
Empirical Software Engineering, 3, 355–379 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Comparing Detection Methods For Software
Requirements Inspections: A Replication Using
Professional Subjects

ADAM PORTER*
Computer Science Department, University of Maryland, College Park, Maryland 20742

LAWRENCE VOTTA
Software Production Research Department, Lucent Technologies, Naperville, Illinois 60566

Received December 12, 1996; Revised July 22, 1998

Abstract. Software requirements specifications (SRS) are often validated manually. One such process is inspec-
tion, in which several reviewers independently analyze all or part of the specification and search for faults. These
faults are then collected at a meeting of the reviewers and author(s).

Usually, reviewers use Ad Hoc or Checklist methods to uncover faults. These methods force all reviewers to
rely on nonsystematic techniques to search for a wide variety of faults. We hypothesize that a Scenario-based
method, in which each reviewer uses different, systematic techniques to search for different, specific classes of
faults, will have a significantly higher success rate.

In previous work we evaluated this hypothesis using 48 graduate students in computer science as subjects.
We now have replicated this experiment using 18 professional developers from Lucent Technologies as sub-

jects. Our goals were to (1) extend the external credibility of our results by studying professional developers,
and to (2) compare the performances of professionals with that of the graduate students to better understand how
generalizable the results of the less expensive student experiments were.

For each inspection we performed four measurements: (1) individual fault detection rate, (2) team fault detec-
tion rate, (3) percentage of faults first identified at the collection meeting (meeting gain rate), and (4) percentage
of faults first identified by an individual, but never reported at the collection meeting (meeting loss rate).

For both the professionals and the students the experimental results are that (1) the Scenario method had a higher
fault detection rate than either Ad Hoc or Checklist methods, (2) Checklist reviewers were no more effective than
Ad Hoc reviewers, (3) Collection meetings produced no net improvement in the fault, and detection rate—meeting
gains were offset by meeting losses,

Finally, although specific measures differed between the professional and student populations, the outcomes of
almost all statistical tests were identical. This suggests that the graduate students provided an adequate model of
the professional population and that the much greater expense of conducting studies with professionals may not
always be required.

Keywords: inspection, controlled experiment, replication

1. Introduction

One way of validating a software requirements specification (SRS) is to submit it to an
inspection by a team of reviewers. Many organizations use a three-step inspection procedure
for eliminating faults: detection, collection, and repair.1 (Humphrey, 1989; Votta, 1993) A
team of reviewers reads the SRS, identifying as many faults as possible. Newly identified

* This work is supported by a National Science Foundation Faculty Early Career Development Award CCR-
9501354.



356 PORTER AND VOTTA

faults are collected, usually at a team meeting, and then sent to the document’s authors for
repair.

We are focusing on the methods used to perform the first step in this process, fault
detection. For this article, we define a fault detection method to be a set of fault detection
techniques coupled with an assignment of responsibilities to individual reviewers.

Fault detection techniques may range in prescriptiveness from intuitive, nonsystematic
procedures, such as Ad Hoc or Checklist techniques, to explicit and highly systematic
procedures, such as formal proofs of correctness.

A reviewer’s individual responsibility may be general—to identify as many faults as
possible—or specific—to focus on a limited set of issues such as ensuring appropriate
use of hardware interfaces, identifying untestable requirements, or checking conformity to
coding standards.

These individual responsibilities may be coordinated among the members of a review
team. When they are not coordinated, all reviewers have identical responsibilities. In
contrast, the reviewers in coordinated teams may have separate and distinct responsibilities.

In practice, reviewers often use Ad Hoc or Checklist detection techniques to discharge
identical, general responsibilities. Some authors, notably Parnas and Weiss (1985), have
argued that inspections would be more effective if each reviewer used a different set of
systematic detection techniques to discharge different, specific responsibilities.

1.1. Preliminary Research

In earlier work (Porter et al., 1994) we conducted an experiment to compare alternative
detection methods for software inspections. Our results suggest that the choice of fault
detection method significantly affects inspection performance.

Our subjects for that study were 48 graduate students in computer science. Initially
we use students rather than professional because cost considerations severely limit our
opportunities to conduct studies with professional developers. Therefore we prefer to
refine our experimental designs and measurement strategies in the university before using
them in industry. This approach also allows us to do a kind of bulk screening of our research
hypotheses. That is, we can conduct several studies in university, but only rerun the most
promising ones in industry. Intuitively, we feel that hypotheses that don’t hold up in the
university setting are unlikely to do so in the industrial setting.

Of course, this reasoning is asymmetrical. It may or may not be true that results derived in
the university apply in industry. Therefore, we still need to conduct studies with professional
subjects. Consequently, to improve the external validity of our initial results we have
replicated the experiment using professional software developers as subjects. We have also
compared the performances of the student and professional populations to better understand
how generalizable the original results were. This is important because experiments using
professional subjects are far more costly than those using student subjects.

Below we describe the relevant literature, several alternative fault detection methods
which motivated our study, our research hypothesis, and our experimental observations,
analysis and conclusions.



COMPARING DETECTION METHODS 357

1.2. Inspection Literature

A summary of the origins and the current practice of inspections may be found in Humphrey
(1989). Consequently, we will discuss only work directly related to our current efforts.

Fagan (1976) defined the basic software inspection process. While most writers have
endorsed his approach (Boehm, 1981; Humphrey, 1989), Parnas and Weiss are more critical
(1985). In part, they argue that effectiveness suffers because individual reviewers are not
assigned specific responsibilities and because they lack systematic techniques for meeting
those responsibilities.

Some might argue that Checklists are systematic because they help define each reviewer’s
responsibilities and suggest ways to identify faults. Certainly, Checklists often pose ques-
tions that help reviewers discover faults. However, we argue that the generality of these
questions and the lack of concrete strategies for answering them makes the approach non-
systematic.

To address these concerns—at least for software designs—Parnas and Weiss introduced
the idea of active design reviews. The principal characteristic of an active design review is
that each individual reviewer reads for a specific purpose, using specialized questionnaires.
This proposal forms the motivation for the detection method proposed in Section 2.2.2.

1.3. Detection Methods

Ad Hoc and Checklist methods are two frequently used fault detection methods. With Ad
Hoc detection methods, all reviewers use nonsystematic techniques and are assigned the
same general responsibilities.

Checklist methods are similar to Ad Hoc, but each reviewer receives a checklist. Checklist
items capture important lessons learned from previous inspections within an environment
or application. Individual checklist items may enumerate characteristic faults, prioritize
different faults, or pose questions that help reviewers discover faults, such as “Are all
interfaces clearly defined?” or “If input is received at a faster rate than can be processed,
how is this handled?” The purpose of these items is to focus reviewer responsibilities and
suggest ways for reviewers to identify faults.

1.4. Hypothesis

We believe that an alternative approach which gives individual reviewers specific, orthog-
onal detection responsibilities and specialized techniques for meeting them will result in
more effective inspections.

Toexplore thisalternativewedevelopedasetof fault-specific techniquescalledScenarios—
collections of procedures for detecting particular classes of faults. Each reviewer executes
a single scenario and multiple reviewers are coordinated to achieve broad coverage of the
document.

Our underlying hypothesis is depicted in Figure 1: that nonsystematic techniques with
general reviewer responsibility and no reviewer coordination, lead to overlap and gaps,



358 PORTER AND VOTTA

Figure 1. Systematic Inspection Research Hypothesis.This figure represents a software requirements specifi-
cation before and after anonsystematictechnique,generalandidenticalresponsibility inspection and asystematic
technique,specificanddistinctresponsibility inspection. The points and holes represent various faults. The line-
filled regions indicate the coverage achieved by different members of the inspection team. Our hypothesis is that
systematic technique, specific and coordinated responsibility inspections achieve broader coverage and minimize
reviewer overlap, resulting in higher fault detection rates and greater cost benefits than nonsystematic methods.

thereby lowering the overall inspection effectiveness; while systematic approaches with
specific, coordinated responsibilities reduce gaps, thereby increasing the overall effective-
ness of the inspection.

2. The Experiment

To evaluate our systematic inspection hypothesis we designed and conducted a multi-trial
experiment. The goals of this experiment were twofold: to characterize the behavior
of existing approaches and to assess the potential benefits of Scenario-based methods.
Originally we ran the experiment twice. Both runs used 24 subjects each—students taking
a graduate course in formal methods who acted as reviewers. We ran the experiment a third
time as part of a professional training course at Lucent Technologies, using 18 professional
developers as subjects.

Each complete experimental run consisted of (1) a training phase in which the subjects
were taught inspection methods and the experimental procedures, and in which they in-
spected a sample SRS, and (2) an experimental phase in which the subjects conducted two
monitored inspections.

2.1. Experimental Design

The design of the experiment is somewhat unusual. To avoid misinterpreting the data it is
important to understand the experiment and the reasons for certain elements of its design2.



COMPARING DETECTION METHODS 359

2.1.1. Variables

The experiment manipulates four independent variables:

1. the detection method used by a reviewer (Ad Hoc, Checklist, or Scenario);

2. the specification to be inspected (two are used during the experiment);

3. the inspection round (each reviewer participates in two inspections during the experi-
ment);

4. the order in which the specifications are inspected (either specification can be inspected
first).

The detection method is our treatment variable. The other variables allow us to assess sev-
eral potential threats to the experiment’s internal validity. For each inspection we measure
four dependent variables:

1. the individual fault detection rate,

2. the team fault detection rate,3

3. the percentage of faults first identified at the collection meeting (meeting gain rate), and

4. the percentage of faults first identified by an individual, but never reported at the col-
lection meeting (meeting loss rate).

2.1.2. Design

The purpose of this experiment is to compare the Ad Hoc, Checklist, and Scenario detection
methods for inspecting software requirements specifications.

When comparing multiple treatments, experimenters frequently use fractional factorial
designs that are “balanced” and “fully crossed” (Wheeler, 1987). These designs system-
atically explore all combinations of the independent variables, allowing extraneous factors
such as team ability, specification quality, and learning to be measured and eliminated from
the experimental analysis.

Had we used such a design each team would have participated in three inspection rounds,
reviewing each of three specifications and using each of three methods exactly once. The
order in which the methods are applied and the specifications are inspected would have
been dictated by the experimental design.

Such designs are unacceptable for this study because they require some teams to use the
Ad Hoc or Checklist method after they have used the Scenario method. Since the Ad Hoc
and Checklist reviewers create their own fault detection techniques during the inspection
(based on their experience or their understanding of the checklist), our concern was that
using the Scenario method in an early round might imperceptibly distort the use of the
other methods in later rounds. Such influences would be undetectable because, unlike the



360 PORTER AND VOTTA

Table 1. This table shows the settings of the independent variables. Each team inspects two
documents, the WLMS and CRUISE, one per round, using one of the three detection methods.
Teams from the first replication are denoted 1A–1H, teams from the second replication are denoted
2A–2H. Teams from the third replication (the professional subjects) are denoted 3A–3F.

Round/Specification
Round 1 Round 2

WLMS CRUISE WLMS CRUISE
ad hoc 1B, 1D, 1G 1A, 1C, 1E 1A, 3E 1D, 2B

Detection 1H, 2A, 3C 1F, 2D, 3E, 3F
Method checklist 2B, 3A 2E, 2G, 3D 1E, 2D, 2G, 3D 1B, 1H, 3C

scenarios 2C, 2F, 3B 2H 1F, 1C, 2E 1G, 2A, 2C
2H, 3F 2F, 3A, 3B

Scenario methods, the Ad Hoc and Checklist methods do not require reviewers to perform
specific, auditable tasks.

We chose a partial factorial design in which each team participates in two inspections,
using some combination of the three detection methods, but teams using the Scenario
method in the first round must continue to use it in the second round4. Table 1 shows the
settings of the independent variables.

2.1.3. Threats to Internal Validity

A potential problem in any experiment is that some factor may affect the dependent variable
without the researcher’s knowledge. This possibility must be minimized. We considered
five such threats: (1) selection effects, (2) maturation effects, (3) replication effects, (4)
instrumentation effects, and (5) presentation effects.

Selection effects are due to natural variation in human performance. For example, random
assignment of subjects may accidentally create an elite team. Therefore, the difference in
this team’s natural ability will mask differences in the detection method performance. Our
strategy is to assign teams to detection methods on a random basis, because any other
strategy for team assignment may confound team ability with detection method.5 However,
teams that used Scenarios in the first round were constrained to use them again in the second
round. This compromise provides more observations of the Scenario method and prevents
the use of the Scenario method from affecting the use of the Ad Hoc or Checklist methods.
However we can’t determine whether or not the teams that used only the Scenarios have
greater natural ability than the other teams.

Maturation effects are due to subjects learning as the experiment proceeds. We have
manipulated the detection method used and the order in which the documents are inspected
so that the presence of this effect can be discovered and taken into account.

Replication effects are caused by differences in the materials, participants, or execution
of multiple replications. In the student studies we limited this effect by using only first and
second year graduate students as subjects—rather than both undergraduate and graduate
students. Across the student and professional populations we attempted to maintain con-
sistency in the experimental procedures used by packaging the experimental procedures as



COMPARING DETECTION METHODS 361

a classroom laboratory exercise. This helped to ensure that similar steps were followed for
all replications. As we will show in Section 3, variation in the fault detection rate is not
explained by selection, maturation, or replication effects.

Finally, instrumentation effects may result from differences in the specification docu-
ments. Such variation is impossible to avoid, but we controlled for it by having each team
inspect both documents.

2.1.4. Threats to External Validity

Threats to external validity limit our ability to generalize the results of our experiment to
industrial practice. We identified three such threats:

1. The subjects in our initial runs may not be representative of software programming
professionals. Although more than half of the subjects have 2 or more years of industrial
experience, they are graduate students, not software professionals. Furthermore, as
students they may have different motivations for participating in the experiment. This
shouldn’t be a problem in the replication using professional subjects.

2. The specification documents may not be representative of real programming problems.
Our experimental specifications are atypical of industrial SRS in two ways. First, most
of the experimental specification is written in a formal requirements notation. (See
Section 2.2.) Although several groups at AT&T and elsewhere are experimenting with
formal notations (Ardis, 1994; Gerhart et al., 1994), it is not the industry’s standard
practice. Secondly, the specifications are considerably smaller than industrial ones.

3. The inspection process in our experimental design may not be representative of software
development practice. We have modeled our experiment’s inspection process after
the one used in several development organizations within AT&T (Eick et al., 1992).
Although this process is similar to a Fagan-style inspection, there are some differences.
One difference is that reviewers use the fault detection activity to to find faults, not just
to prepare for the inspection meeting. Another difference is that during the collection
meeting reviewers are given specific technical roles such as test expert or end-user only
if the author feels there is a special need for them.

Our process also differs slightly from the AT&T process. For example, the SRS authors
are not present at our collection meetings, although, in practice, they normally would
be. Also, industrial reviewers may bring more domain knowledge to an inspection than
our student subjects did.

2.1.5. Analysis Strategy

Our analysis strategy had two steps. The first step was to find those independent variables
that individually explain a significant amount of the variation in the team detection rate. The
second step was to evaluate the combined effect of the variables shown to be significant in
the initial analysis. Both analyses use standard analysis of variance methods (see Box et al.,



362 PORTER AND VOTTA

1978, pp. 165ff and 210ff or Heiberger, 1989). Once these relationships were discovered
and their magnitude estimated, we examined other data, such as correlations between the
categories of faults detected and the detection methods used that would confirm or reject
(if possible) a causal relationship between detection methods and inspection performance.

2.2. Experiment Instrumentation

We developed several instruments for this experiment: three small software requirements
specifications (SRS), instructions and aids for each detection method, and a data collection
form.

2.2.1. Software Requirements Specifications

The SRS we used describe three event-driven process control systems: an elevator control
system, a water level monitoring system, and an automobile cruise control system. Each
specification has four sections: Overview, Specific Functional Requirements, External
Interfaces, and a Glossary. The overview is written in natural language, while the other
three sections are specified using the SCR tabular requirements notation (Heninger, 1980).

For this experiment, all three documents were adapted to adhere to the IEEE suggested
format (IEEE, 1989). All faults present in these SRS appear in the original documents or
were generated during the adaptation process; no faults were intentionally seeded into the
document. The authors discovered 42 faults in the WLMS SRS; and 26 in the CRUISE
SRS. The authors did not inspect the ELEVATOR SRS since it was used only for training
exercises.

Elevator Control System (ELEVATOR) Wood (1989) describes the functional and per-
formance requirements of a system for monitoring the operation of a bank of elevators (16
pages).

Water Level Monitoring System (WLMS) vanSchouwen (1990) describes the func-
tional and performance requirements of a system for monitoring the operation of a steam
generating system (24 pages).

Automobile Cruise Control System (CRUISE) Kirby (1984) describes the functional
and performance requirements for an automobile cruise control system (31 pages).

2.2.2. Fault Detection Methods

To make a fair assessment of the three detection methods (Ad Hoc, Checklist, and Scenario)
each method should search for a well-defined population of faults. To accomplish this, we
used a general fault taxonomy to define the responsibilities of Ad Hoc reviewers.



COMPARING DETECTION METHODS 363

Figure 2. Relationship Between Fault Detection Methods.The figure depicts the relationship between the fault
detection methods used in this study. The vertical extent represents the coverage. The horizontal axis labels the
method and represents the degree of detail (the greater the horizontal extent the greater the detail). Moving from
Ad Hoc to Checklist to Scenario there is more detail and less coverage. The gaps in the Scenario and Checklist
columns indicate that the Checklist is a subset of the Ad Hoc and the Scenarios are a subset of the Checklist.

The checklist used in this study is a refinement of the taxonomy. Consequently, Checklist
responsibilities are a subset of the Ad Hoc responsibilities.

The Scenarios are derived from the checklist by replacing individual Checklist items
with procedures designed to implement them. As a result, Scenario responsibilities are
distinct subsets of Checklist and Ad Hoc responsibilities. The relationship between the
three methods is depicted in Figure 2.

The taxonomy is a composite of two schemes developed by Schneider, et al. (1992) and
Basili and Weiss (1981). Faults are divided into two broad types: omission—in which
important information is left unstated and commission—in which incorrect, redundant,
or ambiguous information is put into the SRS by the author. Omission faults were fur-
ther subdivided into four categories: Missing Functionality, Missing Performance, Missing
Environment, and Missing Interface. Commission faults were also divided into four cate-
gories: Ambiguous Information, Inconsistent Information, Incorrect or Extra Functionality,
and Wrong Section. (See Appendix A for complete taxonomy.) We provided a copy of the
taxonomy to each reviewer. Ad Hoc reviewers received no further assistance.

Checklist reviewers received a single checklist derived from the fault taxonomy. To
generate the checklist we populated the fault taxonomy with detailed questions culled from
several industrial checklists. Thus, the checklist items are similar in style to those found
in several large organizations. All Checklist reviewers used the same checklist. (See
Appendix B for the complete checklist.)



364 PORTER AND VOTTA

Finally, we developed three groups of Scenarios. Each group of Scenarios was designed
for a specific subset of the Checklist items:

1. Data Type Inconsistencies (DF),

2. Incorrect Functionalities (IF),

3. Missing or Ambiguous Functionalities (MF).

After the experiment was finished we applied the Scenarios ourselves to estimate how
broadly they covered the WLMS and CRUISE faults (i.e., what percentage of defects could
be found if the Scenarios are properly applied.) We estimated that the Scenarios address
about half of the faults that are covered by the Checklist. Appendix C contains the complete
list of Scenarios.

2.2.3. Fault Report Forms

We also developed a Fault Report Form. Whenever a potential fault was discovered—during
either the fault detection or the collection activities—an entry was made on the form. The
entry included four kinds of information: Inspection Activity (Detection, Collection); Fault
Location (Page and Line Numbers); Fault Disposition, (Faults can be True Faults or False
Positives); and a prose Fault Description. A small sample of a Fault Report appears in
Figure 3.

2.3. Experiment Preparation

We attempted to ensure that the operation of the experiment was the same for all replications
of the experiment. However, as we describe in the following Sections, we made several
allowances for the schedules of our professional subjects.

The participants were given two, 75 minute lectures on software requirements specifica-
tions, the SCR tabular requirements notation, inspection procedures, the fault classification
scheme, and the filling out of data collection forms. The references for these lectures were
Fagan (1976), Parnas (1985), and the IEEE Guide to Software Requirements Specifications
(1984). The participants were then assembled into three-person teams—see Section 2.1.3
for details. Within each team, members were randomly assigned to act as the moderator,
the recorder, or the reader during the collection meeting.

2.4. Conducting the Experiment

2.4.1. Training

For the training exercise, each team inspected the ELEVATOR SRS. Individual team mem-
bers read the specification and recorded all faults they found on a Fault Report Form. Their
efforts were restricted to two hours. Later we met with the participants and answered ques-
tions about the experimental procedures. Afterwards, each team conducted a supervised



COMPARING DETECTION METHODS 365

Figure 3. Reviewer Fault Report Form. This is a small sample of the fault report form completed during each
reviewer’s fault detection. Faults number 10 and 11, found by reviewer 12 of team C for the WLMS specification
are shown.

collection meeting and filled out a master Fault Report Form for the entire team. The
ELEVATOR SRS was not used in the remainder of the experiment.

2.4.2. Experimental Phase

This phase involved two inspection rounds. The instruments used were the WLMS and
CRUISE specifications discussed in Section 2.2.1, a checklist, three groups of fault-based
scenarios, and the Fault Report Form. The development of the checklist and scenarios is
described in Section 2.2.2. The same checklist and scenarios were used for both documents.

During the first Round, one half of the teams were asked to inspect the CRUISE speci-
fication; the remaining teams inspected the WLMS specification. The detection methods
used by each team are shown in Table 1. Fault detection was limited to two hours, and all
potential faults were reported on the Fault Report Form. After fault detection, all mate-
rials were collected. For the student subjects we set aside 28 two-hour time slots during
which inspection tasks could be done. Participants performed each task within a single
two-hour session and were not allowed to work at other times. For the professional subjects
we allowed each team to schedule their own working times and to control access to their
experimental materials. We asked them to follow the time guidelines and to complete each
task in one sitting. In post-experiment interviews none of the professional subjects told us
that they were unable to comply with our instructions.

Once all team members had finished fault detection, the team’s moderator arranged for



366 PORTER AND VOTTA

Figure 4. Data Collection for each WLMS inspections.This figure shows the data collected from one team’s
WLMS inspection. The first three rows identify the review team members, the detection methods they used, the
number of faults they found, and shows their individual fault summaries. The fourth row contains the team fault
summary. The fault summaries show a 1 (0) where the team or individual found (did not find) a fault. The fifth
row contains the fault key which identifies those reviewers who were responsible for the fault (AH for Ad Hoc
only; CH for Checklist or Ad Hoc; DT for data type inconsistencies, Checklist, and Ad Hoc; IF for incorrect
functionality, Checklist and Ad Hoc; and MF for missing or ambiguous functionality, Checklist and Ad Hoc).
Meeting gain and loss rates can be calculated by comparing the individual and team fault summaries. For instance,
fault 21 is an example ofmeeting loss. It was found by reviewer 44 during the fault detection activity, but the
team did not report it at the collection meeting. Fault 32 is an example ofmeeting gain; it is first discovered at the
collection meeting.

the collection meeting. At the collection meeting, the reader paraphrases each require-
ment. During this paraphrasing activity, reviewers may bring up any issues found during
preparation or discuss new issues. The team’s recorder maintained the team’s master Fault
Report Form. Collection was also limited to 2 hours and the entire Round was completed
in one week. The collection meeting process is the same regardless of which fault detection
method was used during fault detection.

The second Round was similar to the first except that teams who had inspected the WLMS
during Round 1 inspected the CRUISE in Round 2 and vice versa.

3. Data and Analysis

3.1. Data

Three sets of data are important to our study: the fault key, the team fault summaries, and
the individual fault summaries.

The fault key encodes which reviewers are responsible for each fault. In this study, re-
viewer responsibilities are defined by the detection techniques a reviewer uses. Ad Hoc
reviewers are responsible (asked to search for) for all faults. Checklist reviewers are re-
sponsible for a large subset of the Ad Hoc faults.6 Since each Scenario is a refinement of
several Checklist items, each Scenario reviewer7 is responsible for a distinct subset of the
Checklist faults.

The team fault summary shows whether or not a team discovered a particular fault. This
data is gathered from the fault report forms filled out at the collection meetings and is used
to assess the effectiveness of each fault detection method.

The individual fault summary shows whether or not a reviewer discovered a particular
fault. This data is gathered from the fault report forms each reviewer completed during their



COMPARING DETECTION METHODS 367

Figure 5. Individual and Team Fault Summaries (CRUISE). This figure shows the data collected from one
team’s CRUISE inspection. The data is identical to that of the WLMS inspections except that the CRUISE has
fewer faults—26 versus 42 for the WLMS—and the fault key is different.

fault detection activity. Together with the fault key it is used to assess whether or not each
detection technique improves the reviewer’s ability to identify specific classes of faults.

We measure the value of collection meetings by comparing the team and individual fault
summaries to determine the meeting gain and loss rates. One team’s individual and team
fault summaries, and the fault key are represented in Figures 4 and Figure 5.

Our analysis is done in two steps: (1) We compared the team fault detection rates to
determine whether the detection methods have the same effectiveness and (2) we analyzed
the effectiveness of collection meetings to further understand differences in each method’s
performance.

3.2. Analysis of Team Performance

Tables 4 shows the raw team data. Six of the cells contain the average detection rate for
teams using each detection method and specification (3 detection methods applied to 2
specifications). Figure 6 summarizes this data. As depicted, the Scenario detection method
resulted in the highest fault detection rates, followed by the Ad Hoc detection method, and
finally by the Checklist detection method. For the student population the performances of
the Ad Hoc and Checklist methods were statistically indistinguishable. For the professional
population the performances of the Ad Hoc method was statically superior to that of the
Checklist method.

Tables 2 and 3 present a statistical analysis of the team performance data as outlined in
Section 2.1.5. The independent variables are listed from the most to the least significant.
For both the professionals and the students the Detection method used is significant. For
the students, but not the professionals, Specification is also significant. For both groups the
Round, Replication, and Order are not significant.

We also analyzed the combined Instrumentation and Treatment effects for the student
performances. Since Method was the only significant independent variable for the profes-
sional subjects we did not perform this analysis on their data. The results indicates that the
interaction between Specification and Method is not significant. This means that although
the average detection rates varied for the two specifications (for the student subjects only),
the effect of the detection methods is not linked to these differences.



368 PORTER AND VOTTA

Figure 6. Fault Detection Rates by Independent Variable.The dashes in the each panel’s far left column show
each team’s fault detection rate for the WLMS and CRUISE. The horizontal line is the average fault detection
rate. The plot demonstrates the ability of each variable to explain variation in the fault detection rates. For the
Specification variable, the vertical location of WLMS (CRUISE) is determined by averaging the fault detection
rates for all teams inspecting WLMS (CRUISE). The vertical bracket, ], to the right of each variable shows
one standard error of the difference between two settings of the variable. The plot indicates that for both the
professional and student subjects Method is significant, for the students, but not the professionals, Specification
is significant; and for neither group is Round, Replication, or Order significant.

Based on the preceding analyses we reject the null hypothesis that the detection methods
have no effect on inspection performance.

3.3. Analysis of Collection Meetings

In this Section, we measure the benefits of collection meetings by comparing the team and
individual fault summaries to determine the meeting gains, meeting losses and net meeting
gain/loss. (See Figure 4 and Figure 5).

A “meeting gain” occurs when a fault is found for the first time at the collection meeting.
A “meeting loss” occurs when a fault is first found during an individual’s fault detection
activity, but it is subsequently not recorded during the collection meeting. Meeting gains
may thus be offset by meeting losses and the difference between meeting gains and meeting
losses is the net improvement due to collection meetings. Our results indicate that collection
meetings produce no net improvement for either the professional or student populations.



COMPARING DETECTION METHODS 369

Table 2.Analysis of Variance for Each Independent Variable (Student subjects).The analysis of
variance shows that only the choice of detection method and specification significantly explain variation
in the fault detection rate. Team composition is also not significant.

Independent SST νT SSR νR (SST/νT )(νR/SSR) Significance
Variable Level

Detection Method—treatment .200 2 .359 29 8.064 < .01

Specification—instrumentation .163 1 .396 30 12.338 < .01

Inspection round—maturation .007 1 .551 30 .391 .54

Experimental run—replication .007 1 .551 30 .391 .54

Order—presentation .003 1 .003 30 .141 .71

Team composition—selection .289 15 .268 16 1.151 .39

Table 3.Analysis of Variance for Each Independent Variable (Professional subjects).The analysis
of variance shows that only the choice of detection method is significant.

Independent SST νT SSR νR (SST/νT )(νR/SSR) Significance
Variable Level

Detection Method—treatment .095 2 .053 9 7.942 < .01

Specification—instrumentation .002 1 .147 10 .158 .70

Inspection round—maturation .011 1 .137 10 .837 .38

Order—presentation .007 1 .141 10 .510 .49

Team composition—selection .099 5 .051 6 2.37 .16

3.3.1. Meeting Gains

Figure 7 displays the meeting gain rates for all inspections. Overall the meeting gain rate
is 5.0%± 6.3% (3.9%± 3.4%) for professionals (students). The meeting gain rate is
6.7%±10.2% (4.7%±5.3%) for WLMS inspections and 3.2%±7.2% (3.1%±4.3%) for
CRUISE inspections. The rates are not significantly different between different populations
or different specifications. It is interesting to note that these results are consistent with an
earlier industrial case study by Votta (1993).

3.3.2. Meeting Losses

The overall average meeting loss rates were 6.7%± 7.2% and 7.2%± 4.6% for the pro-
fessionals and students respectively. (See Figure 8.) The meeting loss rates for the WLMS
were 8.3%±11.2% (6.8%±6.3%) for the professionals (students), while the loss rates for
the CRUISE were 5.1%±9.0% (7.7%±6.6%). Again there was no statistically significant
difference between the loss rates of the different populations or the different specifications.



370 PORTER AND VOTTA

Table 4. Team Fault Detection Rate Data.The nominal and average fault detection rates for all 24 teams. The
performances of the professional subjects are enclosed in parentheses.

Specification Detection Method

Ad Hoc Checklist Scenario

WLMS (.19) (.29) .29 .38 .45 .48 .5 .5 (.17) (.17) .29 .33 .5 .52 (.31) .4 .55 .55 (.55) .57 .62 .74

(average) (.24) .43 (.17) .41 (.43) .57

Cruise .23 .23 .27 .27 (.27) (.27) .35 .38 .46 (.12) .19 (.19) .23 .23 .31 (.27) .35 (.38) .42 .42 .5 .54

(average) (.27) .31 (.15) .24 (.33) .45

Figure 7. Meeting Gains for all Inspections.Each point represents the meeting gain rate for a single inspection,
i.e., the number of faults first identified at a collection meeting divided by the total number of faults in the
specification. Each rate is marked with symbol indicating the inspection method used. The vertical line segment
through each symbol indicates one standard deviation in the estimate (assuming each fault was a Bernoulli trial).
This information helps in assessing the significance of any one rate. The average meeting gain rate is 5.0%±6.3%
for the professionals. (3.9%± 3.4% for the students.)

One cause of meeting loss might be that reviewers are talked out of the belief that some-
thing is a fault. Another cause may be that during the meeting reviewers forget or can not
reconstruct a fault found earlier.

This effect has not been previously reported in the literature. However, since the interval
between the detection and collection activities is usually longer in practice than it was in
our experiment (one to two days in our study versus one or two weeks in practice), this
effect may be quite significant.



COMPARING DETECTION METHODS 371

Figure 8. Meeting Loss Rate for all Inspections. Each point represents the meeting loss rate for a single
inspection. The meeting loss rate is the number of faults first detected by an individual reviewer divided by the
total number of faults in the specification. Each rate is marked with a symbol indicating the inspection method
used. The vertical line segment through each symbol indicates one standard deviation in the estimate of the rate
(assuming each fault was a Bernoulli trial). This information helps in determining the significance of any one rate.
The average team loss rate is 6.7%± 7.2% for the professionals. (7.2%± 4.6% for the students).

3.3.3. Net Meeting Improvement

The average net meeting improvement is−1.7%± 3.9% for professional inspections and
−3.3%±1.4% for student inspections. For the WLMS the net improvement was−1.5%±
8.5% (−2.0%± 2.9% ) for professionals and students respectively. For the CRUISE the
net improvement was−1.9%± 6.6% (4.5%± 2.8%). (Figure 9 displays the net meeting
improvement for all inspections.) We found no correlations between the loss, gain, or net
improvement rates and any of our experiment’s independent variables.

4. Summary and Conclusions

This article presents the results from a replication of an experiment to compare different
defect detection methods for inspecting software requirements specifications. One possible
limitation of the original experiment was that it used graduate students in computer science
as subjects. If, during inspections, students behave very differently than software profes-
sionals, then the original experiment’s results will be invalid. To address this concern we
reran the experiment using software development professionals as subjects. One of our ma-
jor findings is that, although the performances of the student and professional populations
were different, all of the hypothesis tests gave the same results. This doesn’t imply that



372 PORTER AND VOTTA

Figure 9. Net Meeting Improvement for all Inspections. Each symbol indicates the net meeting improvement
for a single inspection. The average net meeting improvement rate is−1.7%± 3.9% for the professionals.
(−3.3%± 1.4% for the students). These rates are not significantly different from 0.

studies with professional are no longer needed, but it suggests that student studies shouldn’t
automatically be discounted. This is very important because studies with professionals are
much more expensive than are studies with student subjects.

In both the student and professional populations we found the following results:

1. The fault detection rate when using Scenarios was superior to that obtained with
Ad Hoc or Checklist methods—an improvement from 21% to 38% in the profes-
sional population and from 35% to 51% in the student population.

2. The Checklist method—the industry standard, was no more effective than the Ad
Hoc detection method when used by either subject population.

3. On the average, collection meetings contributed nothing to fault detection effec-
tiveness.

The results of this work have important implications for software practitioners. The indi-
cations are that overall inspection performance can be improved when individual reviewers
use systematic procedures to address a small set of specific issues. This contrasts with the
usual practice, in which reviewers have neither systematic procedures nor clearly defined
responsibilities.

Economical experimental designs are necessary to allow replication in other environments
with different populations. For software researchers, this work demonstrates the feasibility
of constructing and executing inexpensive experiments to validate fundamental research
recommendations.



COMPARING DETECTION METHODS 373

These results also call into question the common practice of disregarding studies done
with student subjects. The far more important question is clearly when do student subjects
provide an adequate model of the professional population.

5. Future Work

The experimental data raise many interesting questions for future study.

• Very few faults are initially discovered during collection meetings. Therefore, in view
of their impact on development interval (calendar time to complete development), are
these meetings worth holding?

• More than half of the faults are not addressed by the Scenarios used in this study. What
other Scenarios are necessary to achieve a broader fault coverage?

• We strongly suspect that Scenarios will have to be developed and customized to indi-
vidual environments. These experiments only evaluate the concept of Scenarios, but do
not give sufficient detail to allow others to develop their own. We are currently working
to formalize the Scenario approach and to create a methodology for developing them.

Acknowledgments

We would like to thank Victor Basili for his contributions to this work. We would also like
to recognize the efforts of the experimental participants—an excellent job was done by all.

Appendicies

A. Ad Hoc Detection

The fault taxonomy is due to the work of Schneider, et al., and Basili and Weiss.

• Omission

– Missing Functionality: Information describing the desired internal operational
behavior of the system has been omitted from the SRS.

– Missing Performance: Information describing the desired performance specifi-
cations has either been omitted or described in a way that is unacceptable for
acceptance testing.

– Missing Interface: Information describing how the proposed system will interface
and communicate with objects outside the the scope of the system has been omitted
from the SRS.

– Missing Environment: Information describing the required hardware, software,
database, or personnel environment in which the system will run has been omitted
from the SRS



374 PORTER AND VOTTA

• Commission

– Ambiguous Information: An important term, phrase or sentence essential to the
understanding of system behavior has either been left undefined or defined in a
way that can cause confusion and misunderstanding.

– Inconsistent Information: Two sentences contained in the SRS directly contradict
each other or express actions that cannot both be correct or cannot both be carried
out.

– Incorrect Fact: Some sentence contained in the SRS asserts a facts that cannot be
true under the conditions specified in the SRS.

– Wrong Section: Essential information is misplaced within the SRS

B. Checklist Method

• General

– Are the goals of the system defined?

– Are the requirements clear and unambiguous?

– Is a functional overview of the system provided?

– Is an overview of the operational modes provided?

– Have the software and hardware environments been specified?

– If assumptions that affect implementation have been made, are they stated?

– Have the requirements been stated in terms of inputs, outputs, and processing for
each function?

– Are all functions, devices, constraints traced to requirements and vice versa?

– Are the required attributes, assumptions and constraints of the system completely
listed?

• Omission

– Missing Functionality

∗ Are the described functions sufficient to meet the system objectives?

∗ Are all inputs to a function sufficient to perform the required function?

∗ Are undesired events considered and their required responses specified?

∗ Are the initial and special states considered (e.g., system initiation, abnormal
termination)?

– Missing Performance

∗ Can the system be tested, demonstrated, analyzed, or inspected to show that it
satisfies the requirements?



COMPARING DETECTION METHODS 375

∗ Have the data type, rate, units, accuracy, resolution, limits, range and critical
values

∗ for all internal data items been specified?
∗ Have the accuracy, precision, range, type, rate, units, frequency, and volume

of inputs and outputs been specified for each function?

– Missing Interface

∗ Are the inputs and outputs for all interfaces sufficient?
∗ Are the interface requirements between hardware, software, personnel, and

procedures included?

– Missing Environment

∗ Have the functionality of hardware or software interacting with the system
been properly specified?

• Commission

– Ambiguous Information

∗ Are the individual requirements stated so that they are discrete, unambiguous,
and testable?

∗ Are all mode transitions specified deterministicly?

– Inconsistent Information

∗ Are the requirements mutually consistent?
∗ Are the functional requirements consistent with the overview?
∗ Are the functional requirements consistent with the actual operating environ-

ment?

– Incorrect or Extra Functionality

∗ Are all the described functions necessary to meet the system objectives?
∗ Are all inputs to a function necessary to perform the required function?
∗ Are the inputs and outputs for all interfaces necessary?
∗ Are all the outputs produced by a function used by another function or trans-

ferred across an external interface?

– Wrong Section

∗ Are all the requirements, interfaces, constraints, etc. listed in the appropriate
sections.

C. Scenarios

C.1. Data Type Consistency Scenario

1. Identify all data objects mentioned in the overview (e.g., hardware component, appli-
cation variable, abbreviated term or function)



376 PORTER AND VOTTA

(a) Are all data objects mentioned in the overview listed in the external interface
section?

2. For each data object appearing in the external interface section determine the following
information:

• Object name:

• Class: (e.g., input port, output port, application variable, abbreviated term, func-
tion)

• Data type: (e.g., integer, time, boolean, enumeration)

• Acceptable values: Are there any constraints, ranges, limits for the values of this
object

• Failure value: Does the object have a special failure value?

• Units or rates:

• Initial value:

(a) Is the object’s specification consistent with its description in the overview?

(b) If object represents a physical quantity, are its units properly specified?

(c) If the object’s value is computed, can that computation generate a non-acceptable
value?

3. For each functional requirement identify all data object references:

(a) Do all data object references obey formatting conventions?

(b) Are all data objects referenced in this requirement listed in the input or output
sections?

(c) Can any data object use be inconsistent with the data object’s type, acceptable
values, failure value, etc.?

(d) Can any data object definition be inconsistent with the data object’s type, acceptable
values, failure value, etc.?

C.2. Incorrect Functionality Scenario

1. For each functional requirement identify all input/output data objects:

(a) Are all values written to each output data object consistent with its intended func-
tion?

(b) Identify at least one function that uses each output data object.

2. For each functional requirement identify all specified system events:

(a) Is the specification of these events consistent with their intended interpretation?



COMPARING DETECTION METHODS 377

3. Develop an invariant for each system mode (i.e. Under what conditions must the system
exit or remain in a given mode)?

(a) Can the system’s initial conditions fail to satisfy the initial mode’s invariant?

(b) Identify a sequence of events that allows the system to enter a mode without
satisfying the mode’s invariant.

(c) Identify a sequence of events that allows the system to enter a mode, but never
leave (deadlock).

C.3. Ambiguities Or Missing Functionality Scenario

1. Identify the required precision, response time, etc. for each functional requirement.

(a) Are all required precisions indicated?

2. For each requirement, identify all monitored events.

(a) Does a sequence of events exist for which multiple output values can be computed?

(b) Does a sequence of events exist for which no output value will be computed?

3. For each system mode, identify all monitored events.

(a) Does a sequence of events exist for which transitions into two or more system
modes is allowed?

Notes

1. Depending on the exact form of the inspection, they are sometimes called reviews or walkthroughs. For a
more thorough description of the taxonomy see (Humphrey, 1989) pp. 171ff and (IEEE, 1989).

2. See Judd et al. (1991), chapter 4 for an excellent discussion of randomized social experimental designs.

3. The team and individual fault detection rates are the number of faults detected by a team or individual divided
by the total number of faults known to be in the specification. The closer that value is to 1, the more effective
the detection method. No faults were intentionally seeded into the specifications. All faults are naturally
occurring.

4. Many designs would satify this constraint; but, we used one that included as many treatment combinations as
possible.

5. During the data analysis, we performed a diagnostic to detect the presence of an elite team. This was done by
systematically removing the data of each team to see if it changed our conclusions.

6. i.e., faults for which an Ad Hoc reviewer is responsible.

7. i.e., reviewers using Scenarios.

References

Ardis, M. A. 1994. Lessons from using basic LOTOS.Proceedings of the Sixteenth International Conference on
Software Engineering. Sorento, Italy, 5–14.



378 PORTER AND VOTTA

Basili, V. R., and Weiss, D. M. 1981. Evaluation of a software requirements document by analysis of change data.
Proceedings of the Fith International Conference on Software Engineering. San Diego, CA, 314–323.

Boehm, B. W. 1981.Software Engineering Economics. Englewood Cliffs, New Jersey: Prentice Hall Inc.
Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978.Statistics for Experimenters. New York: John Wiley & Sons.
Eick, S. G., Loader, C. R., Long, M. D., Vander Wiel, S. A., and Votta, L. G. 1992. Estimating software fault content

before coding.Proceedings of the Fourteenth International Conference on Software Engineering. Melborne,
Australia, 59–65.

Fagan, M. E. 1976. Design and code inspections to reduce errors in program development.IBM Systems Journal
15(2): 182–211.

Gerhart, S., Craigen, D., and Ralston, T. 1994. Experience with formal methods in critical systems.IEEE Software
11(1): 21–28.

Heiberger, R. M. 1989.Computation for the Analysis of Designed Experiments. New York: John Wiley & Sons.
Heninger, K. L. 1980. Specifying software requirements for complex systems: New techniques and their appli-

cations.IEEE Transactions on Software Engineering6: 2–13.
Humphery, W. S. 1989.Managing the Software Process. Reading, Massachusetts: Addison-Wesley Publishing

Co.
IEEE. 1984.IEEE Guide to Software Requirements Specifications. Soft. Eng. Tech. Comm. of the IEEE Computer

Society. IEEE Std 830-1984.
IEEE. 1989. IEEE Standard for Software Reviews and Audits. Soft. Eng. Tech. Comm. of the IEEE Computer

Society. IEEE Std 1028-1988.
Judd, C. M., Smith, E. R., and Kidder, L. H. 1991.Research Methods in Social Relations. Fort Worth, Texas:

Holt, Rinehart and Winston, Inc.
Kirby, J. 1984. Example NRL/SCR software requirements for an automobile cruise control and monitoring system.

Wang Institute of Graduate Studies, Bedford, MA, TR-87-07.
Parnas, D. L., and Weiss, D. M. 1985. Active design reviews: principles and practices.Proceedings of the Eighth

International Conference on Software Engineering. London, UK, 215–222.
Porter, A. A., Votta, L. G., and Basili, V. R. 1994. Comparing detection methods for software requirement

inspections: A replicated experiment.IEEE Transactions on Software Engineering21: 563–575.
Schneider, G. M., Martin, J., and Tsai, W. T. 1992. An experimental study of fault detection in user requirements.

ACM Transactions on Software Engineering and Methodology1: 188–204.
vanSchouwen, J. 1990. The A-7 requirements model: Re-examination for real-time systems and an application

to monitoring systems. Queen’s University, Kingston, Ontario, Canada, TR-90-276.
Votta, L. G. 1993. Does every inspection need a meeting?Proceedings of ACM SIGSOFT ’93 Symposium on

Foundations of Software Engineering. Los Angeles, California, 107–114.
Wheeler, D. J. 1987.Understanding Industrial Experimentation. Knoxville, TN: SPC Press Inc.
Wood, W. G. 1989. Temporal logic case study. Software Engineering Institute, Pittsburgh, PA, CMU/SEI-89-TR-

24.

Adam A. Porter earned his BS degree (summa cum lauda) in computer science from the California State University
at Dominguez Hills, Carson, California in 1986. In 1988 and 1991, respectively, he earned his MS and PhD degrees
from the University of California at Irvine.

Since 1992 he has been with the Deparment of Computer Science, where he was recently promoted to associate
professor, and the Institute for Advanced Computer Studies at the University of Maryland. His current research
interests include empirical methods for identifying and eliminating bottlenecks in industrial development pro-
cesses, experimental evaluation of fundamental software engineering hypotheses, and development of tools that



COMPARING DETECTION METHODS 379

demonstably improve the software development process. Dr. Porter is a member of the IEEE, ACM, and IEEE
Computer Society.

Lawrence G. Vottareceived his B.S. degree in Physics form the University of Maryland, College Park, Maryland in
1973, and his Ph.D. degree in Physics from the Massachusetts Institute of Technology, Cambridge, Massachusetts
in 1979.

Since 1979 he has been both a member of technical staff and manager at Bell Labs, Lucent Technology Inc.
working and managing development groups in switching and computer products. Currently, he is a member
of technical staff in the Software Production Research Department at Naperville, Illinois. His research interest
is to understand how to measure, model, and do credible empirical studies with large and complex software
developments.

Dr. Votta has published many empirical studies of software development from highly controlled experi-
ments investigating the best methods for design reviews and code inspection to anecdotal studies of a devel-
oper’s time usage in a large software development. For an up to date view of his work visit his web page at
http://www.bell-labs.com/∼votta.

Dr. Votta is a member of the ACM and IEEE Computer Society.


