
1Comparing Detection Methods For SoftwareRequirements Inspections: A ReplicatedExperimentAdam A. Porter Lawrence G. Votta, Jr. Victor R. BasiliAbstract|Software requirements speci�cations (SRS) areoften validated manually. One such process is inspection, inwhich several reviewers independently analyze all or part ofthe speci�cation and search for faults. These faults are thencollected at a meeting of the reviewers and author(s).Usually, reviewers use Ad Hoc or Checklist methods touncover faults. These methods force all reviewers to relyon nonsystematic techniques to search for a wide variety offaults. We hypothesize that a Scenario-based method, inwhich each reviewer uses di�erent, systematic techniquesto search for di�erent, speci�c classes of faults, will have asigni�cantly higher success rate.We evaluated this hypothesis using a 3� 24 partial facto-rial, randomized experimental design. Forty eight graduatestudents in computer science participated in the experiment.They were assembled into sixteen, three-person teams. Eachteam inspected two SRS using some combination of Ad Hoc,Checklist or Scenario methods.For each inspection we performed four measurements: (1)individual fault detection rate, (2) team fault detection rate,(3) percentage of faults �rst identi�ed at the collection meet-ing (meeting gain rate), and (4) percentage of faults �rstidenti�ed by an individual, but never reported at the col-lection meeting (meeting loss rate).The experimental results are that (1) the Scenario methodhad a higher fault detection rate than either Ad Hoc orChecklist methods, (2) Scenario reviewers were more e�ec-tive at detecting the faults their scenarios are designed touncover, and were no less e�ective at detecting other faultsthan both Ad Hoc or Checklist reviewers, (3) Checklist re-viewers were no more e�ective than Ad Hoc reviewers, and(4) Collection meetings produced no net improvement in thefault detection rate { meeting gains were o�set by meetinglosses.Keywords| Controlled Experiments, Technique andMethodology Evaluation, Inspections, Reading TechniquesI. IntroductionOne way of validating a software requirements speci�ca-tion (SRS) is to submit it to an inspection by a team ofreviewers. Many organizations use a three-step inspectionprocedure for eliminating faults : detection, collection, andrepair1. [1], [3] A team of reviewers reads the SRS, iden-tifying as many faults as possible. Newly identi�ed faultsare collected, usually at a team meeting, and then sent tothe document's authors for repair.This work is supported in part by the National Aeronautics andSpace Administration under grant NSG{5123. Porter and Basili arewith the Department of Computer Science, University of Maryland,College Park, Maryland 20472. Votta is with the Software ProductionResearch Department, AT&T Bell Laboratories Naperville, IL 605661Depending on the exact form of the inspection, they are sometimescalled reviews or walkthroughs. For a more thorough description ofthe taxonomy see [1] pp. 171� and [2].

We are focusing on the methods used to perform the �rststep in this process, fault detection. For this article, wede�ne a fault detection method to be a set of fault detectiontechniques coupled with an assignment of responsibilitiesto individual reviewers.Fault detection techniques may range in prescriptivenessfrom intuitive, nonsystematic procedures, such as Ad Hocor Checklist techniques, to explicit and highly systematicprocedures, such as formal proofs of correctness.A reviewer's individual responsibility may be general {to identify as many faults as possible { or speci�c { to focuson a limited set of issues such as ensuring appropriate useof hardware interfaces, identifying untestable requirements,or checking conformity to coding standards.These individual responsibilities may be coordinatedamong the members of a review team. When they arenot coordinated, all reviewers have identical responsibili-ties. In contrast, the reviewers in coordinated teams mayhave separate and distinct responsibilities.In practice, reviewers often use Ad Hoc or Checklist de-tection techniques to discharge identical, general responsi-bilities. Some authors, notably Parnas and Weiss[4], haveargued that inspections would be more e�ective if each re-viewer used a di�erent set of systematic detection tech-niques to discharge di�erent, speci�c responsibilities.Until now, however, there have been no reproducible,quantitative studies comparing alternative detection meth-ods for software inspections. We have conducted such anexperiment and our results demonstrate that the choice offault detection method signi�cantly a�ects inspection per-formance. Furthermore, our experimental design may beeasily replicated by interested researchers.Below we describe the relevant literature, several alter-native fault detection methods which motivated our study,our research hypothesis, and our experimental observa-tions, analysis and conclusions.A. Inspection LiteratureA summary of the origins and the current practice ofinspections may be found in Humphrey [1]. Consequently,we will discuss only work directly related to our currente�orts.Fagan[5] de�ned the basic software inspection process.While most writers have endorsed his approach[6], [1], Par-nas and Weiss are more critical [4]. In part, they arguethat e�ectiveness su�ers because individual reviewers are
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GENERALFig. 1. Systematic Inspection Research Hypothesis. This �gure represents a software requirements speci�cation before and after anonsystematic technique, general and identical responsibility inspection and a systematic technique, speci�c and distinct responsibilityinspection. The points and holes represent various faults. The line-�lled regions indicate the coverage achieved by di�erent membersof the inspection team. Our hypothesis is that systematic technique, speci�c and coordinated responsibility inspections achieve broadercoverage and minimize reviewer overlap, resulting in higher fault detection rates and greater cost bene�ts than nonsystematic methods.not assigned speci�c responsibilities and because they lacksystematic techniques for meeting those responsibilities.Somemight argue that Checklists are systematic becausethey help de�ne each reviewer's responsibilities and suggestways to identify faults. Certainly, Checklists often posequestions that help reviewers discover faults. However, weargue that the generality of these questions and the lack ofconcrete strategies for answering them makes the approachnonsystematic.To address these concerns { at least for software designs{ Parnas and Weiss introduced the idea of active designreviews. The principal characteristic of an active designreview is that each individual reviewer reads for a speci�cpurpose, using specialized questionnaires. This proposalforms the motivation for the detection method proposed inSection II-B.2.B. Detection MethodsAd Hoc and Checklist methods are two frequently usedfault detection methods. With Ad Hoc detection methods,all reviewers use nonsystematic techniques and are assignedthe same general responsibilities.Checklist methods are similar to Ad Hoc, but each re-viewer receives a checklist. Checklist items capture impor-tant lessons learned from previous inspections within an en-vironment or application. Individual checklist items mayenumerate characteristic faults, prioritize di�erent faults,or pose questions that help reviewers discover faults, suchas \Are all interfaces clearly de�ned?" or \If input is re-ceived at a faster rate than can be processed, how is thishandled?" The purpose of these items is to focus reviewerresponsibilities and suggest ways for reviewers to identifyfaults.C. HypothesisWe believe that an alternative approach which gives in-dividual reviewers speci�c, orthogonal detection responsi-bilities and specialized techniques for meeting them will

result in more e�ective inspections.To explore this alternative we developed a set of fault-speci�c techniques called Scenarios { collections of proce-dures for detecting particular classes of faults. Each re-viewer executes a single scenario and multiple reviewers arecoordinated to achieve broad coverage of the document.Our underlying hypothesis is depicted in Figure 1: thatnonsystematic techniques with general reviewer responsi-bility and no reviewer coordination, lead to overlap andgaps, thereby lowering the overall inspection e�ectiveness;while systematic approaches with speci�c, coordinated re-sponsibilities reduce gaps, thereby increasing the overalle�ectiveness of the inspection.II. The ExperimentTo evaluate our systematic inspection hypothesis we de-signed and conducted a multi-trial experiment. The goalsof this experiment were twofold: to characterize the behav-ior of existing approaches and to assess the potential ben-e�ts of Scenario-based methods. We ran the experimenttwice; once in the Spring of 1993, and once the followingFall. Both runs used 24 subjects { students taking a gradu-ate course in formal methods who acted as reviewers. Eachcomplete run consisted of (1) a training phase in which thesubjects were taught inspection methods and the experi-mental procedures, and in which they inspected a sampleSRS, and (2) an experimental phase in which the subjectsconducted two monitored inspections.A. Experimental DesignThe design of the experiment is somewhat unusual. Toavoid misinterpreting the data it is important to under-stand the experiment and the reasons for certain elementsof its design 2.2See Judd, et al. [7], chapter 4 for an excellent discussion of ran-domized social experimental designs.



3Round/Speci�cationRound 1 Round 2WLMS CRUISE WLMS CRUISEad hoc 1B, 1D, 1G 1A, 1C, 1E 1A 1D, 2BDetection 1H, 2A 1F, 2DMethod checklist 2B 2E, 2G 1E, 2D, 2G 1B, 1Hscenarios 2C, 2F 2H 1F, 1C, 2E 1G, 2A, 2C2H 2FTABLE IThis table shows the settings of the independent variables. Each team inspects two documents, the WLMS and CRUISE, oneper round, using one of the three detection methods. Teams from the first replication are denoted 1A{1H, teams from thesecond replication are denoted 2A{2H.A.1 VariablesThe experiment manipulates �ve independent variables:1. the detection method used by a reviewer (Ad Hoc,Checklist, or Scenario);2. the experimental replication (we conducted two sep-arate replications);3. the inspection round (each reviewer participates intwo inspections during the experiment);4. the speci�cation to be inspected (two are used duringthe experiment).5. the order in which the speci�cations are inspected (ei-ther speci�cation can be inspected �rst).The detection method is our treatment variable. Theother variables allow us to assess several potential threatsto the experiment's internal validity. For each inspectionwe measure four dependent variables:1. the individual fault detection rate,2. the team fault detection rate 3,3. the percentage of faults �rst identi�ed at the collec-tion meeting (meeting gain rate), and4. the percentage of faults �rst identi�ed by an indi-vidual, but never reported at the collection meeting(meeting loss rate).A.2 DesignThe purpose of this experiment is to compare the AdHoc, Checklist, and Scenario detection methods for in-specting software requirements speci�cations.When comparingmultiple treatments, experimenters fre-quently use fractional factorial designs. These designs sys-tematically explore all combinations of the independentvariables, allowing extraneous factors such as team abil-ity, speci�cation quality, and learning to be measured andeliminated from the experimental analysis.Had we used such a design each team would have partic-ipated in three inspection rounds, reviewing each of threespeci�cations and using each of three methods exactly once.3The team and individual fault detection rates are the number offaults detected by a team or individual divided by the total number offaults known to be in the speci�cation. The closer that value is to 1,the more e�ective the detection method. No faults were intentionallyseeded into the speci�cations. All faults are naturally occurring.

The order in which the methods are applied and the spec-i�cations are inspected would have been dictated by theexperimental design.Such designs are unacceptable for this study becausethey require some teams to use the Ad Hoc or Checklistmethod after they have used the Scenario method. Sincethe Ad Hoc and Checklist reviewers create their own faultdetection techniques during the inspection (based on theirexperience or their understanding of the checklist), our con-cern was that using the Scenario method in an early roundmight imperceptibly distort the use of the other methodsin later rounds. Such inuences would be undetectable be-cause, unlike the Scenario methods, the Ad Hoc and Check-list methods do not require reviewers to perform speci�c,auditable tasks.We chose a partial factorial design in which each teamparticipates in two inspections, using some combination ofthe three detection methods, but teams using the Scenariomethod in the �rst round must continue to use it in the sec-ond round. Table I shows the settings of the independentvariables.A.3 Threats to Internal ValidityA potential problem in any experiment is that somefactor may a�ect the dependent variable without the re-searcher's knowledge. This possibility must be minimized.We considered �ve such threats: (1) selection e�ects, (2)maturation e�ects, (3) replication e�ects, (4) instrumenta-tion e�ects, and (5) presentation e�ects.Selection e�ects are due to natural variation in humanperformance. For example, random assignment of subjectsmay accidentally create an elite team. Therefore, the dif-ference in this team's natural ability will mask di�erencesin the detection method performance. Two approaches areoften taken to limit this e�ect:1. Create teams with equal skills. For example, rate eachparticipant's background knowledge and experience aseither low, medium, or high and then form teams ofthree by selecting one individual at random from eachexperience category. Detection methods are then as-signed to �t the needs of the experiment.2. Compose teams randomly, but require each team touse all three methods. In this way, di�erences in team



4skill are spread across all treatments.Neither approach is entirely appropriate. Although weused the �rst approach in our initial replication, the ap-proach is unacceptable for multiple replications, becauseeven if teams within a given replication have equal skills,teams from di�erent replications will not. As discussed inthe previous section, the second approach is also unsuitablebecause using the Scenarios in the �rst inspection Roundwill certainly bias the application of the Ad Hoc or Check-list methods in the second inspection Round.Our strategy for the second replication and future repli-cations is to assign teams and detection methods on a ran-dom basis. However, teams that used Scenarios in the �rstround were constrained to use them again in the secondround. This compromise provides more observations ofthe Scenario method and prevents the use of the Scenariomethod from a�ecting the use of the Ad Hoc or Checklistmethods. However we can't determine whether or not theteams that used only the Scenarios have greater naturalability than the other teams.Maturation e�ects are due to subjects learning as theexperiment proceeds. We have manipulated the detectionmethod used and the order in which the documents are in-spected so that the presence of this e�ect can be discoveredand taken into account.Replication e�ects are caused by di�erences in the ma-terials, participants, or execution of multiple replications.We limit this e�ect by using only �rst and second year grad-uate students as subjects - rather than both undergraduateand graduate students. Also, we maintain consistency inour experimental procedures by packaging the experimen-tal procedures as a classroom laboratory exercise. Thishelps us to ensure that similar steps are followed for allreplications. As we will show in Section III, variation inthe fault detection rate is not explained by selection, mat-uration, or replication e�ects.Finally, instrumentation e�ects may result from di�er-ences in the speci�cation documents. Such variation is im-possible to avoid, but we controlled for it by having eachteam inspect both documents.A.4 Threats to External ValidityThreats to external validity limit our ability to generalizethe results of our experiment to industrial practice. Weidenti�ed three such threats:1. The subjects in our experiment may not be repre-sentative of software programming professionals. Al-though more than half of the subjects have 2 or moreyears of industrial experience, they are graduate stu-dents, not software professionals. Furthermore, as stu-dents they may have di�erent motivations for partici-pating in the experiment.2. The speci�cation documents may not be representa-tive of real programming problems. Our experimen-tal speci�cations are atypical of industrial SRS in twoways. First, most of the experimental speci�cation iswritten in a formal requirements notation. (See Sec-tion II-B.) Although several groups at AT&T and else-

where are experimenting with formal notations [8], [9],it is not the industry's standard practice. Secondly,the speci�cations are considerably smaller than indus-trial ones.3. The inspection process in our experimental designmay not be representative of software developmentpractice. We have modeled our experiment's inspec-tion process after the one used in several developmentorganizations within AT&T [10]. Although this pro-cess is similar to a Fagan-style inspection, there aresome di�erences. One di�erence is that reviewers usethe fault detection activity to to �nd faults, not justto prepare for the inspection meeting. Another dif-ference is that during the collection meeting reviewersare given speci�c technical roles such as test expert orend-user only if the author feels there is a special needfor them.Our process also di�ers slightly from the AT&T pro-cess. For example, the SRS authors are not presentat our collection meetings, although, in practice, theynormally would be. Also, industrial reviewers maybring more domain knowledge to an inspection thanour student subjects did.To surmount these threats we are currently replicatingour experiment using software professionals to inspect in-dustrial work products. Nevertheless, laboratory experi-mentation is a necessary �rst step because it greatly re-duces the risk of transferring immature technology.A.5 Analysis StrategyOur analysis strategy had two steps. The �rst step was to�nd those independent variables that individually explaina signi�cant amount of the variation in the team detec-tion rate. The second step was to evaluate the combinede�ect of the variables shown to be signi�cant in the ini-tial analysis. Both analyses use standard analysis of vari-ance methods (see [11], pp. 165� and 210� or [12]). Oncethese relationships were discovered and their magnitudeestimated, we examined other data, such as correlationsbetween the categories of faults detected and the detectionmethods used that would con�rm or reject (if possible) acausal relationship between detection methods and inspec-tion performance.B. Experiment InstrumentationWe developed several instruments for this experiment:three small software requirements speci�cations (SRS), in-structions and aids for each detection method, and a datacollection form.B.1 Software Requirements Speci�cationsThe SRS we used describe three event-driven processcontrol systems: an elevator control system, a water levelmonitoring system, and an automobile cruise control sys-tem. Each speci�cation has four sections: Overview, Spe-ci�c Functional Requirements, External Interfaces, and aGlossary. The overview is written in natural language,
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Missing (or ambiguous) functionalityFig. 2. Relationship Between Fault Detection Methods. The �gure depicts the relationship between the fault detectionmethods usedin this study. The vertical extent represents the coverage. The horizontal axis labels the method and represents the degree of detail (thegreater the horizontal extent the greater the detail). Moving from Ad Hoc to Checklist to Scenario there is more detail and less coverage.The gaps in the Scenario and Checklist columns indicate that the Checklist is a subset of the Ad Hoc and the Scenarios are a subset ofthe Checklist.while the other three sections are speci�ed using the SCRtabular requirements notation [13].For this experiment, all three documents were adapted toadhere to the IEEE suggested format [2]. All faults presentin these SRS appear in the original documents or were gen-erated during the adaptation process; no faults were inten-tionally seeded into the document. The authors discovered42 faults in the WLMS SRS; and 26 in the CRUISE SRS.The authors did not inspect the ELEVATOR SRS since itwas used only for training exercises.B.1.a Elevator Control System (ELEVATOR). [14] de-scribes the functional and performance requirements of asystem for monitoring the operation of a bank of elevators(16 pages).B.1.b Water Level Monitoring System (WLMS). [15]describes the functional and performance requirements ofa system for monitoring the operation of a steam generatingsystem (24 pages).B.1.c Automobile Cruise Control System (CRUISE). [16]describes the functional and performance requirements foran automobile cruise control system (31 pages).B.2 Fault Detection MethodsTo make a fair assessment of the three detection meth-ods (Ad Hoc, Checklist, and Scenario) each method shouldsearch for a well-de�ned population of faults. To accom-plish this, we used a general fault taxonomy to de�ne theresponsibilities of Ad Hoc reviewers.The checklist used in this study is a re�nement of thetaxonomy. Consequently, Checklist responsibilities are asubset of the Ad Hoc responsibilities.The Scenarios are derived from the checklist by replac-ing individual Checklist items with procedures designed toimplement them. As a result, Scenario responsibilities aredistinct subsets of Checklist and Ad Hoc responsibilities.The relationship between the three methods is depicted inFigure 2.

The taxonomy is a composite of two schemes developedby Schneider, et al. [17] and Basili and Weiss [18]. Faultsare divided into two broad types: omission { in which im-portant information is left unstated and commission { inwhich incorrect, redundant, or ambiguous information isput into the SRS by the author. Omission faults were fur-ther subdivided into four categories: Missing Functionality,Missing Performance, Missing Environment, and MissingInterface. Commission faults were also divided into fourcategories: Ambiguous Information, Inconsistent Informa-tion, Incorrect or Extra Functionality, and Wrong Section.(See Appendix A for complete taxonomy.) We provided acopy of the taxonomy to each reviewer. Ad Hoc reviewersreceived no further assistance.Checklist reviewers received a single checklist derivedfrom the fault taxonomy. To generate the checklist we pop-ulated the fault taxonomy with detailed questions culledfrom several industrial checklists. Thus, the checklist itemsare similar in style to those found in several large organi-zations. All Checklist reviewers used the same checklist.(See Appendix B for the complete checklist.)Finally, we developed three groups of Scenarios. Eachgroup of Scenarios was designed for a speci�c subset of theChecklist items:1. Data Type Inconsistencies (DF),2. Incorrect Functionalities (IF),3. Missing or Ambiguous Functionalities (MF).After the experiment was �nished we applied the Sce-narios ourselves to estimate how broadly they covered theWLMS and CRUISE faults (i.e., what percentage of de-fects could be found if the Scenarios are properly applied.)We estimated that the Scenarios address about half of thefaults that are covered by the Checklist. Appendix C con-tains the complete list of Scenarios.B.3 Fault Report FormsWe also developed a Fault Report Form. Whenever apotential fault was discovered { during either the fault de-
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Fig. 3. Reviewer Fault Report Form. This is a small sample of the fault report form completed during each reviewer's fault detection.Faults number 10 and 11, found by reviewer 12 of team C for the WLMS speci�cation are shown.tection or the collection activities { an entry was madeon the form. The entry included four kinds of information:Inspection Activity (Detection, Collection); Fault Location(Page and Line Numbers); Fault Disposition, (Faults canbe True Faults or False Positives); and a prose Fault De-scription. A small sample of a Fault Report appears inFigure 3.C. Experiment PreparationThe participants were given two, 75 minute lectures onsoftware requirements speci�cations, the SCR tabular re-quirements notation, inspection procedures, the fault clas-si�cation scheme, and the �lling out of data collectionforms. The references for these lectures were Fagan [5],Parnas [4], and the IEEE Guide to Software RequirementsSpeci�cations [19]. The participants were then assembledinto three-person teams { see Section II-A.3 for details.Within each team, members were randomly assigned toact as the moderator, the recorder, or the reader duringthe collection meeting.D. Conducting the ExperimentD.1 TrainingFor the training exercise, each team inspected the ELE-VATOR SRS. Individual team members read the speci�ca-tion and recorded all faults they found on a Fault ReportForm. Their e�orts were restricted to two hours. Later wemet with the participants and answered questions aboutthe experimental procedures. Afterwards, each team con-ducted a supervised collection meeting and �lled out a mas-ter Fault Report Form for the entire team. The ELEVA-

TOR SRS was not used in the remainder of the experiment.D.2 Experimental PhaseThis phase involved two inspection rounds. The instru-ments used were the WLMS and CRUISE speci�cationsdiscussed in Section II-B.1, a checklist, three groups offault-based scenarios, and the Fault Report Form. Thedevelopment of the checklist and scenarios is described inSection II-B.2. The same checklist and scenarios were usedfor both documents.During the �rst Round, four of the eight teams wereasked to inspect the CRUISE speci�cation; the remainingfour teams inspected the WLMS speci�cation. The de-tection methods used by each team are shown in Table I.Fault detection was limited to two hours, and all potentialfaults were reported on the Fault Report Form. After faultdetection, all materials were collected.4Once all team members had �nished fault detection, theteam's moderator arranged for the collection meeting. Atthe collection meeting, the reader paraphrases each require-ment. During this paraphrasing activity, reviewers maybring up any issues found during preparation or discussnew issues. The team's recorder maintained the team'smaster Fault Report Form. Collection was also limited to2 hours and the entire Round was completed in one week.The collection meeting process is the same regardless ofwhich fault detection method was used during fault detec-tion.4For each round, we set aside 14 two-hour time slots during whichinspection tasks could be done. Participants performed each taskwithin a single two-hour session and were not allowed to work atother times.



7
21 32 41 421 2Sum

Key

44
43

Rev Method

Team

...
1

... ...
42 Data inconsistency 9

Incorrect functionality

Missing functionality

Scenario

0 0 0 0 0 0

0000106

18

23

AH

0

0

DT

1

0

MA

0

0

1

AH DT

0

0

AH

0

0Fig. 4. Data Collection for each WLMS inspections. This �gure shows the data collected from one team's WLMS inspection. The�rst three rows identify the review team members, the detection methods they used, the number of faults they found, and shows theirindividual fault summaries. The fourth row contains the team fault summary. The fault summaries show a 1 (0) where the team orindividual found (did not �nd) a fault. The �fth row contains the fault key which identi�es those reviewers who were responsible forthe fault (AH for Ad Hoc only; CH for Checklist or Ad Hoc; DT for data type inconsistencies, Checklist, and Ad Hoc; IF for incorrectfunctionality, Checklist and Ad Hoc; and MF for missing or ambiguous functionality, Checklist and Ad Hoc). Meeting gain and loss ratescan be calculated by comparing the individual and team fault summaries. For instance, fault 21 is an example of meeting loss. It wasfound by reviewer 44 during the fault detection activity, but the team did not report it at the collection meeting. Fault 32 is an exampleof meeting gain; it is �rst discovered at the collection meeting.
1 2Sum

Key

44
43
42

Rev Method

Team

... ... ...
25

0

2614 17
Ad Hoc

Ad Hoc

Ad Hoc

Ad Hoc 10

4

6

7 0

0

0

0

AH MF

1

0

1

1 0

0

0

1

AH

0

0

0

0

AH

1

1

0

1

AH DT

0

0

0Fig. 5. Individual and Team Fault Summaries (CRUISE). This �gure shows the data collected from one team's CRUISE inspection.The data is identical to that of the WLMS inspections except that the CRUISE has fewer faults { 26 versus 42 for the WLMS { and thefault key is di�erent.The second Round was similar to the �rst except thatteams who had inspected the WLMS during Round 1 in-spected the CRUISE in Round 2 and vice versa.III. Data and AnalysisA. DataThree sets of data are important to our study: the faultkey, the team fault summaries, and the individual faultsummaries.The fault key encodes which reviewers are responsible foreach fault. In this study, reviewer responsibilities are de-�ned by the detection techniques a reviewer uses. Ad Hocreviewers are responsible (asked to search for) for all faults.Checklist reviewers are responsible for a large subset of theAd Hoc faults5. Since each Scenario is a re�nement of sev-eral Checklist items, each Scenario reviewer6 is responsiblefor a distinct subset of the Checklist faults.The team fault summary shows whether or not a teamdiscovered a particular fault. This data is gathered fromthe fault report forms �lled out at the collection meetingsand is used to assess the e�ectiveness of each fault detectionmethod.The individual fault summary shows whether or not a re-viewer discovered a particular fault. This data is gatheredfrom the fault report forms each reviewer completed during5i.e., faults for which an Ad Hoc reviewer is responsible.6i.e., reviewers using Scenarios.

their fault detection activity. Together with the fault keyit is used to assess whether or not each detection techniqueimproves the reviewer's ability to identify speci�c classesof faults.We measure the value of collection meetings by compar-ing the team and individual fault summaries to determinethe meeting gain and loss rates. One team's individual andteam fault summaries, and the fault key are represented inFigures 4 and Figure 5.Our analysis is done in three steps: (1) We comparedthe team fault detection rates to determine whether thedetection methods have the same e�ectiveness. (2) We an-alyzed the performances of individual reviewers to under-stand why some methods performed better than others. (3)Finally, we analyzed the e�ectiveness of collection meetingsto further understand di�erences in each method's perfor-mance.B. Analysis of Team PerformanceFigure 6 summarizes the team performance data. As de-picted, the Scenario detection method resulted in the high-est fault detection rates, followed by the Ad Hoc detectionmethod, and �nally by the Checklist detection method.Table II presents a statistical analysis of the team perfor-mance data as outlined in Section II-A.5. The independentvariables are listed from the most to the least signi�cant.The Detection method and Speci�cation are signi�cant,but the Round, Replication, and Order are not.
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C. E�ect of Scenarios on Individual PerformanceWe initially hypothesized that increasing the specializa-tion and coordination of each reviewer's responsibilitieswould improve team performance. We proposed that theScenario would be one way to achieve this. We have shownabove that the teams using Scenarios were the most e�ec-tive. However, this did not establish that the improvementwas due to increases in specialization and coordination, andnot to some other factor.Some alternative explanations for the observed improve-ment could be (1) the Scenario reviewers responded to someperceived expectation that their performance should im-prove; or (2) the Scenario approach improves individual



9Speci�cation Detection MethodAd Hoc Checklist ScenarioWLMS .5 .38 .29 .5 .48 .45 .29 .52 .5 .33 .74 .57 .55 .4 .62 .55(average) .43 .41 .57Cruise .46 .27 .27 .23 .38 .23 .35 .19 .31 .23 .23 .5 .42 .42 .54 .35(average) .31 .24 .45TABLE IIITeam Fault Detection Rate Data. The nominal and average fault detection rates for all 16 teams.E�ect SST �T SSR �R (SST =�T )(�R=SSR) Signi�canceLevelDetection Method .200 2 .212 26 12.235 < :01Speci�cation .143 1 .212 26 17.556 < :01Meth�Spec .004 2 .212 26 .217 .806TABLE IVAnalysis of Variance of Detection Method and Speci�cation. This table displays the results of an analysis of the varianceof the average detection rates given in Table III.performance regardless of Scenario content. Consequently,our concern is to determine exactly how the use of Scenar-ios a�ected the reviewer's performance. To examine this,we formulated two hypothesis schemas.� H1: Method X reviewers do not �nd any moreX faults than do method Y reviewers.� H2: Method X reviewers �nd either a greateror smaller number of non X faults than domethod Y reviewers.C.1 Rejecting the Perceived Expectation ArgumentIf Scenario reviewers performed better than Checklistand Ad Hoc reviewers on both scenario-targeted and non-scenario-targeted faults, then we must consider the pos-sibility that their improvement was caused by somethingother than the scenarios themselves.One possibility was that the Scenario reviewers weremerely reacting to the novelty of using a clearly di�erentapproach, or to a perceived expectation on our part thattheir performance should improve. To examine this we an-alyzed the individual fault summaries to see how Scenarioreviewers di�ered from other reviewers.The detection rates of Scenario reviewers are comparedwith those of all other reviewers in Tables V, VI, VIIand VIII. Using the one and two-sided Wilcoxon-Mann-Whitney tests [20], we found that in most cases Scenarioreviewers were more e�ective than Checklist or Ad Hocreviewers at �nding the faults the scenario was designedto uncover. At the same time, all reviewers, regardless ofwhich detection method each used, were equally e�ectiveat �nding those faults not targeted by any of the Scenarios.Since Scenario reviewers could not have known the faultclassi�cations, it is unlikely that their reporting could havebeen biased. Therefore these results suggest that the de-tection rate of Scenario reviewers shows improvement only

with regard to those faults for which they are explicitlyresponsible. Consequently, the argument that the Sce-nario reviewers' improved performance was primarily dueto raised expectations or unknown motivational factors isnot supported by the data.C.2 Rejecting the General Improvement ArgumentAnother possibility is that the Scenario approach ratherthan the content of the Scenarios was responsible for theimprovement.Each Scenario targets a speci�c set of faults. If the re-viewers using a type X Scenario had been no more e�ectiveat �nding type X faults than had reviewers using non-XScenarios, then the content of the Scenarios did not sig-ni�cantly inuence reviewer performance. If the reviewersusing a type X Scenario had been more e�ective at �nd-ing non-X faults than had reviewers using other Scenarios,then some factor beyond content caused the improvement.To explore these possibilities we compared the Scenario re-viewers' individual fault summaries with each other.Looking again at Tables V, VI, VII, and VIII we see thateach group of Scenario reviewers was the most e�ective at�nding the faults their Scenarios were designed to detect,but was generally no more e�ective than other Scenario re-viewers at �nding faults their Scenarios were not designedto detect. Since Scenario reviewers showed improvementin �nding only the faults for which they were explicitlyresponsible, we conclude that the content of the Scenariowas primarily responsible for the improved reviewer per-formance.D. Analysis of Checklists on Individual PerformanceThe scenarios used in this study were derived from thechecklist. Although this checklist targeted a large num-ber of existing faults, our analysis shows that the perfor-



10Reviewers Using Method Finding Faults of Type Compared with Reviewers using MethodDetection Number Fault NumberMethod Reviewers Population Present DT MF IF CH AHDT 6 DT 14 - .02 .06 .01 .02(6.5) (3) (4.5) (4) (4)MF 6 MF 5 .07 - .12 .02 .04(0.5) (2) (1) (0) (1)IF 6 IF 5 .01 .01 - .04 .01(0) (1) (1.5) (1) (1)CH 12 CH 38 .95 .86 .89 - .51(10.5) (11) (12.5) (8) (10)AH 18 AH 42 .91 .84 .75 .37 -(12) (12.5) (13) (9.5) (11)TABLE VSigni�cance Table for H1 hypotheses: WLMS inspections. This table tests the H1 hypothesis - Method X reviewers do notfind any more X faults than do method Y reviewers - for all pairs of detection methods. Each row in the tablecorresponds to a population of reviewers and the population of faults for which they were responsible, i.e., method Xreviewers and X faults. The last five columns correspond to a second reviewer population, i.e., method Y reviewers. Eachcell in the last five columns contains two values. The first value is the probability that H1 is true, using the one-sidedWilcoxon-Mann-Whitney test. The second value { in parentheses { is the median number of faults found by the method Yreviewers.Reviewers Using Method Finding Faults of Type Compared with Reviewers using MethodDetection Number Fault NumberMethod Reviewers Population Present DT MF IF CH AHDT 5 DT 10 - .05 .03 < :01 .02(6) (3) (2) (1) (3)MF 5 MF 1 NA - NA NA NA(0) (0) (0) (0) (0)IF 5 IF 3 NA NA - NA NA(0) (0) (0) (0) (0)CH 12 CH 24 > :99 .95 .93 - .98(8) (5) (4) (2.5) (5)AH 21 AH 26 .96 .50 .41 .02 -(8) (5) (5) (3) (5)TABLE VISigni�cance Table for H1 hypotheses: CRUISE inspections. This analysis is identical to that performed for WLMSinspections. However, we chose not to perform any statistical analysis for the Missing Functionality and IncorrectFunctionality faults because there are too few faults of those types.mance of Checklist teams were no more e�ective than AdHoc teams. One explanation for this is that nonsystematictechniques are di�cult for reviewers to implement.To study this explanation we again tested the H1 hy-pothesis that Checklist reviewers were no more e�ectivethan Ad Hoc reviewers at �nding Checklist faults. FromTables V and VI we see that even though the Checklist tar-gets a large number of faults, it does not actually improvea reviewer's ability to �nd those faults.E. Analysis of Collection MeetingsIn his original paper on software inspections Fagan [5]asserts that
Sometimes agrant errors are found during : : :[fault detection], but in general, the number oferrors found is not nearly as high as in the : : :[collection meeting] operation.From a study of over 50 inspections, Votta [3] collecteddata that strongly contradicts this assertion. In this Sec-tion, we measure the bene�ts of collection meetings by com-paring the team and individual fault summaries to deter-mine the meeting gain and meeting loss rates. (See Figure 4and Figure 5).A \meeting gain" occurs when a fault is found for the�rst time at the collection meeting. A \meeting loss" oc-curs when a fault is �rst found during an individual's fault



11Reviewers Using Method Finding Faults of Type Compared with Reviewers using MethodDetection Number Fault NumberMethod Reviewers Population Present DT MF IF CH AHDT 6 DTc 28 - .92 .82 .50 .64(4.5) (9) (7.5) (5.5) (6)MF 6 MFc 37 .87 - .83 .56 .64(11) (9.5) (12.5) (8.5) (10)IF 6 IFc 37 .66 .53 - .24 .27(11) (12) (11.5) (8.5) (10)CH 12 CHc 4 .12 .28 .35 - .07(0.5) (1) (1) (1) (1)AH 18 AHc 0 NA NA NA NA {(0) (0) (0) (0) (0)TABLE VIISigni�cance Table for H2 hypothesis: WLMS inspections. This table tests the H2 hypothesis - Method X reviewers find agreater or smaller number of non X faults than do method Y reviewers - for all pairs of detection methods. Each row inthe table corresponds to a population of reviewers and the population of faults for which they were not responsible - i.e.,method X reviewers and non X faults (the complement of the set of X faults). The last five columns correspond to asecond reviewer population, i.e., method Y reviewers. Each cell in the last five columns contains two values. The firstvalue is the probability that H2 is true, using the two-sided Wilcoxon-Mann-Whitney test. The second value is the mediannumber of faults found by the method Y reviewers.Reviewers Using Method Finding Faults of Type Compared with Reviewers using MethodDetection Number Fault NumberMethod Reviewers Population Present DT MF IF CH AHDT 5 DTc 16 - .59 .86 .37 .46(2) (2) (3) (2) (2)MF 5 MFc 25 .96 { .33 .06 .62(8) (5) (4) (3) (5)IF 5 IFc 23 .96 .41 { .44 .57(8) (4) (5) (2.5) (5)CH 12 CHc 2 NA NA NA { NA(0) (1) (0) (0) (0)AH 21 AHc 0 NA NA NA NA {(0) (0) (0) (0) (0)TABLE VIIISigni�cance Table for H2 hypothesis: CRUISE inspections. This analysis is identical to that performed for WLMSinspections. However, we chose not to perform statistical analysis for the non Checklist faults because there are too fewfaults of that type.detection activity, but it is subsequently not recorded dur-ing the collection meeting. Meeting gains may thus beo�set by meeting losses and the di�erence between meet-ing gains and meeting losses is the net improvement dueto collection meetings. Our results indicate that collectionmeetings produce no net improvement.E.1 Meeting GainsThe meeting gain rates reported by Votta were a negli-gible 3:9 � :7%. Our data tells a similar story. (Figure 7displays the meeting gain rates for WLMS inspections.)The mean gain rate is 4:7 � 1:3% for WLMS inspectionsand 3:1� 1:1% for CRUISE inspections. The rates are not
signi�cantly di�erent. It is interesting to note that these re-sults are consistent with Votta's earlier study even thoughVotta's reviewers were professional software developers andnot students.E.2 Meeting LossesThe average meeting loss rates were 6:8 � 1:6% and7:7� 1:7% for the WLMS and CRUISE respectively. (SeeFigure 8.) One cause of meeting loss might be that review-ers are talked out of the belief that something is a fault.Another cause may be that during the meeting reviewersforget or can not reconstruct a fault found earlier.This e�ect has not been previously reported in the lit-
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Fig. 7. Meeting Gains for WLMS Inspections. Each point represents the meeting gain rate for a single inspection, i.e., the number offaults �rst identi�ed at a collection meeting divided by the total number of faults in the speci�cation. Each rate is marked with symbolindicating the inspection method used. The vertical line segment through each symbol indicates one standard deviation in the estimate(assuming each fault was a Bernoulli trial). This information helps in assessing the signi�cance of any one rate. The average meetinggain rate is 4:7� 1:3% for the WLMS. (3:1� 1:1% for the CRUISE.)erature. However, since the interval between the detectionand collection activities is usually longer in practice thanit was in our experiment (one to two days in our study ver-sus one or two weeks in practice), this e�ect may be quitesigni�cant.E.3 Net Meeting ImprovementThe average net meeting improvement is �:9 � 2:2 forWLMS inspections and �1:2�1:7 for CRUISE inspections.(Figure 9 displays the net meeting improvement for WLMSinspections.) We found no correlations between the loss,gain, or net improvement rates and any of our experiment'sindependent variables.IV. Summary and ConclusionsOur experimental design for comparing fault detectionmethods is exible and economical, and allows the exper-imenter to assess several potential threats to the experi-ment's internal validity. In particular, we determined thatneither maturation, replication, selection, or presentatione�ects had any signi�cant inuence on inspection perfor-mance. However, di�erences in the SRS did.From our analysis of the experimental data we drew sev-eral conclusions. As with any experiment these conclusionsapply only to the experimental setting from which they aredrawn. Readers must carefully consider the threats to ex-ternal validity described in Section II-A.4 before attempt-ing to generalize these results.1. The fault detection rate when using Scenar-ios was superior to that obtained with AdHoc or Checklist methods { an improvementof roughly 35%.2. Scenarios helped reviewers focus on speci�cfault classes. Furthermore, in comparison to Ad

Hoc or Checklist methods, the Scenario method didnot compromise their ability to detect other classes offaults. (however, the scenarios appeared to be bet-ter suited to the fault pro�le of the WLMS than theCRUISE. This indicates that poorly designed scenar-ios may lead to poor inspection performance.)3. The Checklist method { the industry standard,was no more e�ective than the Ad Hoc detec-tion method.4. On the average, collection meetings con-tributed nothing to fault detection e�ective-ness.The results of this work have important implications forsoftware practitioners. The indications are that overall in-spection performance can be improved when individual re-viewers use systematic procedures to address a small setof speci�c issues. This contrasts with the usual practice,in which reviewers have neither systematic procedures norclearly de�ned responsibilities.Economical experimental designs are necessary to allowreplication in other environments with di�erent popula-tions. For software researchers, this work demonstrates thefeasibility of constructing and executing inexpensive exper-iments to validate fundamental research recommendations.V. Future WorkThe experimental data raise many interesting questionsfor future study.� In many instances a single reviewer found a fault, butthe fault was not subsequently recorded at the collec-tion meeting. Are single reviewers sometimes forget-ting to mention faults they observed, or is the reviewerbeing talked out of the fault at the team meeting?
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Fig. 8. Meeting Loss Rate for WLMS Inspections. Each point represents the meeting loss rate for a single inspection. The meeting lossrate is the number of faults �rst detected by an individual reviewer divided by the total number of faults in the speci�cation. Each rateis marked with a symbol indicating the inspection method used. The vertical line segment through each symbol indicates one standarddeviation in the estimate of the rate (assuming each fault was a Bernoulli trial). This information helps in determining the signi�canceof any one rate. The average team loss rate is 6:8� 1:6% for the WLMS. (7:7� 1:7% for CRUISE).
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Fig. 9. Net Meeting Improvement for WLMS. Each symbol indicates the net meeting improvement for a single inspection. The averagenet meeting improvement rate is �:9� 2:2 for the WLMS. (�1:2� 1:7 for the CRUISE). These rates are not signi�cantly di�erent from0.What are the signi�cant suppression mechanisms af-fecting collection meetings?� Very few faults are initially discovered during collec-tion meetings. Therefore, in view of their impact ondevelopment interval (calendar time to complete de-velopment), are these meetings worth holding?� More than half of the faults are not addressed by theScenarios used in this study. What other Scenarios arenecessary to achieve a broader fault coverage?� There are several threats to this experiment's exter-nal validity. These threats can only be addressed byreplicating and reproducing these studies. Each newrun reduces the probability that our results can be
explained by human variation or experimental error.Consequently, we are creating a laboratory kit (i.e.,a package containing all the experimental materials,data, and analysis) to facilitate replication. The kit isavailable via anonymous ftp at ftp.cs.umd.edu.� Finally, we are using the lab kit to reproduce the ex-periments with other university researchers in Japan,Germany, Italy, and Australia and with industrial de-velopers at AT&T Bell Laboratories and Motorola Inc.These studies will allow us to evaluate our hypotheseswith di�erent populations of programmers and di�er-ent software artifacts.
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AppendixI. Ad Hoc DetectionThe fault taxonomy is due to the work of Schneider, etal., and Basili and Weiss.� Omission{ Missing Functionality: Information describing thedesired internal operational behavior of the systemhas been omitted from the SRS.{ Missing Performance: Information describing thedesired performance speci�cations has either beenomitted or described in a way that is unacceptablefor acceptance testing.{ Missing Interface: Information describing how theproposed system will interface and communicatewith objects outside the the scope of the system hasbeen omitted from the SRS.{ Missing Environment: Information describing the re-quired hardware, software, database, or personnelenvironment in which the system will run has beenomitted from the SRS� Commission{ Ambiguous Information: An important term, phraseor sentence essential to the understanding of systembehavior has either been left unde�ned or de�ned ina way that can cause confusion and misunderstand-ing.{ Inconsistent Information: Two sentences containedin the SRS directly contradict each other or expressactions that cannot both be correct or cannot bothbe carried out.{ Incorrect Fact: Some sentence contained in the SRSasserts a facts that cannot be true under the condi-tions speci�ed in the SRS.{ Wrong Section: Essential information is misplacedwithin the SRSII. Checklist Method� General{ Are the goals of the system de�ned?{ Are the requirements clear and unambiguous?{ Is a functional overview of the system provided?{ Is an overview of the operational modes provided?{ Have the software and hardware environments beenspeci�ed?{ If assumptions that a�ect implementation have beenmade, are they stated?{ Have the requirements been stated in terms of inputs,outputs, and processing for each function?{ Are all functions, devices, constraints traced to re-quirements and vice versa?{ Are the required attributes, assumptions and con-straints of the system completely listed?� Omission{ Missing Functionality� Are the described functions su�cient to meet thesystem objectives?



15� Are all inputs to a function su�cient to performthe required function?� Are undesired events considered and their requiredresponses speci�ed?� Are the initial and special states considered (e.g.,system initiation, abnormal termination)?{ Missing Performance� Can the system be tested, demonstrated, analyzed,or inspected to show that it satis�es the require-ments?� Have the data type, rate, units, accuracy, resolu-tion, limits, range and critical values� for all internal data items been speci�ed?� Have the accuracy, precision, range, type, rate,units, frequency, and volume of inputs and out-puts been speci�ed for each function?{ Missing Interface� Are the inputs and outputs for all interfaces su�-cient?� Are the interface requirements between hardware,software, personnel, and procedures included?{ Missing Environment� Have the functionality of hardware or software in-teracting with the system been properly speci-�ed?� Commission{ Ambiguous Information� Are the individual requirements stated so that theyare discrete, unambiguous, and testable?� Are all mode transitions speci�ed deterministicly?{ Inconsistent Information� Are the requirements mutually consistent?� Are the functional requirements consistent with theoverview?� Are the functional requirements consistent with theactual operating environment?{ Incorrect or Extra Functionality� Are all the described functions necessary to meetthe system objectives?� Are all inputs to a function necessary to performthe required function?� Are the inputs and outputs for all interfaces nec-essary?� Are all the outputs produced by a function used byanother function or transferred across an exter-nal interface?{ Wrong Section� Are all the requirements, interfaces, constraints,etc. listed in the appropriate sections.III. ScenariosA. Data Type Consistency Scenario1. Identify all data objects mentioned in the overview(e.g., hardware component, application variable, ab-breviated term or function)(a) Are all data objects mentioned in the overviewlisted in the external interface section?

2. For each data object appearing in the external inter-face section determine the following information:� Object name:� Class: (e.g., input port, output port, application vari-able, abbreviated term, function)� Data type: (e.g., integer, time, boolean, enumera-tion)� Acceptable values: Are there any constraints, ranges,limits for the values of this object� Failure value: Does the object have a special failurevalue?� Units or rates:� Initial value:(a) Is the object's speci�cation consistent with its de-scription in the overview?(b) If object represents a physical quantity, are its unitsproperly speci�ed?(c) If the object's value is computed, can that compu-tation generate a non-acceptable value?3. For each functional requirement identify all data ob-ject references:(a) Do all data object references obey formatting con-ventions?(b) Are all data objects referenced in this requirementlisted in the input or output sections?(c) Can any data object use be inconsistent with thedata object's type, acceptable values, failure value,etc.?(d) Can any data object de�nition be inconsistent withthe data object's type, acceptable values, failurevalue, etc.?B. Incorrect Functionality Scenario1. For each functional requirement identify all in-put/output data objects:(a) Are all values written to each output data objectconsistent with its intended function?(b) Identify at least one function that uses each outputdata object.2. For each functional requirement identify all speci�edsystem events:(a) Is the speci�cation of these events consistent withtheir intended interpretation?3. Develop an invariant for each system mode (i.e. Un-der what conditions must the system exit or remain ina given mode)?(a) Can the system's initial conditions fail to satisfythe initial mode's invariant?(b) Identify a sequence of events that allows the sys-tem to enter a mode without satisfying the mode'sinvariant.(c) Identify a sequence of events that allows the systemto enter a mode, but never leave (deadlock).C. Ambiguities Or Missing Functionality Scenario1. Identify the required precision, response time, etc. foreach functional requirement.
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