
7753 FENG ET AL. 
 

 

 

 

 

RESEARCH ARTICLE 
10.1029/2019WR025599 

 
Key Points: 

• We present the first assessment of 

the suitability of CubeSat satellite 

data for river discharge estimation 

• We estimate discharge using 

individual and fused satellite data 

sets on rivers from <20 to >1,000 m 

wide 

• We suggest that the fused width data 

from both traditional and CubeSat 

satellites can improve global 

knowledge of Arctic river discharge 

 
Supporting Information: 

• Supporting  Information S1 

 
 

Correspondence to: 

D. Feng, 

dongmeifeng@umass.edu 

 
 

Citation: 

Feng, D., Gleason, C. J., Yang, X., & 

Pavelsky, T. M. (2019). Comparing 

discharge estimates made via the BAM 

algorithm in high‐order Arctic rivers 

derived solely from optical CubeSat, 

Landsat, and Sentinel‐2 data. Water 

Resources Research, 55, 7753–7771. 

https://doi.org/10.1029/2019WR025599 

 
Received 20 MAY 2019 

Accepted 20 AUG 2019 

Accepted article online 24 AUG  2019 

Published online 9 SEP 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
©2019. American Geophysical Union. 

All Rights Reserved. 

Comparing Discharge Estimates Made via the BAM 
Algorithm in High‐Order Arctic Rivers Derived 
Solely From Optical CubeSat, Landsat, 
and Sentinel‐2 Data 
Dongmei Feng1 , Colin J. Gleason1 , Xiao Yang2 , and Tamlin M. Pavelsky2     

 

1Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA, 
2Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 

 
 

Abstract Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and 

temporal scales: suffering from unavoidable trade‐offs between spatial and temporal resolutions. CubeSat 

constellations, however, can provide global data at high spatial and temporal resolutions, albeit with 

reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge 

estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes 

ranging from 16 to >1,000 m wide using the Bayesian at‐many‐stations hydraulic geometry‐Manning 

algorithm (BAM). BAM‐at‐many‐stations hydraulic geometry solves for hydraulic geometry parameters to 

estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel‐2 

data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data 

fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by 

increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. 

Narrow rivers (<40 m wide) are too small for Landsat and Sentinel‐2 data sets, and their discharge is also not 

well estimated using CubeSat data alone, likely because the four‐band sensor cannot resolve water surfaces 

accurately enough. BAM technique outperforms space‐based rating curves when gauge data are available, 

and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for 

discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward 

improving discharge estimates in the Arctic, even in ungauged basins. 
 

 

 
1. Introduction 

Rivers and streams are an essential part of the global hydrologic cycle: 90% of water flux transported from 

continents to oceans (roughly 37% of total terrestrial precipitation) is carried by rivers (Oki & Kanae,      

2006). River flows provide valuable freshwater supplies for humans and ecosystems, create habitats for aqua- 

tic organisms, provide corridors for human transportation and fish migration, transport nutrients/sediments 

for estuarine ecosystems, and are also an important interface for mass and energy exchange between water 

and the atmosphere (Aguilera & Melack, 2018; Allen & Pavelsky, 2018; Barnett et al., 2005; Feng et al., 2016, 

2019). Knowledge of river discharge (alternatively streamflow) is thus of great significance  for  water 

resource management, civil infrastructure design, water quality control, ecosystem conservation, and for 

understanding  interactions  in  the  Atmosphere‐Land‐Ocean system. 

River flow dynamics respond to other hydrologic components and are subject to substantial spatial and tem- 

poral variations, which complicates understanding of streamflow conditions. Traditionally, river discharge 

is measured continuously in situ at specific locations (i.e., via river gauges). These gauges are reliable, accu- 

rate, and necessary for global hydrologic studies. However, they require instrument calibration and long‐ 

term maintenance, which limits them to only physically accessible and, largely, economically developed 

regions (Hagemann et al., 2017). Since 1980, the number of active gauges has dramatically declined globally, 

rendering data from about 60% of publicly available gauges at least 10 years out of date (Hannah et al., 2011; 

Vörösmarty et al., 2010, GRDC Database). Thus, in situ measurement of streamflow is limited from both spa- 

tial and temporal perspectives. Proprietary realities, which restrict the public availability of gauge data that 

do exist, make this limitation even worse (Gleason & Hamdan, 2017). Another approach for discharge quan- 

tification is hydrologic modeling, which integrates meteorological forcings and watershed hydrogeological 
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information into a numeric model to estimate discharge. However, as a simplified representation of natural 

hydrological processes, hydrologic models often do not represent hydrologic reality, even if discharge is 

modeled correctly. For example, discharge estimations with good fitness to the observations can be achieved 

by inappropriately simulated runoff quantities, routing, soil parameters, or evaporation rates. Even though 

discharge is correct, the overall hydrologic understanding could be poor. Further, these models are parame- 

terized to varying extents, and tuning them requires gauge measurements of streamflow, which makes them 

less applicable and less reliable in ungauged regions (Beven & Cloke, 2012). 

Recently, scientists are turning to remotely sensed data sets for alternative solutions to discharge estimation. 

Satellites or aerial sensors can offer a cost‐effective approach to monitor rivers, from which hydraulic vari- 

ables, including river width, stage, and slope, can be derived for rivers at global scales. For example, the 

National Aeronautics and Space Administration's upcoming (2022) Surface Water and Ocean Topography 

(SWOT) Satellite Mission will measure these variables for rivers wider than 100 m, globally (Biancamaria 

et al., 2016), and has served as a catalyst for remote sensing of discharge. These remotely sensed hydraulic 

variables have been used as proxies to estimate discharge. Previous studies have developed effective methods 

to use the remotely sensed data sets for discharge estimation, including establishing empirical relationships 

between in situ measured discharge and remote observations of channel morphological variables (e.g., 

width, slope, stage, or water surface area; Bjerklie, 2007; Bjerklie et al., 2003, 2005; Brakenridge et al., 

2007; Durand et al., 2010, 2016, 2010; Pavelsky, 2014; Smith et al., 1996; Smith & Pavelsky, 2008; 

Tarpanelli et al., 2013) and integrating or assimilating remotely sensed data with hydrodynamic/hydraulic 

models (Brakenridge et al., 2012; Nathanson et al., 2012; Neal et al., 2009; Yoon et al., 2012). More recently, 

Gleason and Smith (2014) discovered the at‐many‐stations hydraulic geometry (AMHG), which identi- 

fied relationships between at‐a‐station hydraulic geometry (AHG) parameters at multiple cross sections 

along a river. Compared to AHG, AMHG describes the relationships between hydraulic variables (e.g., 

width) and discharge in a more constrained way, which makes it an attractive approach to estimate dis- 

charge from solely space‐based observations. Hagemann et al. (2017) developed this theory into a 

Bayesian mass conserved flow law inversion (McFLI) discharge algorithm, termed Bayesian AMHG‐ 

Manning (BAM), which estimates river discharge using AMHG and/or Manning's equation in a prob- 

abilistic manner. BAM integrates prior information of unknown quantities (e.g., hydraulic equation 

parameters and discharge statistics) from multiple sources including literature, in situ measurements,    

and reanalysis data sets. Ground‐based prior information makes discharge estimation more accurate,    

yet it is possible to estimate discharge independent of ground‐based measurements with BAM (e.g.,  

using literature or reanalysis data), allowing reasonably accurate discharge estimations in completely 

ungauged settings. 

In these previous studies, researchers used remotely sensed imagery from either governmental satellite 

missions (e.g., Landsat, Moderated Resolution Imaging Spectroradiometer  [MODIS],  and  European 

Remote Sensing) or conventional commercial satellite platforms (e.g., RapidEye) to estimate discharge. 

Government‐sponsored single‐sensor satellite missions (e.g., Landsat 8) can provide high‐quality  radio-  

metric data via rigorously calibrated and high‐performing sensor systems (Irons et al., 2012). However, they 

generally suffer from the trade‐off between spatial and temporal resolutions. For example, Landsat can pro- 

vide high‐quality imagery at moderately fine spatial resolution (i.e.,  30 m for visible, near‐infrared [NIR],   

and shortwave infrared bands) but at relatively  coarse  temporal  resolution  (i.e.,  16‐day  revisit  interval). 

This coarse temporal resolution limits the ability to capture short‐lived phenomena like flood waves, which 

constrains its hydrologic potential in many applications. Sentinel‐2 constitutes an advance toward resolving 

this limitation by deploying two identical sensors sharing the same orbit but phased 180° to each  other, 

which enables it to monitor Earth surface dynamics at fine spatial resolution (10/20/60 m) globally with a 

higher repeat frequency (i.e., every 5 days). The integration of conventional commercial satellite platforms 

(e.g., RapidEye) can improve imagery resolution to 5 m daily, and this can be further enhanced with super 

high resolution platforms such as WorldView, but these high‐resolution commercial sensor data are often 

prohibitively expensive, especially at global scales (Houborg et al., 2015; Houborg & McCabe, 2018). More 

recently, CubeSats, a class of small spacecraft with standard dimensions (i.e., 10 × 10 × 10 cm) and weight 

(i.e., ~1.3 kg; Puig‐Suari et al., 2001), are emerging. The low cost of these small sensors makes it possible to 

launch several together. Planet (Planet Team, 2018), the largest commercial CubeSat operator, has deployed    

a constellation of over 300 CubeSats monitoring the global land surface at both high spatial (3–5 m) and 
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temporal (near daily) resolutions. CubeSats have been gaining serious interest from scientists (Aragon et al., 

2018; Houborg & McCabe, 2018), especially for studies in Arctic regions (e.g., Cooley et al., 2019). However, 

the potential of CubeSat imagery for discharge estimation is currently untapped and unknown. 

In this study, river flow width data retrieved from both government‐sponsored satellites (Landsat and 

Sentinel‐2) and CubeSats (Planet) are used to estimate discharge for 11 Arctic river reaches of various sizes 

(from <20 to >1 km wide). Sentinel‐1 synthetic aperture radar (SAR) can also be used to estimate river  

widths with a high spatial resolution (i.e., 10 m) and without suffering constraints from clouds and shadows. 

However, this C‐band SAR introduces new challenges to  water  classification,  including  salt‐and‐pepper 

noise and differences in reflectivity of water surfaces, especially where water interacts with sediment and 

vegetation. Thus, we have chosen to use exclusively optical satellites, so Sentinel‐1 SAR is not included here. 

The objectives of this study are to answer, for the first time, the following questions: (1) How does Planet 

CubeSat imagery perform for discharge estimation in Arctic regions? (2) How different are Planet data from tra- 

ditional optical satellite data (here, Landsat and Sentinel‐2) for the purpose of quantifying discharge dynamics? 

(3) Is it possible to improve our ability to estimate discharge for rivers across spatial scales and for ungauged 

basins by fusing Planet data with conventional optical satellite  data? 

To address these questions, we use a developed space‐based gauging station (Pavelsky, 2014) and BAM as the 

methods for discharge estimation. The reason for selecting BAM is that it can estimate discharge using solely 

remotely sensed river width data, and its capacity to incorporate multiple sources of prior  information 

enables it to estimate discharge independently from in situ measurements, which expands its potential appli- 

cation in ungauged basins. BAM is a relatively new method for discharge quantification using remote sen- 

sing; thus, this study also provides the first opportunity to test its performance in quantifying discharge       

for Arctic rivers across spatial scales. To find potential options for improving our ability for discharge estima- 

tion, we test width data from both individual sensors (i.e., Planet, Landsat, and Sentinel‐2) and a fusion of 

them (e.g., Planet + Landsat + Sentinel‐2). Finally, multiple surface runoff reanalysis data sets are tested         

as BAM prior information with an attempt to provide an assessment of this method for potential applications 

in ungauged basins. This work also provides information about what is possible/necessary for discharge 

quantification at varying spatial/temporal scales with an eye toward SWOT and global discharge estimation. 

 

2. Methods 

2.1. Study Region 

Eleven Alaskan river reaches that mostly flow within the same basin were selected (Figure 1) to provide a 

range of river sizes, minimize differences in climate and hydrologic seasonality, and provide for algorithm 

use and evaluation. For example, the Yukon is the fifth largest Arctic river, with reach widths approaching 

1,000 m, while the Lower Chena reach is as narrow as 16 m. The river flow dynamics of each are similarly 

impacted by Arctic‐specific hydrologic processes such as ice breakup and permafrost dynamics. Each reach 

has a corresponding stream gauge to allow testing of algorithm performance with and without gauge data 

and for calibration. 

2.2. Discharge and Runoff Data 

In situ gauge observations of instantaneous discharge were acquired from the U.S. Geological Survey 

(https://waterdata.usgs.gov/nwis) for our 11 river reaches for the summer period (15 May through 15 

September) during 2016–2018 (Table 1); 2016–2018 was a hydroclimatologically representative period based 

on analysis of gauge records (Figure S1 in the supporting information, SI). These subdaily gauge observa- 

tions were averaged to a daily scale and then used for validation purposes. We also used these data to create    

a traditional space‐based gauging station (e.g., Pavelsky, 2014) in each reach for comparison and to create   

the Bayesian equivalent of space‐based gauging: using gauges to provide Bayesian priors to BAM. These 

comparisons allow us to assess CubeSat performance across a continuum from completely gauged to com- 

pletely ungauged scenarios. To create ungauged scenarios, Bayesian priors for BAM available at the global 

scale are needed. We acquired reanalysis daily surface runoff from National Center for Environmental 

Prediction (NCEP; data provided by the National Oceanic and Atmospheric Administration‐Earth System 

Research Laboratory Physical Sciences Division, Boulder, Colorado, from their Web site at https://www. 

esrl.noaa.gov/psd/), hourly surface runoff and baseflow from Modern‐Era Retrospective analysis for 

Research  and  Applications  version  2  (MERRA‐2;  Global  Modeling  and  Assimilation  Office,  2015) and 

https://waterdata.usgs.gov/nwis
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
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Figure 1. Study region: 11 river reaches and gauge locations. The figure in the middle shows an overview of the study region, gauges, and their locations in Alaska; 

the small figures around the edge show the details of these 11 river reaches (background images from Google Earth, 2018). 

 

hourly surface and subsurface runoff from European Centre for Medium‐Range Weather Forecasts 

Reanalysis Fifth generation (ERA5; Copernicus Climate Change Service, 2017) for our study period for 

this purpose. The runoff data (surface runoff for NCEP, surface runoff and baseflow for MERRA‐2, and 

surface and subsurface runoff for ERA5 based on data availability) were converted to a discharge prior by 

aggregating runoff over the upstream drainage catchments for each of our reaches. 

 
 
 

Table 1 

Gauge Locations and Descriptions 

Site No. Station name Latitude/longitude Drainage area (km
2
)
a
 Mean flow (m

3
/s) Mean width (m)

b
 Reach length (km) 

15356000 Yukon R At Eagle 64°47′22″N/141°11′52″W 285,696 4267 537 8.9 

15453500 Yukon R Nr Stevens Village 65°52′32″N/149°43′04″W 496,640 7123 630 22.4 

15477740 Goodpaster R Nr Big Delta 64°27′02″N/144°56′32″W 1,731 37 34 1.4 

15484000 Salcha R Nr Salchaket 64°28′17.5″N/146°55′41″W 5,632 116 60 2.3 

15485500 Tanana R At Fairbanks 64°47′34″N/147°50′20″W 33,106 1236 611 9.6 

15493400 Chena R Bl Hunts C 64°51′36″N/146°48′12″W 3,430 75 46 2.9 

 Nr Two Rivers      
15493700 Chena R Bl Moose C Dam 64°48′03″N/147°13′40″W 3,738 73 31 2.2 

15511000 L Chena R Nr Fairbanks 64°53′10″N/147°14′50″W 952 13 16 0.7 

15514000 Chena R At Fairbanks 64°50′45″N/147°42′04″W 5,094 92 52 1.4 

15515500 Tanana R At Nenana 64°33′53.8″N/149°05′38.4″W 65,434 1495 399 5.6 

15519100 Tolovana R Bl Rosebud 65°27′55″N/148°37′43″W 622 7 29 0.7 

 C Nr Livengood      
a
Drainage area for Gauge 15485500 (not available from USGS) was obtained through watershed delineation, others were obtained from USGS. USGS = U.S. 

Geological Survey. 
b
Widths for 15356000, 15453500, 15485500, and 15515500 are the average channel widths at all cross sections retrieved from usable 

Landsat 8, Sentinel‐2, and Planet imagery during 15 May to 15 September for years 2016–2018; widths for 15484000, 15493400, and 15514000 are from usable 
Sentinel‐2 and Planet imagery; widths for 15477740, 15511000, 15493700, and 15519100 are solely from usable Planet imagery. 



7757 FENG ET AL. 

Water Resources Research 10.1029/2019WR025599 

 

 

 
 

 
 

Figure 2. Flowchart of methods for width retrieval and discharge estimation. BAM = Bayesian at‐many‐stations hydrau- 

lic geometry‐Manning algorithm. 

 

2.3. Remotely Sensed Data and Cross‐Sectional Flow Width   Extraction 

Prior to automated width extraction, a preprocess defining the cross sections from which to extract widths 

was conducted (Figure 2). We first manually digitized the channel centerline for each river reach based  

on a water occurrence map (Pekel et al., 2016) and maps on Google Earth Pro (Google Earth, 2018). The 

channel centerlines could be obtained from other products, for example, the Global River Widths from 

Landsat Database (Allen & Pavelsky, 2018); however, their accuracy for narrow rivers (i.e., width < 90 m) 

can be low. Then cross‐section points were created along the centerline at 30 meter intervals and the ortho- 

gonal angle at each point was calculated (Yang et al., 2019; see Figure 2). Finally, channel orthogonal lines 

were constructed based on the centerline position, orthogonal angles, and orthogonal line length. In this 

study, orthogonal line lengths were defined based on a half‐width of 0.75 * maximum channel width from 

maps on Google Earth Pro (Google Earth, 2018). The ratio 0.75 was selected to ensure the entire channel 

width is covered and to reduce the impacts of the imperfection of the centerline position (the digitized 
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Table 2 

Summary of Remotely Sensed Data Sets Used in This   Study 

Satellites Landsat 8 Sentinel‐2 Planet 

Spatial resolution 30 m 10/20/60 m 3 m 

Temporal resolution 16 days 5 days daily 

Number of bands 11 13 4 

Data availability (start time) 4/11/2013 6/23/2015 5/15/2016 

Products used in this study Landsat 8 Surface Sentinel‐2 MSI: MultiSpectral Planet Scope Ortho analytic 

 Reflectance Tier 1 Instrument, Level‐1C (PSOrthoTile  analytic_dn) 

Provider USGS European Union/ESA/Copernicus Image courtesy of Planet Labs, Inc. 

Note. Dates are formatted as M/DD/YYYY. USGS = U.S. Geological Survey. 

 

centerline may not be located exactly at the middle of river channel). Further scrutiny of the extracted widths 

revealed that this orthogonal length was appropriate to cover the full range of temporally varying widths. We 

used a uniform orthogonal line length within a reach. 

After the channel cross‐section orthogonal lines were constructed, they were uploaded to Google Earth 

Engine as the input of a width extraction algorithm (Yang et al., 2019). In this algorithm, the water was clas- 

sified following a spectral‐based approach with reported accuracy of 97% (Zou et al., 2018): [(mNDWI > EVI 

or mNDWI > NDVI) and (EVI < 0.1)] (defined in equations (1)–(3)); image pixels that meet these criteria 

were classified as water, and others were classified as nonwater. For Landsat, the surface reflectance (SR) 

images in the Landsat 8 SR Tier 1 collection were used for width extraction (Table 2). For Sentinel‐2, the 

SR images are unavailable for our study region during 2016–2018, so we used the Sentinel‐2 top‐of‐ 

atmosphere (TOA) Level‐1C images for width extraction. To validate the applicability of the water classifica- 

tion method in Zou et al. (2018); developed for SR images) to the TOA images, we compared the widths 

extracted from Landsat 8 TOA and SR images for River 15515500, and we found a significant (R2 = 0.98) lin- 

ear relationship with a slope close to unity (1.03) between the widths extracted from these two collections 

(Figure S2). We argue it is thus reasonable to apply this water classification method to the Sentinel‐2 

Level‐1C images. 

We used only clear‐sky images, defined as CLOUD_COVER <25 (%) for Landsat 8 (USGS, 2019) and 

CLOUDY_PIXEL_PERCENTAGE < 25 for Sentinel‐2 (ESA, 2015). The cross sections that were affected 

by clouds were identified based on the cloud classification information and then were excluded. The classi- 

fied water mask was intersected with the orthogonal line buffer (30 m) at each cross section to calculate river 

flow width (Figures 2 and 3). The river width at each cross section (Wm) can be obtained by rearranging 

equation (4). 

 bandgreen−bandswir1  
mNDWI ¼ 

bandgreen þ bandswir1 

  2:5×ðbandnir−bandredÞ  

1 þ bandnir þ 6×bandred−7:5×bandblue 

 bandnir−bandred  

NDVI ¼ 
bandnir þ bandred 

 
(1) 

 
 

(2) 

 

(3) 

where mNDWI is the modified normalized difference water index (Xu, 2006); EVI and NDVI are enhanced 

vegetation index and normalized difference vegetation index (Huete et al., 1999), respectively; bandgreen, 

bandswir1, bandnir, bandred, and bandblue are the pixel values at bands Green (Band 3 for both Landsat 8 

and Sentinel‐2), shortwave infrared 1 (Band 6 for Landsat 8 and Band 11 for Sentinel‐2), near infrared 

(NIR; Band 5 for Landsat 8 and Band 8 for Sentinel‐2), Red (Band 4 for both Landsat 8 and Sentinel‐2), 

and Blue (Band 2 for both Landsat 8 and Sentinel‐2) of satellite images, respectively. 

  Wm×60  
γ ¼ 

2×hw×60 þ π×302
 

 
(4) 

where γ is the ratio of overlapped water mask area to buffer area; Wm is the desired quantity, river flow 

width, m; hw is the half length of orthogonal lines, which is predetermined in Step (3) of preprocessing. 

EVI ¼ 
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Figure 3. (a) Cross‐section alignment for Yukon River at Eagle, (b) example of cross‐section buffer used for width extraction, and (c) diagram for width calculation 

at each cross section. USGS = U.S. Geological  Survey. 

 
Planet imagery is not available in the Google Earth Engine platform. Widths from Planet imagery were 

extracted following Cooley et al. (2019). Readers are referred to their paper for reference, but in brief, we 

used the following process. (1) We extracted planet images only in areas of interest that were manually 

defined to encompass the river and near‐bank areas: This limited the total area downloaded from Planet 

and made classification easier and could be automated in the future using global water masks, for example, 

Pekel et al. (2016). (2) We calculated NDWI (equation (5)) using Bands 2 and 4. We calculated the Otsu 

threshold of this NDWI, producing a binary water/nonwater map based on the assumption that water and 

not‐water are the dominant features in the NDWI histogram. (3) We then dilated this Otsu threshold by 

an 11‐pixel kernel and applied an econometrics breakpoint algorithm on this buffered area (using the 

“Strucchange” R package). This is a more sophisticated automated thresholding algorithm that identifies 

multiple histogram peaks. (4) Finally, we selected the highest single NDWI peak resulting from this break- 

point analysis in our dilated Otsu polygon as the true water signal; this represented the final water mask. 

This multistep process has been shown to improve upon simple binary thresholding for Planet images 

(Cooley et al., 2019). Widths were extracted based on the same manually created cross sections described pre- 

viously for Landsat and Sentinel‐2. 

 bandgreen−bandnir  

NDWI ¼ 
bandgreen þ bandnir 

 
(5) 

 

where NDWI is normalized difference water index (McFeeters, 1996); bandgreen and bandnir are Bands 2 

(Green) and 4 (NIR) of Planet imagery, respectively. 

 
 

2.4. Discharge Estimation 

2.4.1. The BAM Algorithm 

BAM estimates river discharge by using either AMHG or Manning's equation in a probabilistic manner 

(Hagemann et al., 2017). However, observations of water surface elevation and width are needed to drive 

the Manning variant, and its use is beyond the scope of this study where the focus is optical data alone. 

These joint observations (of height and width) are also only available where ocean altimeters and  optical 
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Table 3 

Priors on Parameters in BAM‐AMHG 

Parameters Mean Variance Upper bound Lower bound 

ln (Wc) 

 

 
ln (Qc) 

 
 
 

ln(Q) 

 
ln (bi) 

ln   1 ∑T  ∑n  
Wit  ; n is number of cross sections 

nT       t¼1     i¼1 

within a reach; T is the time steps of width records 

ln
 

μ =

qffi
1

ffiffiffi
þ
ffiffiffiffiffi

σ
ffiffi
2

ffi
q

ffiffi  
μ   = mean(Q );  σ2 ¼ varðQ Þ ; 

q μ2 
q     

q r q r 

Qr is river flow time series obtained from 
gauge records or reanalysis data sets 

ln
 

μ  =
qffi

1
ffiffiffi
þ
ffiffiffiffiffi

σ
ffiffi
2

ffi
q

ffiffi 
;
 

q μ2 
q 

0.02161+0.4578 × SD(logWi) 

ln(AHG width‐discharge exponent  b) 

ln(var(W11,21,…nT)) 

 
 

2 
q

 

lnð1 þ 
σ 

) 
μ2 

q
 

 
 
 
 

2 
q

 

lnð1 þ 
σ 

) 
μ2 

q
 

ln(0.3
2
) 

ln(min(W11,21,…nT)) 

 

 

ð1−αÞ×ln
 

μ =

qffi
1

ffiffiffi
þ
ffiffiffiffiffi

σ
ffiffi
2

ffi
q

ffiffi  
q μ2 

q 

α is 0.1 in this study 

min(ln(Qr)) 

ln(0.4) 

ln(max(W11,21,…nT)) 

 

 

ð1 þ αÞ×ln
 

μ  =
qffi

1
ffiffiffi
þ
ffiffiffiffiffi

σ
ffiffi
2

ffi
q

ffiffi  
q μ2 

q 

 
 

max(ln(Qr)) 

 
ln(1.0) 

Note. BAM = Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm; AMHG = at‐many‐stations hydraulic geometry; AHG = at‐a‐station hydraulic 
geometry. 

 

data align in space and time and are difficult to find for small rivers. We therefore used the AMHG physics in 

this study. The BAM‐AMHG is formulated as equation (6) (Hagemann et al., 2017). 

logW i ¼ biðlogQ−logQcÞ þ logW c þ ϵ (6) 

where Wi is river width at cross section i, (m); bi is the AHG width‐discharge exponent at cross section i. Q is 

discharge (m3/s); Qc and Wc are AMHG global parameters for a reach; ϵ is an error term that we set to 0.22 as 

suggested by Hagemann et al. (2017). In BAM‐AMHG, Wi is a known quantity, obtained from satellite ima- 

gery in this study; bi, Q, Qc, and Wc are unknown parameters that need to be sampled from a predefined a 

priori distribution. Following suggestions from Hagemann et al. (2017), we assumed these unknown para- 

meters follow a truncated lognormal distribution. Statistics of these a priori distributions were determined 

(Table 3) based on their original definitions (Gleason & Wang, 2015) and suggestions from Hagemann et al. 

(2017). The prior information for Wc was determined by assuming it follows the same distribution as the 

observed widths extracted from satellite imagery. Qc and Q were assumed to follow the same prior distribu- 

tion defined by historical flow statistics, but with different boundaries. Q was assumed to have the same 

boundary as historical flow, but Qc has a narrower boundary based on its definition and suggestions from 

Gleason and Wang (2015). The parameter α (in Table 3) used to define the Qc boundaries was selected based 

on an optimization process, during which an ensemble of α values were tested and the one with the best 

BAM performance (assessed by normalized root‐mean‐square error, nRMSE) was selected. In this study, 

the best BAM performance was achieved when α = 0.1, although the process was relatively insensitive to this 

value, and this optimization is not necessary in ungauged settings. Parameter b was defined using two  

approaches in this study: The empirical approach suggested by Hagemann et al. (2017) and an AHG‐b 

approach, which transforms the AHG width‐discharge exponent at each cross section to the mean of para- 

meter b in BAM. A standard deviation of 0.3 for b was used in this study, based on the optimization process 

described above. Similarly, the BAM results were relatively insensitive to the values of b standard deviation, 

and these results should hold in ungauged regions. We used 0.4 and 1.0 for the lower and upper boundaries 

for b, respectively, based on the AMHG definition (Gleason & Wang, 2015). 

2.4.2. BAM Versus Rating Curves in Gauged Basins 

BAM can operate in ungauged cases, but its accuracy improves when prior data are available. We do have 

gauge data available in our study region, but it is not obvious that BAM should be used when these data 

are available: why not use space‐based gauging in this case? Here, we refer to “spaced‐based gauging” as 

the AHG‐based width‐discharge rating curve method (Pavelsky, 2014). This method also only needs width 

(in addition to gauge data) as input, which is comparable to BAM, and it is well developed and more com- 

monly used than BAM. We followed Pavelsky (2014) to combine multiple width‐discharge rating curves 

within a reach for discharge estimation. In brief, we used the in situ gauge discharge and satellite‐derived 

widths at each cross section to create a new rating curve and then merged the results to arrive at a gauging 

station that could operate if the gauge were removed and if river planform/geometry remained stable. To 
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optimize the results, cross sections were filtered based on their AHG strength, evaluated by the p value of the 

linear regression for logw~logQ. Twenty cross sections with the best AHG strength were used for discharge 

estimation. Twenty was selected as the sample number based on the number of cross sections in the smallest 

river reach. In the rating curve method, the medians of the estimated discharge at these 20 cross sections 

were used as the river discharge in each reach. BAM uses the widths from these same 20 cross sections 

and gauge streamflow data as priors. The performance of BAM will be evaluated by comparing its results 

with those from the rating curve method. 

2.4.3. BAM                                   in                                   Ungauged                                   Basins 

To assess the potential of the method proposed in this study for estimating discharge in ungauged basins, we 

also tested BAM performance when using reanalysis runoff data sets mentioned in section 2.2 as BAM 

priors. In ungauged basins, in situ measurements are unavailable, so it is impossible to detect the best  

AHG cross sections as in section 2.4.2. Two experiments were conducted: (1) using width data from 20 cross 

sections with highest width variabilities (we call this approach most‐variable‐width in the following text) and 

(2) using an ensemble of 50 combinations of 20 randomly selected cross sections, where the final discharge is 

the median of these cross sectional discharges (we call this approach ensemble‐median in the following text). 

These tests allow us to test the hypothesis that the most‐variable‐width cross sections will have more accu- 

rate discharge estimation than an ensemble‐median approach. We removed width outliers to reduce the 

effects of bias resulting from the width extraction process (e.g., water classification uncertainties) on the 

BAM results. Width values three standard deviations greater/less than mean width at each cross section 

were identified as outliers and were excluded for Q estimation. Consistent with the assumption that the river 

widths follow a lognormal distribution (in section 2.4.1), this outlier detection process was conducted on the 

logarithm of width time series. This filtering ensured that commission error in the classification did not 

introduce overly large/small width values. 

 
3. Results 

3.1. Satellite  Width Measurements 

The retrieved widths from three satellites are comparable, with a difference of <140 m for large rivers and 

<15 m for medium rivers (Figure 4a). Given the spatial resolution of Landsat 8 (i.e., 30 m), only data for large 

rivers (width > 100 m) are evaluated. With a higher spatial resolution, Sentinel‐2 images are used for both 

large and medium rivers (width > 40 m). Planet images are used for all rivers, considering its fine resolution 

(~3 m). The number of width measurements is also impacted by the temporal resolution of each satellite 

(Figure 4b). There are about 80 ± 20 Landsat 8 images available for the large river reaches during the study 

period, and only 10–20% are cloud free. Sentinel‐2 has more usable images due to its higher temporal resolu- 

tion (i.e., 5 days) as compared to Landsat 8: 180 ± 60 images with 15–25% of them cloud free. Thus, the 

numbers of widths retrieved from Sentinel‐2 for large rivers are greater than those from Landsat 8 by a factor 

of 3–4 (Figure 4b). With the highest temporal resolution (near daily), Planet has the most usable images for 

all rivers, about a factor of 4 more than Landsat 8 and twice as many as Sentinel‐2 on average, showing its 

temporal advantages. 

3.2. Discharge Estimation 

3.2.1. Estimation With Gauge Prior Information 

The performance of BAM as compared with the rating curve method is shown in Figure 5, and we show full 

hydrographs for only one river for each satellite data category for conciseness (Figures 6 and 7). Results for 

other rivers can be found in the SI (Figures S3–S10). We also report only normalized RMSE (residuals 

divided by the mean: nRMSE, %) in this paper, and other error metrics, including rRMSE (%), rBias (%), 

and NSE, can be found in the SI (Tables S1–S3). The definitions of these error metrics can also be found 

in equations (S1)–(S4) in the SI. For BAM, we tested both b algorithms as shown in Table 3. The results 

for these two algorithms are very similar, so only results for the empirical‐b algorithm are shown and dis- 

cussed here. The error metrics for results of BAM with the AHG‐b algorithm can be found in Table S1 in 

the SI. 

For large rivers (width > 100 m), the rating curve method performs better than BAM when using both indi- 

vidual and fused governmental satellite data (i.e., Landsat, Sentinel‐2, and Landsat+Sentinel‐2). This is 

probably because the high‐quality satellite imagery (Landsat and Sentinel‐2) can produce more accurate 
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Figure 4. Comparison of retrieved river flow width (a) and number of usable images (b) from three data sets for 11 river 

reaches in the summer period (15 May to 15 September) during 2016–2018. Error bars represent standard deviation of 
retrieved widths at all cross sections within a reach in all available dates. Considering the spatial resolutions, Landsat 8 

imagery were only used for large rivers and Sentinel‐2 imagery were only used for large and medium rivers. The top panel 

(a) indicates that widths are similar, but not identical, from all three satellites, while the temporal advantages of Planet are 

clear in the bottom panel (b). 

 

width data for large rivers, which help establish strong width‐discharge AHG, making the rating curve 

method more accurate for discharge estimation than BAM. In contrast, BAM performs better than the 

rating curve method when using fusion of government‐based and CubeSat data. When using BAM, data 

fusion improves discharge estimation for all large rivers, although the magnitude of this effect is small 

(less than 7%). This is because the rating curve method is more sensitive to noise and outliers in width 

data than BAM, and BAM produces more “flat” hydrographs that mute dynamics that give better error 

metrics (e.g., Figures S4 and S5). 

For medium rivers, BAM performs better than the rating curve method for both individual and fused data 

sets. When using BAM, fusion achieves a better performance (average 26% reduction in nRMSE) for most 

medium rivers (except for River 15484000) with nRMSE in a range of 37–67% (Figures 5 and 7). For small 

rivers, similarly, BAM is more stable than the rating curve method (Figure 7), with nRMSE ranging between 

52% and 80% for BAM and 72% to >100% for rating curve method (Figure 5). Errors are relatively high for 

small rivers for both BAM and rating curve method compared with those for large and medium rivers. 

This may suggest that the individual CubeSat data are not favorable for estimating discharge for small rivers, 

likely due to the lower quality of CubeSat images as compared with those from flagship government‐ 

sponsored satellites. In addition, the numbers of cross sections covering small river reaches, especially for 

Rivers 15519100 (24 cross sections) and 15511000 (23 cross sections), are much smaller than those covering 

large and medium rivers. Available cross sections for small rivers exhibit weak width‐discharge AHG (i.e., 

only 20–50% AHG curves are significant at a 10% level), which may also contribute to the poor performance 

of both BAM and rating curve method in these rivers. 
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Figure 5. Error (nRMSE) of estimated discharge for large rivers (a), medium rivers (b), and small rivers (c) by BAM (left 

part) and Rating Curve method (right part). Colored bars represent different width data sets, which are a factorial of 

available data for this study. Per Figure 4, not all data sets are appropriate for all rivers. We see here that BAM outperforms 

the rating curve method for medium and small rivers and performs well for large rivers. Errors are truncated at 100% 

for display purposes (arrow points indicate errors higher than 100%), and values for these are given in the supporting 

information (Table S1). BAM = Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm; nRMSE = normalized 

root‐mean‐square error. 

 
 

Large overestimations in discharge occur when Planet data are used individually or fused as inputs for rating 

curve method (Figures 7b–7d, S3f, S6b and S6c, S7b and S7c, S8, and S9), suggesting errors in water classi- 

fication. Although Landsat and Sentinel‐2 have coarser spatial resolutions (30/10/20 m) as compared to 

Planet (3 m), the widths from these governmental satellites have lower uncertainties than those from the 

CubeSat. This is probably due to the higher quality of Landsat 8 and Sentinel‐2 imagery compared to 

Planet imagery: Planet's four‐band  sensors struggle to  differentiate turbid water from  sand bars or     

dry channels. 

3.2.2. Estimation in Ungauged  Basins 

The previous section provides examples of how BAM might perform in cases where gauge data are present. 

BAM's great advantage, however, lies in its ability to function in completely ungauged basins without relying 

on assumptions of hydrologic regionalization or transferability. Here, we use globally available reanalysis 

runoff data sets as BAM prior information: These estimates are available for all rivers on Earth. As a 

Bayesian technique, BAM improves with improving prior information, so the estimation performance relies 

in part on how well the reanalysis data represent the magnitude and dynamics of real river flows. Figure 8 
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Figure 6. Simulated discharge hydrographs for large River 15485500 (Tanana River at Fairbanks) using BAM and rating 

curve method with width data from individual satellites and their fusions: (a) Landsat 8; (b) Sentinel‐2; (c) Planet; (d) 

Landsat 8 + Sentinel‐2; (e) Sentinel‐2 + Planet; (f) Landsat 8 + Sentinel‐2 + Planet. The different x axis scales reflect the 
number of available images, and hydrographs are shown as connected for ease of interpretation. In reality, these time 

steps cover three summers, so Landsat would appear as seven points across a 3‐year time period in panel (a). 

BAM = Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm. 

 
 

shows the results, which are generated completely without in situ data and using widths same as in 

section 3.2.1. Among the three reanalysis data sets tested in this study, NCEP performed best, because it 

has the most similar statistics (mean and variance) to those of the gauge records (Figure 8). MERRA‐2 

runoff values are relatively low, leading to underestimated discharge for most rivers (with nRMSE ranging 

between 50% and 95%; Figure 8b). In contrast, the variation of discharge derived based on ERA5 runoff is 

much higher than that of gauge measurements, which results in overestimated discharge for most rivers, 

with nRMSE > 100% for more than half of the studied rivers (Figure 8c). These results also indicate that 

better performance of BAM discharge estimation can be expected when more realistic runoff reanalysis 

data are available in the future. 
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Figure 7. (a–c) Simulated discharge for medium River 15484000 (Salcha River near Salchaket) using BAM and rating 

curve method with width data from individual satellites and their fusions: (a) Sentinel‐2; (b) Planet; (c) Sentinel‐2 + 
Planet. (d) Simulated discharge for small River 15519100 (Tolovana River) using BAM and rating curve method with width 

data from Planet. BAM = Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm. 

 
 

Using the best (NCEP) forcing, BAM can estimate discharge with an nRMSE in a range of 22–71% in large 

rivers (Figure 8a). For medium rivers, Sentinel‐2 performs better than Planet, with 39–59% nRMSE. 

However, the fusion of Sentinel‐2 and Planet data can achieve a more stable performance across medium 

rivers. For small rivers, BAM does not perform well, probably due to both the poor width extractions and 

worsened prior information. 

Without gauge data to detect the AHG strength for ungauged basins, we need a different way of choosing 

which 20 cross sections should be used to run BAM in this case. To provide suggestions on how cross sections 

should be selected when no gauge data are available, BAM was forced with both width from the 20 most 

width‐variable and an ensemble of randomly selected cross sections, as mentioned in section 2.4.3. The 

results (only results for NCEP are shown here considering its relatively better performance than 

MERRA‐2 and ERA5; Figure 9) show that the ensemble‐median approach performs better than the 

most‐variable approach in regard to the accuracy of discharge estimation, although the difference is not 

statistically significant (p value = 0.75 for Mann‐Whitney test) probably because of the small number of 

samples. In addition, the width‐most‐variable approach is sensitive to the width uncertainties. We found 

that, without the outlier detection process, the results for the width‐most‐variable approach are much worse 

than those shown in Figure 9a. Therefore, the ensemble‐median approach is likely a better way to select 

cross sections for estimating discharge with BAM for ungauged basins. 

 

4. Discussion 

Since discharge estimates rely on satellite‐derived widths, disparities in spatial resolution, band classification 

techniques, temporal resolution, and spectral resolution are important. Landsat 8 can provide very accurate 

flow width information for large rivers, but its temporal data density is very low (Figures 4 and 5). Sentinel‐2 

can provide more usable images at finer scales, but the quality of the extracted widths is not as good as that of 



7766 FENG ET AL. 

Water Resources Research 10.1029/2019WR025599 

 

 

 
 

 
 

Figure 8. Error metrics (nRMSE) of BAM discharge estimates using reanalysis runoff data sets from (a) NCEP, (b) 

MERRA‐2, and (c) ERA5 as priors. These represent completely ungauged scenarios, and we can see how BAM perfor- 

mance changes with changing prior information. NCEP‐driven performance is good, suggesting that ungauged Arctic 
rivers similar to those in the study area might be estimated with acceptable accuracy for these ungauged cases. BAM = 

Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm; NCEP = National Center for Environmental 

Prediction; MERRA‐2 = Modern‐Era Retrospective analysis for Research and Applications version 2; ERA5 = European 

Centre for Medium‐Range Weather Forecasts Reanalysis Fifth generation; nRMSE = normalized root‐mean‐square error. 

 
 

Landsat (Figures 5 and 6), likely due to cloud classification issues that introduces bias to water masks 

(Coluzzi et al., 2018). In addition, the water classification method in Zou et al. (2018) is calibrated based 

on the performance for Landsat SR images, therefore applying this method to Sentinel‐2 TOA images may 

also result in biases in extracted widths. CubeSat satellites produce the most useable images (about 2–6 

times greater than a single government‐based satellite data set) and record river flow information for all 

rivers. This lack of radiometric calibration for CubeSat data is partially overcome by our use of the 

method in Cooley et al. (2019), where thresholding to detect water is performed on a relative basis, rather 

than on an absolute threshold as in NDWI. This allows each image to be optimally classified, regardless of 

its radiometric calibration versus other images. However, the performance of individual CubeSat data for 

discharge estimation is still not as good as governmental satellites (Figures 5–7), which is probably 
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Figure 9. Error metrics (nRMSE) of BAM with prior information from NCEP reanalysis runoff data set for (a) BAM dis- 
charge estimates using widths from 20 most variable cross sections, and (b) ensemble median of BAM discharge 

estimates using widths from 50 combinations of 20 randomly selected cross sections. BAM = Bayesian at‐many‐stations 

hydraulic geometry‐Manning algorithm; nRMSE = normalized root‐mean‐square error; NCEP = National Center for 
Environmental Prediction. 

 

because of water classification issues (i.e., only four bands are available for water classification; Houborg & 

McCabe, 2018). For example, for the Tanana River (U.S. Geological Survey No. 15485500), the discharge 

error for Planet is especially higher than those for Landsat and Sentinel‐2 (Figure 5), probably because 

Planet CubeSats do not have a midinfrared band, which makes it challenging to differentiate the 

sediment‐laden water in Tanana River from the sand bars using visible and near‐infrared (VNIR) bands of 

Planet imagery alone. 

When these three satellites are fused, noise and uncertainty can mask the dynamic signals of width varia- 

tion, which leads to worse discharge estimates from the rating curve method than with single data sets 

(higher nRMSE for fusions than individuals; Figure 5). This is because the rating curve method is a determi- 

nistic approach, and it is more sensitive to outliers and data noise than BAM. In contrast, BAM‐AMHG tends 

to produce more stable discharge estimates across scales after fusion: Hydrographs tend to be more similar to 

one another. This is mainly because in BAM, the discharge estimates are retrieved based on the statistics of 

Bayesian inference from a prior distribution, which makes it “statistically defensible” (Hagemann et al., 

2017). This suggests that the fusion of government‐sponsored and CubeSat satellites data sets, integrated 

with BAM, is a possible approach to improve discharge estimation for large and medium rivers by increasing 

data density (about 2–6 times greater than a single governmental satellite data set), which is particularly 

important to capture short‐lived phenomena like flood waves. The upcoming SWOT mission can provide 

high quality hydraulic variables, which will enhance global discharge estimation significantly. The results 

in this study may indicate that the fusion of SWOT and other satellites (e.g., CubeSats) can address limita- 

tions caused by the lower temporal resolution of SWOT data (i.e., 3–21 days) and thus improve discharge 

estimation at the global scale. 
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Of chief interest in this study is the ability to estimate discharge at spatial scales not previously shown using 

satellite data. However, the BAM‐AMHG discharge estimates for small rivers are not as good as for large riv- 

ers. In addition to the CubeSat data quality and spatial resolution issues, the sample size is also problematic. 

The numbers of total cross sections for our 11 reaches are not consistent, varying from 748 for 15453500 to 23 

for 15511000. For small rivers, the pool size from which the widths were selected is much smaller, which can 

reduce the signals required for discharge estimation. Increasing this pool size would require denser cross sec- 

tions (which may not introduce new information), or lengthening our study reach. Since BAM is a McFLI 

algorithm, lengthening the reaches would possibly introduce errors in mass conservation: the shorter the 

reach around the gauge, the more likely that gauge discharge represents the reach. This balance has not been 

studied intensively and is a worthy subject for future research. Small rivers are also poorly described by AHG 

from space‐borne widths, even at 3‐m resolution. Only 20–50% of cross sections exhibit significant AHG (p < 

0.10) for small rivers. Since both the rating curve method and BAM are fundamentally trying to invert AHG, 

this explains a large part of the poor performance by BAM as well. 

In this study, only 20 cross sections at each reach were used for discharge estimation to allow for consistent 

comparison across scales. This can be problematic for some large rivers, since the spatial/temporal width 

variations of the 20 selected cross sections may not be sufficient to drive reach‐scale AMHG in the BAM algo- 

rithm. For example, for the Yukon River reaches (15453500 and 15356000; Figures S4 and S5), the selected 

cross sections were located within a reach of 600 m, and the AMHG built on such short reaches is likely 

weaker than that previously reported by Gleason and Smith (2014). This issue can be avoided in the future 

by modifying the cross‐section filtering technique. For example, the cross sections can be divided into groups 

based on their spatial locations, and then those with the best AHG in each group passed to BAM. As a 

Bayesian technique, BAM performance relies on prior information (Figure 8). In this study, a simple 

approach was used to transform surface runoff to discharge (i.e., discharge = runoff * drainage area), which 

ignores water transportation processes and thus likely introduces some bias. Therefore, integrating runoff 

(surface and/or subsurface runoff) and/or groundwater data sets with some hydrologic routing models to 

generate BAM priors may be a possible approach to improve discharge estimation for ungauged basins. 

Furthermore, we have not tested how varying levels of prior information affect discharge retrieval for the 

gauged cases. These ungauged results indicate that the worse a prior distribution approximates true flow, 

the worse BAM performs (as expected). We could have also added another test where we subsampled the 

gauge records to test the role of prior data, but this test lies outside of our scope. Another interesting point 

revealed by this study is that the NCEP reanalysis runoff data set performs better than the newly released 

MERRA‐2 and ERA5 when using the simple runoff‐discharge transformation approach. Therefore, NCEP 

is recommended as a prior source for discharge estimation, at least for the rivers in this study. However, 

further investigation about their performance when using different runoff‐discharge transformation 

approaches (e.g., incorporated with routing models) is necessary for future work. 

Also for ungauged basins, we found that the error metrics at each cross section within a reach are similar, 

which implies that there is no obvious clue for detecting “good” cross sections for BAM input. This has long 

been a goal of McFLI research—trying to determine, without in situ data, where discharge estimation will be 

most successful. We tested and rejected the hypothesis that choosing the most‐variable‐width cross sections 

is more accurate than an ensemble‐median in this study. Although the better performance of the ensemble‐ 

median approach is not statistically significant, we still recommend it, as it is less sensitive to the outliers in 

widths (which is particularly important when the width uncertainties are large), and it does not rely on prior 

knowledge of discharge and is thus readily applied in all basins. 

BAM‐AMHG is developed based on the AMHG theory, which fundamentally requires cross sectional mea- 

surements of width. However, this may not be the best approach to detect the width‐discharge signals, espe- 

cially for small rivers. First, the width‐discharge relationship at cross section scales can be susceptible to 

morphological changes. In this study, we assume the morphology did not change during the study period 

(2016‐2018). Although our study period is short, morphology is still likely to change somewhat, which 

may weaken the AMHG strength and subsequent discharge simulation. Second, a precise measurement of 

widths at cross section scales requires high resolution images, which makes most of the current remote sen- 

sing imagery with moderate spatial resolutions (e.g., MODIS and Landsat) poor for small rivers in this study. 

The development of remote sensing techniques (i.e., higher spatial and spectral resolutions), combined 

with appropriate consideration of cross section allocation and morphology changes, can improve the 
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performance of the approach proposed in this study. Even for currently available remote sensing 

techniques, including the optical, SAR and microwave sensors, a reach‐averaged width, instead of cross 

sectional width, may be an option to alleviate the issues mentioned above (e.g., Brakenridge et al., 2007, 

2012; Durand et al., 2016; Van Dijk et al., 2016). However, AHG and AMHG theories have not been 

firmly established at the reach scale. How to allocate measurement units (e.g., reach vs. cross section,  

length, and interval) to balance width accuracy, morphology change impacts, and AMHG validation 

requires further investigation. 

Finally, we can contextualize this study with other remote sensing of discharge literature. This is the first 

study to estimate discharge solely from remotely sensed information at such fine spatial scales, and among 

the first to show such high data density for Arctic rivers. Our results show that BAM can be as accurate as, if 

not more accurate than, traditional space‐based rating curves. This is an interesting point and is strength- 

ened by the diminishing gauge record. As long as past gauges represent current gauge realities (i.e., channel 

morphology, AHG and AMHG strength, mean, and variability of the hydrograph should be similar), BAM 

can continue to provide accurate estimates without the need to resample the rating curve distribution. 

The methods of, for example, Tarpanelli et al. (2019) could also be compared to this gauge‐based case, but 

our goal was not an exhaustive intercomparison. We would expect that any of the many discharge remote 

sensing techniques that rely on gauge data (e.g., Bjerklie (2007), Bjerklie et al. (2003), Pavelsky (2014),  

Smith et al. (1996), Smith and Pavelsky (2008), Van Dijk et al. (2016)) would have similar performance in 

the gauged case. 

In an ungauged case, our results are similar to previously published AMHG‐based results (Durand et al., 

2016; Gleason & Smith, 2014; Hagemann et al., 2017). These results are not as accurate, however, as expected 

results using the Manning equation within BAM after the launch of SWOT. Durand et al. (2016) show (using 

hydraulic model output as a stand‐in for SWOT) that this extra dimension (observations of width and height, 

as opposed to just width here) greatly improves performance. While Bjerklie et al. (2018) fused altimeters 

with optical data to generate such data, this is infeasible for the spatial scales in this study, as altimetry is 

only available for large rivers. We therefore suggest, following our results, that width‐only discharge esti- 

mates are useful in both gauged and ungauged settings but that these will have diminished value after the 

launch of SWOT. SWOT, however, will only observe rivers wider than 100 m with a goal of 50 m 

(Biancamaria et al., 2016), so even SWOT will not see more than half of the rivers in this study. In addition, 

CubeSat technology may improve in the future, by, for example, introducing midinfrared spectral bands and 

improving the techniques for radiometric calibrations between instruments. Seen in this light, the fusion of 

Landsat/Sentinel‐2 and CubeSats holds great promise for future hydrologic application, even with the 

advent of SWOT. 

 

 
5. Conclusions 

This study presents a first assessment of CubeSat data for discharge estimation for Arctic rivers. Landsat 8, 

Sentinel‐2, and Planet CubeSat data sets and their fusions were tested for estimating discharge for 11 Arctic 

river reaches with various sizes spanning from >1,000 to <20 m wide. The relatively low temporal/spatial 

resolutions (for Landsat and Sentinel‐2) or low radiometric data quality (for Planet) limit the applications       

of these data sets used alone. Their fusion, however, can be an approach to enhance their ability to estimate 

discharge. The BAM method is typically thought of as a technique for ungauged basins, but we here show 

that BAM can, in some cases, outperform a traditional space‐based rating curve when given the same input 

data. Space‐based rating curves are sensitive to outliers or noise in the width data and the sampling of 

hydrograph dynamics, which makes them less accurate when using the fused satellite data. In contrast, 

BAM‐AMHG can provide more statistically stable discharge estimates. The results in this study show that 

BAM‐AMHG forced with fused width data from both government‐sponsored and CubeSat satellites can 

improve discharge estimation for both large and medium rivers (>40 m wide) by increasing data density        

by a factor of 2–6 without hurting accuracy. In ungauged basins, using globally available NCEP surface run- 

off reanalysis data, BAM forced with fused satellite data can estimate discharge in the study region with 

acceptable accuracy (34–71% nRMSE for large rivers and 61–69% for medium rivers). SWOT's two‐ 

dimensional observations are expected to improve these results substantially (Durand et al., 2016), but this 
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study suggests that the fusion of CubeSat and government‐sponsored satellites (e.g., Landsat and Sentinel 2) 

represents a possible approach to improve global discharge estimation before the launch of SWOT. 
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