from the GCM were used as starting values for the GCM(O) and

DEM in a two-step procedure. First, the best-fitting parame­

ters (c, W, and (3) were held constant, and the 'Y or 0 parameter

(depending on the model) was left free to vary. Once the best

fitting 'Y or 0 parameter was obtained, all four parameters were

left free to vary. A similar procedure was used for the DEM(O),

but in this case, the best-fitting parameters from the DEM were

used as starting values for the DEM(O) in a two-step procedure.
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