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Abstract

We propose a method for comparing density forecasts that is based on weighted
versions of the continuous ranked probability score. The weighting emphasizes regions
of interest, such as the tails or the center of a variable’s range, while retaining pro-
priety, as opposed to a recently developed weighted likelihood ratio test, which can
be hedged. Threshold and quantile based decompositions of the continuous ranked
probability score can be illustrated graphically and prompt insights into the strengths
and deficiencies of a forecasting method. We illustrate the use of the test and graphical
tools in case studies on the Bank of England’s density forecasts of quarterly inflation
rates in the United Kingdom, and probabilistic predictions of wind resources in the
Pacific Northwest.

KEY WORDS: Continuous ranked probability score; Predictive ability testing; Prob-
abilistic forecast; Proper scoring rule; Quantile; Weighted likelihood ratio test

1 Introduction

One of the major tasks of statistical analysis is to make forecasts for the future. To realize
their full potential, forecasts ought to be probabilistic in nature, taking the form of probabil-
ity distributions over future quantities or events (Dawid 1984). Here we are concerned with
density forecasts of a continuous variable, such as inflation rate, gross domestic product,
temperature or wind speed, to name but a few examples. With the continued proliferation
of probabilistic forecasts in economic, environmental and meteorological applications, among
others, there is a critical need for principled techniques for the comparison and ranking of
density forecasts (Timmermann 2000; Elliott and Timmermann 2008; Gneiting 2008).
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Following Amisano and Giacomini (2007), we consider density forecasts in a time series
context, in which a rolling window consisting of the past m observations is used to fit a
density forecast for the observation that is k time steps ahead. Specifically, suppose that
Z1, . . . , ZT is a stochastic process which can be partitioned as Zt = (Yt, X t) where Yt is
the variable of interest and X t is a vector of predictors. Suppose that T = m + n + k. At
times t = m, . . . , m+n, density forecasts f̂t+k and ĝt+k for Yt+k are generated, each of which
depends only on Zt−m+1, . . . , Zt. In this framework, the only requirement imposed on how
the forecasts are produced is that they are measurable functions of the data in the rolling
estimation window. We are interested in comparing and ranking the competing density
forecasting methods.

The comparison typically uses a proper scoring rule. A scoring rule is a loss function S(f, y)
whose arguments are the density forecast f and the realization y of the future observation
Y . The density forecast is ideal if the sampling density of Y is indeed f . Diebold, Gunther
and Tay (1998) argue powerfully that the ideal forecaster is preferred by any rational user,
irrespectively of the cost-loss structure at hand. Hence, it is critically important that a
scoring rule be proper, in the sense that

Ef S(f, Y ) =

∫

f(y) S(f, y) dy

≤
∫

f(y) S(g, y) dy = Ef S(g, Y ) (1)

for all density functions f and g. A scoring rule is strictly proper if (1) holds, with equality
if and only if f = g almost surely. Clearly, a strictly proper scoring rule prefers the ideal
forecaster over any other. Prominent examples of strictly proper scoring rules include the
logarithmic, quadratic, spherical, and continuous ranked probability scores (Matheson and
Winkler 1976; Winkler 1996; Gneiting and Raftery 2007). We take scoring rules to be
negatively oriented penalties, so the lower, the better.

Density forecast methods are then ranked by comparing their average scores. Specifically, if

S
f

n =
1

n − k + 1

m+n−k
∑

t=m

S(f̂t+k, yt+k) and S
g

n =
1

n − k + 1

m+n−k
∑

t=m

S(ĝt+k, yt+k),

then we prefer f if S
f

n < S
g

n, and prefer g otherwise. Amisano and Giacomini (2007) consider
tests of equal forecast performance based on the test statistic

tn =
√

n
S

f

n − S
g

n

σ̂n
, (2)

where

σ̂2
n =

1

n

k−1
∑

j=−(k−1)

m+n−|j|
∑

t=m

∆t,k∆t+|j|,k and ∆t,k = S(f̂t+k, yt+k) − S(ĝt+k, yt+k), (3)
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Table 1: Weighted likelihood ratio tests for density forecasts for the conditionally het-
eroscedastic process (5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the
correct model assumption. Its competitor ĝt+1 = N (0, 1

2
σ̂2

t+1) uses a deliberately misspec-
ified predictive variance. The width of the sliding training window is m = 100, and we
consider n = 900 one-step-ahead density forecasts. Counterintuitive test statistics are shown
in bold. See text for details.

Weight Function Emphasis S
f

n S
g

n σ̂n tn P

w0(x) = 1 uniform 1.312 1.490 0.862 −6.20 < 0.001
w1(x) = φ(x) center 0.294 0.267 0.100 7.98 < 0.001
w2(x) = 1 − φ(x)/φ(0) tails 0.575 0.759 0.645 −9.69 < 0.001
w3(x) = Φ(x) right tail 0.667 0.633 0.535 −4.73 < 0.001
w4(x) = 1 − Φ(x) left tail 0.645 0.542 0.510 −4.34 < 0.001

as proposed by Diebold and Mariano (1995). Assuming suitable regularity conditions, the
statistic tn is asymptotically standard normal under the null hypothesis of vanishing expected
score differentials. In the case of rejection, f is chosen if tn is negative and g is chosen if tn
is positive.1

What scoring rule should be used? Amisano and Giacomini (2007) consider a weighted
logarithmic scoring rule,

S(f, y) = w

(

y − µ

σ

)

S0(f, y), (4)

where w is a fixed, nonnegative weight function, µ and σ are estimates of the unconditional
mean and standard deviation of the predictand, based on the past m observations, and S0 is
the logarithmic scoring rule, S0(f, y) = − log f(y). The weight function emphasizes regions
of interest, such as the tails or the center of a variable’s range. With φ and Φ denoting
the standard normal probability density and cumulative distribution function, the weight
functions w1(x) = φ(x), w2(x) = 1 − φ(x)/φ(0), w3(x) = Φ(x) and w4(x) = 1 − Φ(x)
emphasize the center, the tails, the right tail and the left tail, respectively. The approach of
Mitchell and Hall (2005) and Bao, Lee and Saltoğlu (2007) employs the unweighted, original
logarithmic score.

The weighting approach seems appealing; however, it corresponds to the use of an improper
scoring rule and incurs misguided inferences. For instance, consider the GARCH(1,1) process
Y1, Y2, . . ., where

Yt+1 = ǫt+1, ǫt+1 ∼ N (0, σ2
t+1), σ2

t+1 = αǫ2
t + βσ2

t + γ. (5)

Following Christoffersen and Diebold (1996), we set the GARCH parameters at α = 0.2 and
β = 0.75, which are typical of estimates reported in the literature, and we let γ = 0.05, which

1Amisano and Giacomini (2007) use the logarithmic score in positive orientation, so they choose f if tn
is negative and g if tn is positive.
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normalizes the unconditional process variance to 1.2 The rolling estimation window is of size
m = 100, and we consider n = 900 density forecasts at the prediction horizon k = 1. The
density forecast f̂t+1 is Gaussian with mean zero and variance σ̂2, which is derived from a
GARCH fit for (5). Except for uncertainty in parameter estimation, this is the ideal density
forecast. In contrast, the density forecast ĝt+1 is Gaussian with mean zero and variance
one half time times σ̂2, deliberately misspecifying the conditional variance. Results for the
weighted likelihood ratio test are shown in Table 1. Using the weight functions w0, w2,
w3 and w4 the test prefers f , as expected. With weight function w1, the test prefers the
misspecified density forecast g, which is a counterintuitive result.

The goal of this paper is to propose a test that adopts the weighting approach of Amisano
and Giacomini (2007), avoids misguided inferences, and comes with associated graphical
tools that can be used to diagnose strengths and weaknesses of a forecasting method. We
retain the test statistic (2), but base our test on appropriately weighted, proper versions of
the continuous ranked probability score (CRPS; Matheson and Winkler 1976; Gneiting and
Raftery 2007; Laio and Tamea 2007). Any density forecast f induces a probability forecast
for the binary event {Y ≤ z} via the value of the associated cumulative distribution function
(CDF)

F (z) =

∫ z

−∞

f(y) dy

at the threshold z ∈ R. Similarly, it induces the quantile forecast F−1(α) at the level
α ∈ (0, 1). The continuous ranked probability score is then defined as

CRPS(f, y) =

∫ ∞

−∞

PS(F (z), I{y ≤ z}) dz =

∫ 1

0

QSα(F−1(α), y) dα, (6)

where
PS(p, I{y ≤ z}) = (p − I{y ≤ z})2

is the Brier probability score (Selten 1998; Gneiting and Raftery 2007) for a probability
forecast p of the binary event {Y ≤ z} at the threshold z ∈ R, and

QSα(q, y) = 2(I{y < q} − α)(q − y)

is the quantile score (Gneiting and Raftery 2007) for a quantile forecast q at the level α ∈
(0, 1). Here and in the following, the symbol I stands for an indicator function.

Following Matheson and Winkler (1976) and Gneiting and Raftery (2007), it is straight-
forward to construct weighted versions of the continuous ranked probability score (6) that
emphasize regions of interest and retain propriety. A threshold weighted version of the
continuous ranked probability score is obtained as

S(f, y) =

∫ ∞

−∞

PS(F (z), I{y ≤ z}) u(z) dz, (7)

2See Engle (1982) and Bollerslev (1986) for details on ARCH and GARCH processes. We set the initial
conditional variance equal to

√
609/7, that is, the unconditional variance plus one standard deviation of the

conditional variance, and discard the first 1,000 values.
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Table 2: Weighted CRPS tests for density forecasts for the conditionally heteroscedastic
process (5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the correct model
assumption. Its competitor ĝt+1 = N (0, 1

2
σ̂2

t+1) uses a deliberately misspecified predictive
variance. The width of the sliding training window is m = 100, and we consider n = 900
one-step-ahead density forecasts. In contrast to the weighted likelihood ratio test, all tests
prefer f over g.

Threshold Weight Emphasis S
f

n S
g

n σ̂n tn P

u0(y) = 1 uniform 0.511 0.521 0.070 −3.95 < 0.001
u1(y) = φ(y) center 0.153 0.155 0.018 −4.24 < 0.001
u2(y) = 1 − φ(y)/φ(0) tails 0.129 0.132 0.030 −2.88 0.004
u3(y) = Φ(y) right tail 0.258 0.262 0.046 −2.83 0.005
u4(y) = 1 − Φ(y) left tail 0.254 0.259 0.046 −3.24 0.001

Quantile Weight Emphasis S
f

n S
g

n σ̂n tn P

v0(q) = 1 uniform 0.511 0.521 0.070 −3.95 < 0.001
v1(q) = q(1 − q) center 0.100 0.101 0.009 −2.79 0.005
v2(q) = (2q − 1)2 tails 0.113 0.118 0.036 −4.85 < 0.001
v3(q) = q2 right tail 0.157 0.161 0.041 −2.53 0.014
v4(q) = (1 − q)2 left tail 0.155 0.159 0.041 −3.00 0.003

where u is a nonnegative weight function on the real line. Similarly, a quantile weighted
version is obtained as

S(f, y) =

∫ 1

0

QSα(F−1
α , y) v(α) dα, (8)

where v is a nonnegative weight function on the unit interval. For a constant weight function,
both (7) and (8) reduce to the unweighted score (6).

Table 2 returns to the simulation study for the GARCH model (5) and reports results
based on the test statistic (2) and threshold or quantile weighted versions of the continuous
ranked probability score, which are proper, as opposed to the weighted logarithmic score.
In contrast to the results for the weighted likelihood ratio test, all tn values in Table 2
are negative, favoring the nearly ideal density forecast f over its deliberately misspecified
competitor g.

The remainder of the paper is organized as follows. In Section 2 we show that the weighted
likelihood ratio test incurs the use of an improper scoring rule, and explore ways in which the
test can be hedged. In Section 3 we study threshold and quantile weighted versions of the
continuous ranked probability score in further detail, and discuss conditions under which the
test statistic tn is asymptotically standard normal. We also note graphical representations of
the threshold and quantile decomposition of the continuous ranked probability score, which
can be used diagnostically to assess strengths and deficiencies of forecasting techniques.
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Section 4 applies these methods to compare density forecasts for quarterly inflation rates
in the United Kingdom and wind resources in the North American Pacific Northwest. The
paper closes with a discussion in Section 5.

2 Hedging strategies for the weighted likelihood ratio

test

Recall that a scoring rule S(f, y) for a density forecast is proper if

Ef S(f, Y ) =

∫

f(y) S(f, y) dy

≤
∫

f(y) S(g, y) dy = Ef S(g, Y )

for all density functions f and g. It is strictly proper if the above holds, with equality if and
only if f = g almost surely. Examples of proper scoring rules for density forecasts include
the logarithmic score, S(f, y) = − log f(y), the quadratic score, S(f, y) = −2f(y) + ‖f‖2,
and the spherical score S(f, y) = −f(y)/‖f‖, where

‖f‖ =

(
∫ ∞

−∞

f(y)2 dy

)1/2

.

The continuous ranked probability score and its weighted versions are also proper (Matheson
and Winkler 1976; Gneiting and Raftery 2007).

The following result shows that if S0(f, y) is a strictly proper scoring rule, then its product
with a weight function w(y) is improper, unless the weight function is constant.

Theorem 2.1. Suppose that f is the sampling density of the random variable Y . Let S0 be

any proper scoring rule and let w be a weight function such that 0 <
∫

w(y)f(y) dy < ∞.

Then the expected value of the weighted score

S(g, Y ) = w(Y ) S0(g, Y ) (9)

is minimized if we issue the density forecast

g(y) =
w(y)f(y)

∫

w(y)f(y) dy
.

Proof. Let h be any density forecast. Then

Ef S(g, Y ) =

∫

w(y)f(y) S0(g, y) dy =

∫

w(y)f(y) dy

∫

g(y) S0(g, y) dy

≤
∫

w(y)f(y) dy

∫

g(y) S0(h, y) dy =

∫

w(y)f(y) S0(h, y) dy = Ef S(h, Y ),

where the inequality reflects the propriety of S0.
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Table 3: Weighted likelihood ratio tests for density forecasts for the conditionally het-
eroscedastic process (5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the
correct model assumption. Its competitor ĝt+1 is deliberately misspecified as described in
(10). Counterintuitive test statistics are shown in bold. See text for details.

Weight Function Emphasis S
f

n S
g

n σ̂n tn P

w0(x) = 1 uniform 1.312 1.611 0.727 −12.31 < 0.001
w1(x) = φ(x) center 0.294 0.436 0.215 −19.84 < 0.001
w2(x) = 1 − φ(x)/φ(0) tails 0.575 0.518 0.331 5.23 < 0.001
w3(x) = Φ(x) right tail 0.667 0.744 0.515 −4.48 < 0.001
w4(x) = 1 − Φ(x) left tail 0.645 0.867 0.310 −21.51 < 0.001

In particular, we are now in a position to explain the failure of the weighted likelihood ratio
test in the simulation example in the introduction. The weighted logarithmic score (4) is
similar to the composite scoring rule (9) where S0 is the logarithmic score, and the composite
score is improper, unless the weight function is constant. Moreover, Theorem 2.1 suggests
a hedging strategy if forecasters are compared by the weighted likelihood ratio test, namely
to issue the density function g that is proportional to the product of the forecaster’s true
belief, f , and the weight function, w. For example, if both f = φ and w = φ are standard
normal, the suggested hedge uses a normal density function g with mean zero and variance
one half. Essentially, this is the situation in the simulation study in the introduction. The
misspecified density forecast ĝt+1 halves the estimated Gaussian variance; hence, to a good
degree of approximation, it is proportional to the product of the true belief f̂t+1 and the
weight function w1 = φ. Not surprisingly, the weighted likelihood ratio test with weight
function w1 fails.

Before closing this section, we present another simulation study in which the weighted like-
lihood ratio test yields counterintuitive results. Once again, we study density forecasts for
the conditionally heteroscedastic process (5) with parameter values α = 0.2, β = 0.75 and
γ = 0.05. The rolling estimation window is of size m = 100, and we issue n = 900 den-
sity forecasts at the prediction horizon k = 1. As previously, the density forecast f̂t+1 is
Gaussian with mean zero and variance σ̂2

t+1, derived from a GARCH fit under the correct
model specification. Except for estimation uncertainty, this is the ideal density forecast. Its
competitor is the density forecast ĝt+1, which is deliberately misspecified as

ĝt+1(y) = f̂t+1(y)

(

I{y < −σ̂t+1} +
1

2
I{|y| ≤ σ̂t+1} +

1

2(1 − Φ(1))
I{y > σ̂t+1}

)

. (10)

Note that ĝt+1 is identical to f̂t+1 in the left tail, underspecifies the center of the distribution,
and makes this up in the right tail. Table 3 shows results for the weighted likelihood ratio
test, which are misguided and inconsistent. Specifically, the test suggests that both in the
left tail and in the right tail f is preferable. Looking at both tails simultaneously, the test
stipulates that g is better.
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3 Weighting and testing with the continuous ranked

probability score

3.1 Threshold and quantile weighting for the continuous ranked

probability score

Suppose that the density forecast is f and y realizes. Let F denote the CDF associated with
the density f , and write F−1(α) for the quantile at level α ∈ (0, 1). The continuous ranked
probability score then can be defined in three equivalent ways, as

CRPS(f, y) = EF |Y − y| − 1

2
EF |Y − Y ′| (11)

=

∫ ∞

−∞

(F (z) − I{y ≤ z})2 dz (12)

= 2

∫ 1

0

(I{y < F−1(α)} − α)(F−1(α) − y) dα, (13)

where Y and Y ′ are independent random variables with common distribution F . Gneiting
and Raftery (2007) showed the equivalence of the kernel score representation (11) and the
standard form (12), to which we refer as the threshold decomposition of the continuous
ranked probability score. The equivalence to (13), to which we refer as the quantile decom-
position of the score, was noted by Laio and Tamea (2007). Both (11) and (13) show that
the continuous ranked probability score is reported in the same unit as the observations. The
score is strictly proper within the class of forecast densities that have finite first moment,
and attains an infinite value otherwise. It applies to predictive distributions with discrete
components and reduces to the absolute error in the case of a point forecast.

The integrand in (12) equals the quadratic or Brier probability score (Selten 1998; Gneiting
and Raftery 2007)

PS(p, I{y ≤ z}) = (p − I{y ≤ z})2

for the probability forecast p = F (z) of the binary event {Y ≤ z} at the threshold z ∈ R.
The integrand in (13) equals the quantile score

QSα(q, y) = 2(I{y < q} − α)(q − y)

for the quantile forecast q = F−1(α) (Cervera and Muñoz 1996; Gneiting and Raftery 2007).
It has also been referred to as the tick loss function (Giacomini and Komunjer 2005) or,
more traditionally, as the asymmetric linear or lin-lin loss function (Koenker and Basset
1978; Christoffersen and Diebold 1996).

Using the Brier probability score, we define threshold weighted versions of the continuous
ranked probability score as

S(f, y) =

∫ ∞

−∞

PS(F (z), I{y ≤ z}) u(z) dz, (14)
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Table 4: Proposed weight functions for threshold and quantile weighted versions of the
continuous ranked probability score. The threshold weight functions are specified in terms
of the probability density function φa,b and the cumulative distribution function Φa,b of the
normal distribution with mean a and standard deviation b.

Emphasis Threshold Weight Function Quantile Weight Function
center u1(y) = φa,b(y) v1(q) = q(1 − q)
tails u2(y) = 1 − φa,b(y)/φa,b(0) v2(q) = (2q − 1)2

right tail u3(y) = Φa,b(y) v3(q) = q2

left tail u4(y) = 1 − Φa,b(y) v4(q) = (1 − q)2

where u is a nonnegative weight function on the real line; if u ≡ 1, this reduces to the
unweighted score (12). Table 4 lists some potential weight functions that emphasize the
center or tails of a variable’s range. The threshold weight functions resemble the suggestions
of Amisano and Giacomini (2007); however, in our implementation, the parameters are
fixed and user specified, depending on the application at hand. For instance, in the case of
inflation rates we set the location parameter a at the policy target. If the weight function
is integrable, such as in the case of the center weight function φa,b, the threshold-weighted
continuous ranked probability score (14) is finite and bounded by the integral of the weight
function. Other options for integrable weight functions with center emphasis include t and
Laplace densities.

Similarly, we define quantile weighted versions of the continuous ranked probability score as

S(f, y) =

∫ 1

0

QSα(F−1(α), y) v(α) dα, (15)

where v is a nonnegative weight function on the unit interval. If v ≡ 1, we recover the
unweighted score (13). Table 4 suggests weight functions with center or tail emphasis. The
two weighting approaches can be traced back at least to Matheson and Winkler (1976); they
retain propriety, because convex sums and limits of proper scoring rules remain proper. The
threshold weighting idea is also employed by Corradi and Swanson (2006a, pp. 194–195),
though their emphases and terminology differ from ours.

Closed form expressions for the evaluation of (14) or (15) may or may not be available;
however, the computation of a suitably discretized approximate version is always feasible, to
any degree of accuracy. In the case of threshold weighting, we approximate (14) by

S(f, y) =
yu − yl

I − 1

I
∑

i=1

w(yi) PS(F (yi), I{y ≤ yi}) where yi = yl + i
yu − yl

I
(16)

and (yl, yu) is the range of interest. In the case of the quantile weighted score, we approximate
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the integral in (15) by a discrete version,

S(f, y) =
1

J − 1

J−1
∑

j=1

v(αj) QSαj
(F−1(αj), y) where αj =

j

J
. (17)

Note that the discrete versions themselves are proper scoring rules, that arise as special cases
in (14) and (15) if the integral is taken with respect to a discrete Stieltjes measures rather
than a weight function.

3.2 Asymptotic normality of the test statistic

Following Amisano and Giacomini (2007), we consider tests of equal forecast performance
based on the test statistic

tn =
√

n
S

f

n − S
g

n

σ̂n
,

where

S
f

n =
1

n − k + 1

m+n−k
∑

t=m

S(f̂t+k, yt+k) and S
g

n =
1

n − k + 1

m+n−k
∑

t=m

S(ĝt+k, yt+k) (18)

and σ̂2
n is defined in (3). Under general conditions, tn is asymptotically standard normal

under the null hypothesis of vanishing expected score differentials, and the test will reject
with probability tending to 1 under a fixed alternative. When S is a weighted logarithmic
rule, Amisano and Giacomini (2007) prove these claims under regularity assumptions3, which
include a mixing condition on the process {Zt} defined in the introduction, boundedness of
the weight function, consistency of σ̂2

n as an estimate of

σ2
n = var(

√
n (S

f

n − S
g

n)) > 0,

and moment conditions. In our case, in which S is a weighted version of the continuous
ranked probability score, the same result holds, except for the moment condition, which now
requires that

Ef̂t+k
|X|, E ĝt+k

|X| and Et+k|Yt+k|2r are finite for all t, (19)

where the power r ≥ 2 depends on the mixing condition. In the case of threshold weighting
with an integrable (rather than just bounded) weight function, the moment condition can be

3Amisano and Giacomini consider the case k = 1 only. The extension to a general prediction horizon
k ≥ 1 is straightforward. We wish to emphasize that our aforementioned concerns are not with the asymp-
totic arguments in Amisano and Giacomini (2007) nor with the weighting idea, which is appealing indeed.
However, we disagree with the particular choice of a weighted logarithmic scoring rule for the test, which
can lead to rejection in favor of an inferior forecast.
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dropped. In analogy to the arguments of Amisano and Giacomini (2007), these results can
be proved by verifying the assumptions of Theorem 4 of Giacomini and White (2006). The
only novel argument is in the derivation of the moment condition (19), which is presented
in an appendix.

In practical applications, the full set of assumptions cannot be verified; yet, the assumptions
are plausible as approximations. Recall that the continuous ranked probability score attains
an infinite value if the forecast density has infinite first moment. In this light, the first two
conditions in (19) assure that each individual score is finite. The third condition stipulates
that the true data generating density has a finite moment of order 2r, where typically one
can take r = 2. Hence, as a rule of thumb, the normal approximation for tn is appropriate,
unless the forecast densities have infinite moments of low order. In the case of threshold
weighting with an integrable weight function, the moment condition can just be ignored.

Table 5 summarizes results for weighted CRPS tests in the simulation example of Section
2. The density forecasts f̂t+1 and ĝt+1 and the true data generating density have Gaussian
tails, so the normal approximation for tn is justified. In contrast to the respective results
for weighted likelihood ratio tests, all tn values are strongly negative, favoring f over its
deliberately misspecified competitor g.

3.3 Forecast diagnostics via threshold and quantile decomposition

The threshold and quantile decompositions of the continuous ranked probability score carry
over to mean scores, and in the latter form they can be used diagnostically, to assess strengths
and deficiencies of density forecasting techniques.

Consider a mean score of the form (18). The threshold decomposition (12) applies to the
mean score, in that

CRPS
f

n =

∫ ∞

−∞

PS
f

n(z) dz (20)

where

PS
f

n(z) =
1

n − k + 1

m+n−k
∑

t=m

PS(F̂t+k(z), yt+k) (21)

denotes the mean Brier probability score for the probability forecast of the binary event
{Yt+k ≤ z} at the threshold z ∈ R. Schumacher, Graf and Gerds (2003) and Gneiting,
Balabdaoui and Raftery (2007) proposed a plot of the mean Brier score (21) versus z as a
diagnostic tool and coined the terms prediction error curve and Brier score plot, respectively.
The representation (20) shows that the plot illustrates the threshold decomposition of the
continuous ranked probability score.

Similarly, the quantile decomposition (13) suggests the representation

CRPS
f

n =

∫ 1

0

QS
f

n(α) dz, (22)
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where

QS
f

n(α) =
1

n − k + 1

m+n−k
∑

t=m

QSα(F̂−1
t+k(α), yt+k). (23)

Laio and Tamea (2007) proposed a plot of the mean quantile score (23) versus α as a
diagnostic tool in the assessment of density forecasts. We adopt their suggestion and note
that it illustrates the quantile decomposition (22) of the continuous ranked probability score.

Figure 1 applies the threshold decomposition (20) and quantile decomposition (22) to the
density forecasting techniques f and g in the simulation study described in Sections 2 and
3.2. It is apparent that f and g are on equal footing in the lower tail, but f is superior in the
center, which is in accordance with (10). As shown in Table 5, the mean continuous ranked
probability score is 0.483 for f and 0.592 for g; this equals the integral under the respective
curves. The weighted scores in the table correspond to weighted integrals.

4 Case studies

4.1 Bank of England projections of quarterly inflation rates

The Bank of England’s Monetary Policy Committee (MPS) has issued probabilistic forecasts
of inflation rates and gross domestic product every quarter since February 1996 and Novem-
ber 1997, respectively, using fan charts to visualize the deciles of the predictive distributions
(Wallis 2003, 2004; Clements 2004; Elder, Kapetanios, Taylor and Yates 2005; Mitchell and
Hall 2005).4

We compare the Bank of England’s density forecasts of inflation rates (RPIX) to those
derived from a simplistic autoregressive time series model. The Bank of England employs
potentially asymmetric two-piece normal distributions with parameters µ ∈ R and σ1, σ2 > 0
and forecast density

f(y) =



















(π

2

)−1/2

(σ1 + σ2)
−1 exp

(

−(y − µ)2

2σ2
1

)

if y ≤ µ,

(π

2

)−1/2

(σ1 + σ2)
−1 exp

(

−(y − µ)2

2σ2
2

)

if y ≥ µ.

The simplistic competitor is a Gaussian autoregression of order one that uses a rolling esti-
mation window of length m = 6 quarters. This method results in Gaussian density forecasts.

4The quarterly Bank of England inflation report is available online at http://www.bankofengland.

co.uk/publications/inflationreport/. Archived forecasts can be downloaded at http://www.bankof

england.co.uk/publications/inflationreport/irprobab.htm. Observed RPIX inflation rates are avail-
able at http://www.statistics.gov.uk/StatBase/tsdataset.asp?vlnk=7173&More=Y under Office of
National Statistics code CDKQ. The rates are percentage changes over 12 months. The first quarter ranges
from March to May, the second from June to August, and so on.
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Table 5: Threshold and quantile weighted CRPS tests for density forecasts for the condition-
ally heteroscedastic process (5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under
the correct model assumption. Its competitor ĝt+1 is deliberately misspecified as described
in (10).

Threshold Weight Emphasis S
f

n S
g

n σ̂n tn P

u0(y) = 1 uniform 0.511 0.625 0.317 −10.72 < 0.001
u1(y) = φ(y) center 0.153 0.184 0.095 −10.01 < 0.001
u2(y) = 1 − φ(y)/φ(0) tails 0.129 0.163 0.097 −10.39 < 0.001
u3(y) = Φ(y) right tail 0.258 0.343 0.227 −11.33 < 0.001
u4(y) = 1 − Φ(y) left tail 0.254 0.281 0.098 −8.39 < 0.001

Quantile Weight Emphasis S
f

n S
g

n σ̂n tn P

v0(q) = 1 uniform 0.511 0.625 0.317 −10.72 < 0.001
v1(q) = q(1 − q) center 0.100 0.125 0.069 −10.99 < 0.001
v2(q) = (2q − 1)2 tails 0.113 0.125 0.045 −7.98 < 0.001
v3(q) = q2 right tail 0.157 0.198 0.116 −10.44 < 0.001
v4(q) = (1 − q)2 left tail 0.155 0.177 0.069 −9.60 < 0.001
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Figure 1: Threshold and quantile decomposition of the mean continuous ranked probability
score for density forecasts for the conditionally heteroscedastic process (5). The density
forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the correct model assumption. Its competitor
ĝt+1 is deliberately misspecified as described in (10).
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Figure 2: Threshold and quantile decomposition of the mean continuous ranked probability
score for Bank of England (BoE) and autoregressive (AR(1)) density forecasts of inflation
rates, at a prediction horizon of one quarter.

Table 6: Threshold and quantile weighted CRPS tests for density forecasts of inflation rates,
at a prediction horizon of one quarter, in percent. The Bank of England forecast takes the
role of f and the autoregressive benchmark the role of g.

Threshold Weight Emphasis S
BoE

n S
AR

n σ̂n tn P

u0(y) = 1 uniform 0.112 0.246 0.248 −3.62 < 0.001
u1(y) = φ2.5,1(y) center 0.041 0.081 0.064 −4.16 < 0.001
u2(y) = 1 − φ2.5,1(y)/φ2.5,1(2) tails 0.010 0.044 0.137 −1.69 0.090
u3(y) = Φ2.5,1(y) right tail 0.061 0.152 0.200 −3.07 0.002
u4(y) = 1 − Φ2.5,1(y) left tail 0.051 0.094 0.076 −3.75 < 0.001

Quantile Weight Emphasis S
BoE

n S
AR

n σ̂n tn P

v0(q) = 1 uniform 0.112 0.246 0.248 −3.62 < 0.001
v1(q) = q(1 − q) center 0.022 0.049 0.050 −3.67 < 0.001
v2(q) = (2q − 1)2 tails 0.026 0.050 0.049 −3.35 < 0.001
v3(q) = q2 right tail 0.033 0.077 0.078 −3.78 < 0.001
v4(q) = (1 − q)2 left tail 0.036 0.071 0.076 −3.12 0.002
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Figure 3: Threshold and quantile decomposition of the mean continuous ranked probability
score for Bank of England (BoE) and autoregressive (AR) density forecasts of inflation rates,
at a prediction horizon of seven quarters.

Table 7: Threshold and quantile weighted CRPS tests for density forecasts of inflation rates,
at a prediction horizon of seven quarters. The Bank of England forecast takes the role of f
and the autoregressive benchmark the role of g.

Threshold Weight Emphasis S
BoE

n S
AR

n σ̂n tn P

u0(y) = 1 uniform 0.304 0.381 0.437 −1.19 0.235
u1(y) = φ2.5,1(y) center 0.102 0.129 0.131 −1.43 0.152
u2(y) = 1 − φ2.5,1(y)/φ2.5,1(2) tails 0.049 0.057 0.166 −0.30 0.761
u3(y) = Φ2.5,1(y) right tail 0.170 0.226 0.324 −1.15 0.251
u4(y) = 1 − Φ2.5,1(y) left tail 0.134 0.155 0.148 −0.99 0.321

Quantile Weight Emphasis S
BoE

n S
AR

n σ̂n tn P

v0(q) = 1 uniform 0.304 0.381 0.437 −1.19 0.235
v1(q) = q(1 − q) center 0.057 0.072 0.081 −1.23 0.217
v2(q) = (2q − 1)2 tails 0.077 0.095 0.124 −0.96 0.338
v3(q) = q2 right tail 0.108 0.111 0.080 −0.24 0.813
v4(q) = (1 − q)2 left tail 0.083 0.127 0.263 −1.14 0.255
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Figure 4: Bank of England (BoE) and autoregressive (AR) forecasts of inflation rates, at a
prediction horizon of seven quarters ahead, for the third quarter of 1994 through the third
quarter of 2005. The plot shows the 50th and 90th percentiles of the density forecasts for
the two methods along with the observed rates.

Figure 2 and Table 6 compare the two methods at a prediction horizon of k = 1 quarters
ahead, for a test period ranging from the first quarter of 1993 to the first quarter of 2004, for
a total of n = 45 density forecast cases. Figure 2 shows the threshold and quantile decom-
positions (20) and (22) of the continuous ranked probability score for the two techniques.
The Bank of England forecast has a clear edge at almost all thresholds and quantiles, with
a mean continuous ranked probability score of 0.112%, as opposed to 0.246% for the autore-
gressive forecast. The integrals under the respective curves in Figure 2 equal these values.
The superiority of the Bank of England forecast is corroborated by Table 6, which reports
the results of weighted CRPS tests, using the weight functions of Table 4, where a = 2.5%
equals the MPC’s 1997–2003 policy target and b = 1.0% reflects the relative constancy of
the inflation rate during the evaluation period.

Figure 3 and Table 7 show results at a prediction horizon of k = 7 quarters ahead, for
the third quarter of 1994 (September through November) to the third quarter of 2005.
Perhaps surprisingly, the dominance of the Bank of England forecast is much less pronounced.
In Figure 3, the simplistic autoregressive forecast seems competitive at moderately large
thresholds and quantiles. The mean continuous ranked probability score is 0.304% for the
Bank of England forecast, as opposed to 0.382% for the autoregressive forecast. None of the
tests in Table 7 rejects the null hypothesis of vanishing expected score differentials.

To explain this we point at Figure 4, which shows quantiles of the two density forecasts at
a prediction horizon of seven quarters along with the realized inflation rates. The 90th per-
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centile of the Bank of England forecast was much too conservative, resulting in unnecessarily
wide prediction intervals that are penalized by the scores.

4.2 Probabilistic forecasts of wind resources at the Stateline wind

energy center

With the proliferation of wind power, probabilistic short-term forecasts of wind resources at
wind energy sites are becoming a critical requirement. Gneiting, Larson, Westrick, Genton
and Aldrich (2006) introduced the regime-switching space-time (RST) technique that merges
meteorological and statistical expertise to obtain accurate and calibrated, fully probabilistic
forecasts of wind speed and wind power. Briefly, the RST method identifies forecast regimes
at the wind energy site and fits a conditionally heteroscedastic predictive model for each
regime. Geographically dispersed meteorological observations in the vicinity of the wind
farm are used as predictor variables. The forecast densities are truncated normal.

Gneiting et al. (2006) applied the RST technique to obtain probabilistic forecasts of hourly
average wind speed near the Stateline wind energy center in the states of Oregon and Wash-
ington, at a prediction horizon of k = 2 hours. In what follows, we compare the RST density
forecasts to probabilistic forecasts derived from autoregressive time series models, as pro-
posed by Brown, Katz and Murphy (1984) and widely implemented since. Both methods
employ a rolling estimation window of 45 days or 1, 080 hours. The evaluation period ranges
from 1 May through 30 November 2003, for a total of n = 5, 136 density forecast cases. See
Gneiting et al. (2006) for details.5

Figure 5 shows the threshold and quantile decomposition of the continuous ranked probability
score for the two probabilistic forecasting methods. The RST technique is superior at all
thresholds and quantiles, with a mean continuous ranked probability score of 0.961 meters
per second, as opposed to 1.115 meters per second for the autoregressive benchmark. Table
8 shows the results of weighted CRPS tests with the weight functions in Table 4, where
a = 10 meters per second and b = 5 meters per second, a choice that is motivated by the
marginal climatological distribution of wind speeds (Gneiting et al. 2006). All tests are
overwhelmingly in favor of the RST technique.

5 Discussion

We have proposed a method for comparing density forecasts that is based on threshold and
quantile weighted versions of the continuous ranked probability score. R code is available
from the authors upon request.

5Gneiting et al. (2006) refer to the methods considered here as the RST-D-CH and AR-D-CH techniques.
The autoregressive method assumes Gaussian forecast densities that assign small but positive probability
mass to the negative halfaxis, which we reassign to wind speed zero. The continuous ranked probability
score handles the point mass naturally.
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Figure 5: Threshold and quantile decomposition of the mean continuous ranked probability
score for regime-switching space-time (RST) and autoregressive (AR) probabilistic forecasts
of hourly average wind speed at the Stateline wind energy center, at a prediction horizon of
two hours.

Table 8: Threshold and quantile weighted CRPS tests in the wind example. The regime-
switching space-time (RST) forecast takes the role of f and the autoregressive benchmark
the role of g.

Threshold Weight Emphasis S
RST

n S
AR

n σ̂n tn P

u0(y) = 1 uniform 0.961 1.115 0.838 −13.16 < 0.001
u1(y) = φ10,5(y) center 0.257 0.300 0.251 −12.28 < 0.001
u2(y) = 1 − φ10,5(y)/φ10,5(0) tails 0.318 0.364 0.293 −11.25 < 0.001
u3(y) = Φ10,5(y) right tail 0.342 0.398 0.386 −10.36 < 0.001
u4(y) = 1 − Φ10,5(y) left tail 0.619 0.718 0.552 −12.73 < 0.001

Quantile Weight Emphasis S
RST

n S
AR

n σ̂n tn P

v0(q) = 1 uniform 0.961 1.115 0.838 −13.16 < 0.001
v1(q) = q(1 − q) center 0.187 0.216 0.162 −12.93 < 0.001
v2(q) = (2q − 1)2 tails 0.213 0.250 0.201 −13.07 < 0.001
v3(q) = q2 right tail 0.299 0.351 0.302 −12.34 < 0.001
v4(q) = (1 − q)2 left tail 0.288 0.331 0.252 −12.30 < 0.001
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Our approach is similar in spirit to the weighted likelihood ratio test of Amisano and Gia-
comini (2007); however, it is based on proper scoring rules, and therefore avoids misguided
inferences. In the case of threshold weighting, it is formally equivalent to the approach
of Corradi and Swanson (2006), who provide a wealth of relevant theoretical results under
rolling and recursive estimation schemes. The threshold and quantile decompositions of the
continuous ranked probability score can be illustrated graphically, to provide diagnostic tools
that prompt insights into the strengths and deficiencies of forecasting methods, as we have
illustrated in the case studies.

Gneiting, Balabdaoui and Raftery (2007) contend that the goal of probabilistic forecasting
is to maximize the sharpness of the forecast densities subject to calibration. Calibration
refers to the statistical consistency between the forecast densities and the observations, and
is a joint property of the forecasts and the values that materialize. Sharpness refers to the
concentration of the forecast densities: The sharper the densities, the less the uncertainty,
and the sharper, the better, subject to calibration.

The probability integral transform (PIT) histogram is the primary diagnostic tool for cal-
ibration checks (Diebold, Gunther and Tay 1998; Corradi and Swanson 2006b; Gneiting,
Balabdaoui and Raftery 2007; Laio and Tamea 2007). The PIT is simply the value that the
predictive CDF attains at the observation (Dawid 1984). If the observation is drawn from
the forecast density, the PIT has a uniform distribution. Hence, to assess the calibration
of a density forecasting method, we find the PIT, repeat over a sizable number of forecast
cases, and check the PIT histogram for uniformity. This does not take the sharpness of the
density forecasts into account, as opposed to proper scoring rules, which provide a combined
assessment of calibration and sharpness (Gneiting, Balabdaoui and Raftery 2007).

A possible limitation of our method is that the unweighted continuous ranked probability
score is infinite if the forecast density has infinite first moment, such as in the case of a Cauchy
density. Even then, the mean scores (21) and (23) can be plotted versus the threshold z and
the quantile α, and the resulting plots can be interpreted diagnostically. Furthermore, the
threshold-weighted continuous ranked probability score (14) is finite if the weight function
is integrable, and in this latter form the weighted CRPS test continues to apply.

Appendix: Moment conditions

We supply the remaining nontrivial arguments in Section 3.2. To verify the assumptions of
Theorem 4 of Giacomini and White (2006), we need to show that the moment condition (19)
implies

E |S(f̂t+k, Yt+k) − S(ĝt+k, Yt+k)|2r (24)

to be finite, where S is the threshold-weighted continuous ranked probability score (14) or
the quantile-weighted score (15), and the weight function is bounded. For ease of notation,
we substitute f , g and Y for f̂t+k, ĝt+k and Yt+k, respectively. If the weight function is

19



bounded above by the constant M > 0, then

E |S(f, Y ) − S(g, Y )|2r ≤ (2M)2r (ECRPS(f, Y )2r + ECRPS(g, Y )2r).

We proceed to show that under (19) both ECRPS(f, Y )2r and ECRPS(g, Y )2r are finite. If
X and X ′ are independent random variables with density f that are independent of Y , then

CRPS(f, Y ) = E |X − Y | − 1

2
Ef |X − X ′| ≤ 2Ef |X| + |Y |

by the triangle inequality, and therefore

ECRPS(f, Y )2r ≤ 22r ((2Ef |X|)2r + E |Y |2r).

A similar result holds for E CRPS(g, Y )2r; hence, (19) is a sufficient condition for the expec-
tation (24) to be finite.

Finally, if the threshold weight function u in (14) is integrable, the score differential in (24)
is bounded and its moments of order r ≥ 2 are finite.
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