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ABSTRACT 
On-line learning or “relevance feedback” techniques for 

multimedia information retrieval have been explored from many 

different points of view: from early heuristic-based feature 

weighting schemes to recently proposed optimal learning 

algorithms, probabilistic/Bayesian learning algorithms, boosting 

techniques, discriminant-EM algorithm, support vector machine, 

and other kernel-based learning machines. Based on a careful 

examination of the problem and a detailed analysis of the existing 

solutions, we propose several discriminating transforms as the 

learning machine during the user interaction. We argue that 

relevance feedback problem is best represented as a biased 

classification problem, or a (1+x)-class classification problem. 

Biased Discriminant Transform (BDT) is shown to outperform all 

the others. A kernel form is proposed to capture non-linearity in 

the class distributions. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Relevance feedback; Query formulation; Retrieval 

models; Search Process.  

General Terms 
Algorithms, Design, Experimentation, Human Factors, Theory. 

Keywords 
Multimedia retrieval, relevance feedback, discriminating 

transform, support vector machine, kernel method. 

1. INTRODUCTION 
The machine-aided retrieval of multimedia information—audio 

[32], image[8][26], or video[28][16], etc.—is achieved based on 

representations in the form of descriptors (or feature vectors), i.e., 

a set of real numbers. Two issues arise: one is the effectiveness of 

the representation, i.e., to what extent can the meaningful contents 

of the media be represented in these vectors? The other is the 

selection of similarity metric during the retrieval process. The 

latter is an important issue because the similarity metric 

dynamically depends upon the query class, which is unknown a 

priori, and can be user dependent and time varying, thus needs to 

be learned on-line through user interactions. In this paper, we 

focus our attention on the similarity metric issue, i.e., the on-line 

learning algorithms for content-based multimedia information 

retrieval.  

The difference between content-based multimedia retrieval and 

traditional textual information retrieval lies in the fact that 

multimedia retrieval is conducted by the machine in a continuous 

feature space, while text or keyword-based retrieval is primarily 

performed in the discrete vector space of words; as a result, 

multimedia retrieval is inherently a nearest neighbor or a top-k 

ranking problem, while traditional keyword-based retrieval 

usually makes a binary “hit-or-miss” decision based on the 

occurrences of the keyword queries, although some rule-based 

ranking is possible. 

For the purpose of quantitative analysis, we impose the 

assumption that the features selected in this paper possess 

adequate discriminating power to support the “ground-truth” 

classification in the user’s mind. Note that in reality this is a 

strong assumption since it is very difficult to find a set of adequate 

features to represent high-level concepts and this is still an active 

research area. (Imagine the query for a music or video segment 

that “conveys excitement”, or the query for a face picture that 

 
Figure 1 "A picture is worth a thousand words": different 

users at different times can be interested in either the “horse 

silhouette”, the “sunset”, or the overall artistic layout… 

 

 



“looks stupid”—it is hardly imaginable that robust numerical 

descriptors even exist for such high-level and subtle concepts in 

the human minds.) 

1.1 The Need for On-line Learning 
Even if we assume that consensus interpretation of multimedia 

contents can be reached among all possible users at all times (— 

“universal classification assumption”), learning of similarity 

metrics is still desirable since different scenarios call for different 

similarity metrics—For example, “cars” are similar to each other 

more or less in terms of “shape”, while “sunset” images are best 

discriminated from others by “color”. Therefore a query for “cars” 

should be handled in a different way from that of the query for 

“sunsets”, emphasizing different discriminating subspace of the 

original feature space. However, under this “universal 

classification assumption”, which may hold for some applications 

such as medical image databases with specific, well-defined 

functionalities, off-line pre-clustering or learning may be feasible 

or even beneficial. 

But in general, on-line learning with user in the loop is 

indispensable, because an inherent nature of multimedia 

information is its varying interpretations by different users at 

different times. In other words, the perceptual “similarity” 

depends upon the application, the user, and the context of usage. 

A piece of music can invoke different feelings in different people 

at different times; and “a picture is worth a thousand words” 

(Figure 1). The time-varying interpretation or classification of 

multimedia information can only be dealt with using real-time 

learning algorithms.  

Early CBIR systems invited the user into the loop by asking the 

user to provide a feature-weighting scheme for each retrieval task. 

This proved to be too technical and a formidable burden on the 

user’s side. A more natural and friendlier way of getting user in 

the loop is to ask the user to give feedbacks regarding the 

relevance of the current outputs of the system. This is referred to 

as “relevance feedback” techniques ([19][21][12][25][29][34], 

etc). Though this is an idea initiated in the text retrieval field [23], 

it seems to work even better in multimedia domain: it is easier to 

tell the relevance of an image or video segment than that of a text 

document—it takes time to read through a document while an 

image reveals its content instantly.  

In CBIR systems on-line learning techniques or relevance 

feedback algorithms have been shown to provide dramatic 

performance boost [19][21][12][29][34]. 

1.2 Problem Statement 
Since different types of multimedia information can be 

represented in the same form of feature vectors, media type 

becomes transparent to the machine. In this paper, we assume that 

each meaningful “unit” of information is represented by one 

feature vector. For images, the “unit” can be the whole image, 

image blocks, or segmented regions; and for videos, the “unit” can 

be shots, frames, or key frames, depending upon the application 

scenarios.  

In the abstraction of the feature space, each “unit” of multimedia 

data becomes a point. Relevance feedback becomes a supervised 

classification problem, or an on-line learning problem in a batch 

mode, but with some unique characteristics. The uniqueness lies 

in at least three aspects:  

First, the machine needs to learn and respond in real time. In this 

paper, we target the multimedia information systems in which the 

similarity among the data points is dynamically determined by the 

current user for the current task. Therefore real-time response is 

critical.  

Second, the number of training samples is very small relative to 

the dimension of the feature space, and to the requirements by 

popular learning machines such as support vector machines 

(SVM)[30]. It should be underscored that the class densities, 

especially that of the negative examples, cannot be reliably 

modeled with such small sample size. 

Third, the desired output is not necessarily a binary decision on 

each point, but rather a rank-ordered top-k returns. This is a less 

demanding task since the user actually does not care the rank or 

configuration of the negative points as long as they are far beyond 

the top-k returns. In fact algorithms targeting at binary 

classification is ill-fitted to this problem and performs poorly. 

This will be illustrated in details in subsequent sections. 

In this paper, we use the phrase “relevance feedback” to denote 

the on-line learning process during multimedia information 

retrieval, based on the relevance judgments fed-back by the user. 

The procedure is as follows: 

• Machine provides initial retrieval results, through query-by-

keyword, or example, etc.; 

Then, iteratively: 

• User provides judgment on the current results as to whether, 

and to what degree, they are relevant to her/his request; 

• The machine learns and tries again. 

In this paper, we designate the learning task as the learning of a 

discriminating subspace from the limited number of examples 

provided by the user in an interactive fashion. 

2. STATE OF THE ART  
Among different media types, on-line learning during image 

retrieval is the most active in recent years. We give a brief review 

of the state-of-the-art in relevance feedback techniques in the 

context of image retrieval. Again, many of these techniques are 

directly applicable for the retrieval of other media types.  

2.1 Variants  
Before we get into the details of various techniques, the reader 

should note that under the same notion of “relevance feedback”, 

different methods might have been developed under different 

assumptions or problem settings thus not comparable. The 

following lists some of the conceptual dimensions along which 

some methods greatly differ from others:  

a. What is the user looking for? Some assumes the user is 

looking for “a particular target item” [6], while many others 

assume the user is looking for “similar” item to the query at 

hand [11][12][21][22].  

b. What to feedback? Some algorithm assumes the user will give 

a binary feedback for positive and negative examples [29]; 

some only takes positive examples [12]; some takes positive 

and negative examples with “degree of (ir)relevance” for each 

[21]; some assumes the feedback is only a comparative 

judgment, i.e., the positive examples are not necessarily 

“relevant” to the target, but “more like the target than the 



negative ones” [6]. The latter can be related to “query 

refinement” techniques in others [14].  

c. Feature representation While most assume one feature vector 

per image/region, some extract features from image blocks [36] 

and use mixture models as the representation [31]. A Bayesian 

framework is then applicable for relevance feedback. Image 

local matching is possible given that meaningful local features 

can be differentiated in the mixture [31]. 

d. Class distribution Another issue is what assumption to be 

imposed on the target class(es). Gaussian assumption is the 

most common and convenient one [12]. However, recent kernel 

based algorithms can deal with non-linearity in an elegant way 

[4].   

e. Data organization If a hierarchical tree structure is adopted in 

the database for more efficient access [1], the learning becomes 

more difficult since the tree-structure needs to be updated in 

real time.  The trade-off offered by [1] between the speed and 

accuracy in searching becomes crucial. 

f. What to learn and how? A majority of the work proposes to 

learn a new query and the relative importance of different 

features[18][21][24], with some tries to learn a linear 

transformation in the feature space either with or without 

considering correlations among feature components [12][22] 

[21]. While others treat it either as a learning[31][34], 

classification [29][38], or a density estimation [4][14] problem. 

In the following section we discuss some of the major 

developments in relevance feedback techniques. 

2.2 Developments 
In its short history, relevance feedback developed along the path 

from heuristic based techniques to optimal learning algorithms, 

with early work inspired by term-weighting and relevance 

feedback techniques in document retrieval[23]. These methods 

proposed heuristic formulation with empirical parameter 

adjustment, mainly along the line of independent axis weighting 

in the feature space[19][21][18][20][24]. The intuition is to 

emphasize more on the feature(s) that best clusters the positive 

examples and separates the positive and the negative.  

Early works [19][21] have clear birthmarks from document 

retrieval field. For example, In [21], learning based on “term 

frequency” and “inverse document frequency” in text domain is 

transformed into learning based on the ranks of the positive and 

negative images along each feature axis in the continuous feature 

space. [19] quantizes the features and then groups the images or 

regions into hierarchical trees whose nodes are constructed 

through single-link clustering. Then weighting on groupings is 

based on “set operations”.    

Some use Kohonen’s Learning Vector Quantization (LVQ) 

algorithm [33] or Self-organizing Map (SOM) [13] for dynamic 

data clustering during relevance feedback. Laaksonen et al. [13] 

uses TS(Tree-Structured)-SOMs to index the images along 

different features. Positive and negative examples are mapped to 

positive and negative impulses on the maps and a low-pass 

operation on the maps is argued to implicitly reveal the relative 

importance of different features because a “good” map will keep 

positive examples cluster while negative examples scatter away. 

This is based on similar intuition as that of [18], where a 

probabilistic method is used to capture feature relevance.  

Aside from their lack of optimality claim, the assumption of 

feature independence imposed in these methods is also artificial, 

unless independent components can be effectively extracted.  

Later on researchers begin to look at this problem from a more 

systematic point of view by formulating it into an optimization, 

learning, classification, or density estimation problem. In [12] and 

[22], based on the minimization of total distances of positive 

examples from the new query, the optimal solutions turn out to be 

the weighted average as the new query and a whitening transform 

of the feature space (equivalent to principle component analysis 

(PCA) or the use of Mahalanobis distance). Additionally, Rui and 

Huang [22] adopts a two-level weighting scheme to better cope 

with singularity issue due to the small number of training samples. 

To take into account the negative examples, Schettini et al. [25] 

updates the feature weights along each feature axis by comparing 

the variance of positive examples to the variance of the union of 

positive and negative examples.  

Assuming that the user is searching for a particular target, and the 

feedback is in the form of “relative judgment”, Cox et al. [6] 

proposes the stochastic comparison search as its relevance 

feedback algorithm.  

While most CBIR systems use well-established image features 

such as color histogram/moments, texture, shape, and structure 

features, there are alternatives. Tieu and Viola [29] used more 

than 45,000 “highly selective features”, and a boosting technique 

to learn a classification function in this feature space. The features 

were demonstrated to be sparse with high kurtosis, and were 

argued to be expressive for high-level semantic concepts. Weak 2-

class classifiers were formulated based on Gaussian assumption 

for both the positive and negative (randomly chosen) examples 

along each feature component, independently. The strong 

classifier is a weighted sum of the weak classifiers as in AdaBoost 

[9].  

In [31], Gaussian mixture model on DCT coefficients is used as 

image representation. Then Bayesian inference is applied for 

image regional matching and learning over time.  

Recently there are also attempts to incorporate support vector 

machine (SVM) into relevance feedback process [4][11]. 

However, SVM as a two-class classifier is not directly suitable for 

relevance feedback, because the training examples are far too few 

to be representatives of the true distributions [4]. However a 

kernel based one-class SVM as density estimator for positive 

examples has been shown to outperform the whitening transform 

based linear method [4].  

Formulated in the transductive learning framework, D-EM 

algorithm[35] uses examples from the user feedback (labeled 

data) as well as other data points (unlabeled data). It performs 

discriminant analysis inside the EM iterations to select a subspace 

of features, such that the two-class assumption on the data 

distributions has better support. However, the computation 

induced by the D-EM iterations is expensive, which can make 

real-time implementation difficult based on the current hardware 

capabilities.  

3. TRADITIONAL DISCRIMINANT 

ANALYSIS AND TRANSFORMATIONS  
To effectively compare the nature and merits of the algorithms 

presented in Section 2, it is desirable to analyze them from the 



feature space transformation point of view: indeed, the feature-

weighting scheme ([13][18][25], etc.) is the simplified diagonal 

form of a linear transformation in the original feature space, 

assuming feature independence. While the Mahalanobis distance 

or the generalized Euclidean distance using the inverse of the 

covariance matrix of the positive examples [12][22] is a whitening 

transformation based on the configuration of the positive 

examples, assuming Gaussian distribution.  

From pattern classification point of view, when only positive 

examples are to be considered and with Gaussian assumption, the 

whitening transformation is the optimal choice [7]. When both 

positive and negative examples are to be considered, instead of 

the aforementioned various, seemingly plausible heuristics for 

feature-weighting[13][18][25], two optimal linear transformations 

based on the traditional discriminant analysis are worth 

investigating. Of course “optimality” depends on the choice of the 

objective function; in this sense, it becomes a problem of 

formulating the best objective function:  

3.1 Two-class Assumption 
One is the two-class fisher discriminant analysis (FDA). The goal 

is to find a lower dimensional space in which the ratio of between-

class scatter over within-class scatter is maximized.  
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And, we use {xi, i  = 1, …, Nx} to denote the positive examples, 

and {yi, i = 1, …, Ny} to denote the negative examples. mx, my, 

and m are the mean vectors of the sets {xi}, {yi}, and {xi}∪ {yi}, 

respectively. (See [7] for details.) 

For two-class discriminant analysis, it is part of the objective that 

negative examples shall cluster in the discriminating subspace. 

This is an unnecessary and potentially damaging requirement 

since the relatively small training sample cannot be representative 

for the overall population, especially for the negative examples. In 

fact, very likely the negative examples will belong to more than 

one class. Therefore the effort of rounding up all the negative 

examples can mislead the resulting discriminating subspace into 

the wrong direction.  

3.2 Multi-class Assumption 
Another choice is the multiple discriminant analysis (MDA) [7], 

where each negative example is treated as from a different class. It 

becomes a (Ny + 1)-class discriminant analysis problem. The 

reason for the crude assumption on the number of negative classes 

is because the class labels within the negative examples are not 

available. One may suggest for the user to provide this 

information. However, from a user interface design point of view, 

it is reasonable for the user to click to indicate items as relevant 

versus non-relevant (say, “horses” and “non-horses”), but 

troublesome and unnatural for the user to further identify for the 

machine what the negative items really are (“these are tigers, 

those are zebras, and that is a table, …”).  

For MDA the objective function has the same format as in 

Equation (1). The difference is in the definitions of the scatter 

matrices: 

∑
=

−−+−−=
yN

i

T

ii

T

xxb mymymmmmS
1

))(())((  (4) 

∑
=

−−=
xN

i

T

xixiw mxmxS
1

))((  (5) 

In this setting, it is part of the objective that all negative examples 

shall be apart from one another in the discriminating subspace. 

This is again an unnecessary and potentially damaging 

requirement since several negative examples can come from the 

same class. The effort of splitting them up can mislead the 

resulting discriminating subspace into the wrong direction.  

3.3 Unsupervised Clustering 
Without more detailed labels on the negative examples except for 

the label of  “negative”, these two are the only sensible solutions 

available from the tradition discriminant analysis framework. One 

may argue that unsupervised clustering techniques (EM, or mean 

shift [5]) can be applied to find out the number of clusters 

automatically. However, a meaningful clustering of a set of points 

actually depends on the subspace selection—an image of a “red 

table” is not necessarily closer to a “white table” than a “red 

horse” unless a proper discriminating subspace can be specified in 

the first place—which is exactly what the system is trying to 

learn. Iin addition, these iterative algorithms are usually too time-

consuming to achieve real time responses. 

3.4 Discriminating Transformation 
For both FDA and MDA, the columns of the optimal W are the 

generalized eigenvector(s) V associated with the largest 

eigenvalue(s) Λ, i.e.,  

SbV = ΛSwV  (6) 

A discriminating transformation matrix is defined as  

A = VΛ1/2 (7) 

In the new space xnew = ATxold, the following “actions” are 

employed to ensure the optimal ratio in Equation (1)—for FDA: 

the positive centroid is “pushed” apart from the negative centroid, 

while examples of the same label are “pulled” closer to one 

another; for MDA: the positive centroid and every negative 

examples are “pushed” apart from one another, while positive 

examples are “pulled” closer to one another.  

It is important to point out that the effective dimension of the new 

space is independent of the original dimensionality. For FDA, 

since the rank of Sb is only one, the discriminating subspace has 

dimension one, i.e., the transformation is always a projection onto 

a line. This will severely limit its ability in informative modeling, 

even in the kernel form. For MDA, there can be multiple non-zero 

eigenvalues, and the number of effective subspace dimensions is 

at most min{Nx, Ny}.  

4. BIASED DISCRIMINANT ANALYSIS  
Instead of confining ourselves to the traditional settings of the 

discriminant analysis, we propose a new form of discriminant 

analysis, namely, biased discriminant analysis (BDA). 



4.1 (1+x)-class Assumption 
We first define the (1+x)-class classification problem or biased 

classification problem as the learning problem in which there are 

an unknown number of classes but the user is only interested in 

one class, i.e., the user is biased toward one class. And the 

training samples are labeled by the user as only “positive” or 

“negative” as to whether they belong to the target class or not. 

Thus the negative examples can come from an uncertain number 

of classes.  

Much research has addressed this problem simply as a two-class 

classification problem with symmetric treatment on positive and 

negative examples, such as FDA. However the intuition is like 

“all happy families are alike, each unhappy family is unhappy in 

its own fashion”(Leo Tolstoy's Anna Karenina); or we say, “all 

positive examples are alike in a way, each negative example is 

negative in its own way”. Therefore it is necessary to distinguish a 

real two-class problem from a (1+x)-class problem. When the 

negative examples are far from representative for their true 

distributions—which is certainly true in our case—this distinction 

becomes critical. (Tieu and Viola [29] used a random sampling 

strategy to increase the number of negative examples thus their 

representative power. This is somewhat dangerous since unlabeled 

positive examples can be included in these “negative” samples.) 

4.2 Biased Discriminant Analysis (BDA) 
For a biased classification problem, we ask the following question 

instead: what is the optimal discriminating subspace in which the 

positive examples are “pulled” closer to one another while the 

negative examples are “pushed” away from the positive ones? 

Or mathematically, what is the optimal transformation such that 

the ratio of “the negative scatter with respect to positive centroid” 

over “the positive with-in class scatter” is maximized? We call 

this biased discriminant analysis (BDA) due to the biased 

treatment toward the positive examples. We define the biased 

criterion function 
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The optimal solution and transformations are of the same formats 

as those of FDA or MDA, subject to the differences defined by 

Equation (9) and (10). 

Note that the discriminating subspace of BDA, obtained through a 

transformation of the form similar to the one in Equation (7), has 

effective dimension of min{Nx, Ny}, the same as MDA and higher 

than that of FDA. Even though the weighting of the eigenvectors 

by the square roots of their corresponding eigenvalues does not 

affect the value of the objective function in Equation (8), the 

resulting biased discriminating transform (BDT) matrix has the 

form of a “generalized whitening transform”, or a “discriminative 

whitening transform”. BDT can be regarded as the informative 

modeling of positive examples incorporating discriminative 

information from negative examples. Whitening transform is the 

special case when only positive examples are considered. 

4.3 Regularization and Discounting Factors 
It is well known that the sample-based plug-in estimates of the 

scatter matrices based on Equations (2)(3)(4)(5)(9)(10) will be 

severely biased for small number of training examples, i.e., the 

largest eigenvalue becomes larger, while the small ones smaller. 

A compensation or regularization can be done by adding small 

quantities to the diagonal of the scatter matrices[10]. The 

regularized version of Sx, with n being the dimension of the 

original space and I being the identity matrix, is: 
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n
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The parameter µ control shrinkage toward a multiple of the 

identity matrix. And tr[] denotes the trace operation for a matrix. 

The influence of the negative examples can be tuned down by a 

discounting factor γ, and the discounted version of Sy is: 

IStr
n

SS yy

d

y ][)1(
γγ +−=  (12) 

With different combinations of the (µ, γ) values, the regularized 

and/or discounted BDA provides a rich set of alternatives: (µ = 0, 

γ = 1) gives a subspace that is mainly defined by minimizing the 

scatters among the positive examples, resembling the effect of a 

whitening transform; (µ = 1, γ = 0) gives a subspace that mainly 

separates the negative from the positive centroid, with minimal 

effort on clustering the positive examples; (µ = 0, γ = 0) is the full 

BDA and (µ = 1, γ = 1) represents the extreme of discounting all 

configurations of the training examples and keep the original 

feature space unchanged. 

BDA captures the essential nature of the problem with minimal 

assumption. In fact, even the Gaussian assumption on the positive 

examples can be further relaxed by incorporating kernels.  

5. KERNEL-BASED BIASED 

DISCRIMINANT ANALYSIS (KBDA) 
To take into account non-linearity in the data, we propose a 

kernel-based approach.  

The original BDA algorithm is applied in a “feature space”1, 

which is related to the original space by a non-linear mapping φ : 

x → φ (x). Since in general the number of components in φ(x) can 

be very large or even infinite, this mapping is too expensive and 

will not be carried out explicitly, but through the evaluation of a 

kernel K, with elements kij = φ T(xi) φ (xj). This is the same idea 

adopted by the support vector machine[30], kernel PCA, and 

kernel discriminant analysis [1][15]. The trick is to rewrite the 

BDA formulae using only dot-products of the form φ i
Tφ j, so that 

the reproducing kernel matrix can be substituted into the 

formulation and the solution, eliminate the need for direct non-

linear transformations. 

Using superscript φ to denote quantities in the new space, we have 

the objective function in the following form: 
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wSw
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1
 A term used in kernel machine literatures to denote the new 

space after the nonlinear transform—this is not to be confused 

with the feature space concept previously used to denote the space 

for features/descriptors extracted from the media data. 
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Since w* is the eigenvector(s), it can be expressed as a weighted 

sum of input vectors:                                                                                         
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It can be shown that the numerator of (13) can be rewritten as:  
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Where Φ is defined in (16), and  
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and y

N x
I is an Nx by Ny matrix of all elements being 1 / Nx. 

Similarly, rewrite the denominator of (13),  
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and x

N x
I is an Nx by Nx matrix of all elements being 1 / Nx. 

Now we can solve for � which is the eigenvector(s) associated 

with the largest eigenvalue(s) for the generalized eigenanalysis 

problem defined by Equation (8), (17), and (18). 

With optimal ��, the projection of a new pattern z onto w is given 

by: 
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In this nonlinearly transformed new space with w’s (weighted by 

the square-rooted eigenvalues) as the axes, the nearest neighbors 

of the positive centroid are returned as the outputs of the learning 

process. If not satisfied, the user can give further judgments on 

these new outputs to enter another round of relevance feedback 

interaction. The machine can combine the new feedbacks with all 

the previous feedbacks together in the next round of learning. 

6. COMPARISONS AND ANALYSIS 
Using image retrieval as the application, we compare the three 

proposed discriminating transforms to the optimal two level 

whitening transforms [22], and compare the kernel versions with 

SVM, on both synthetic data and real world image databases.  The 

scenario is “query by example” followed by several rounds of 

relevance feedback by the user. For each round, the machine 

learns an optimal transform, linear or non-linear, from the training 

examples fed-back by the user; then all training and testing points 

are transformed into the new space, where the new query is the 

mean of the transformed positive examples, and its Euclidean 

nearest neighbors are returned for further feedbacks from the user.  

6.1 Linear/Quadratic Case 
For the non-kernel versions of FDA, MDA, and BDA, all the 

transform matrices are linear, and the decision boundaries are 

either linear or quadratic. 

6.1.1 Toy Problems 

 
(a) 

 
(b) 

 
(c) 



 
(d) 

Figure 2. Comparing FDA, MDA, and BDA for dimension-

ality reduction from 2-D to 1-D. (a) FDA and BDA yield 

projection with nice class separation, MDA failed; (b) MDA 

and BDA yield projection with nice class separation, FDA 

failed; From (c) to (d), Notice the two modes of the negative 

examples moved apart from each other and toward the 

positive examples, and BDA is able to adapt to the change and 

gives better class separation in both cases. MDA fails in (c), 

and FDA fails in (d). 

To illustrate the advantages of BDA over FDA or MDA, we use 

some toy problems as depicted in Figure 2. Original data are in 2-

D feature space, and positive examples are “o”s and negetive 

examples are “x”s in the figure.  FDA, MDA, and BDA are 

applied to find the best projection direction by their own criterion 

functions for each case, and the resulting (generalized) 

eigenvector corresponding to the maximum eigenvalue is drawn 

in solid green, dash-dotted red, and dashed blue straight lines, 

respectively. The would-be projections of the data points onto 

these eigenvectors are also draw as bell-shaped curves to the side 

of the corresponding eigenvectors, assuming Gaussian distribution 

for each mode. The thicker curves represent the projections of the 

positive modes. 

Here, FDA treats positive and negative examples equally, i.e., it 

tries to decrease the scatter among negative examples as part of 

the effort. This makes it a bad choice in cases (b) or (d). Without 

any prior knowledge about the number of classes to which the 

negative examples belong, MDA can only treat each example as a 

separate class/mode. Since MDA has in its criterion function the 

tendency of increasing the scatter among all classes/modes, which 

includes the scatter among negative examples, this makes it a bad 

choice for cases (a) and (c). 

In all cases, BDA yields good separation of negative examples 

from positive ones, as well as clustering of positive examples (it 

finds a balance between these two goals, which are embedded in 

the criterion function). Note from (c) to (d), the two negative 

modes move apart from each other and toward the positive ones. 

FDA and MDA cannot adapt to the changing configurations and 

will fail for one of the two cases: for (c) MDA fails and for (d) 

FDA fails. Whereas BDA is able to adapt to the change and gives 

better separation in both cases. 

FDA and MDA are inadequate for biased classification or biased 

dimensionality reduction problems because of their forceful 

assumption on the number of modes. BDA avoids making this 

assumption by directly modeling the problem into the objective 

function hence gives better results. 

6.1.2 Image Database Testing 
In this experiments, a COREL image set of 17695 images are 

tested. A feature space of 37 dimensions is used with 9 color 

moments, 10 wavelet moments [27], and 18 edge-based structure 

features [37]. Without prior knowledge on feature-class 

correlations, all feature components are normalized to normal 

distributions.  

For the first round with only one positive example—the query 

image—the system uses Euclidean distance metric to retrieve the 

20 nearest neighbors. Subsequently, a subject selects the training 

examples on the fly. Up to 20 rounds of feedback (or until 

convergence) are performed for every query under each of the 

four relevance feedback schemes: two-level optimal whitening 

transform (WT) [22], FDA, MDA, and BDA. Altogether over 

1000 rounds of subject guided retrieval/relevance feedback are 

performed over 20 classes of images (See Figure 3 for some 

examples. It should be noted that some of the semantic classes in 

the Corel set are too difficult for content-based retrieval using the 

currently available low-level features. The ones shown here are 

the relatively “good examples” that can yield reasonable initial 

results for further user interactions). The numbers of hits in top 20 

are recorded for different schemes. And their means and variances 

are compared in Table 1. 

It is apparent that all the three proposed transforms outperform the 

WT scheme based solely on positive examples, especially the 

MDA and BDA-based transforms. BDA not only yields the 

highest average score, but also has the minimum variation, which 

indicates the most robust performance. FDA and MDA have 

larger performance variation because they are affected by the 

clustering patterns in negative examples, which are generally 

 
Figure 3 Some example images from the Corel set used in 

the experiments. 

 

Table 1  Comparing relevance feedback results: the first 

row is the averaged number of hits in top 20, and the second 

row shows their variances. 

No feedback WT  FDA  MDA BDA 

8.2 13.0 13.9 16.2 17.0 
8.43 17.43 16.50 10.26 8.86 

 



unstable. MDA in this case is close to BDA in performance 

because the subject for this test tends to give small number 

(average around 3) of negative examples that are usually not from 

the same class, i.e., if two “tigers” appear when searching for 

“horses”, the subject only mark one of them as negative to see 

whether the other one can be “pushed” out in the next round—

with negative examples all coming from different classes, the 

problem associated with MDA can not be fully observed (See 

Section 3.2 for analysis.) WT has low average score and large 

performance variation mainly because it is prone to be trapped at 

local minimum, which is frequently observed in our experiments. 

Figure 4 illustrate this point with a hypothetic feature space 

configuration, as well as a real image retrieval example.  It shows 

that using BDT the system can climb out of local minimum with 

the “push” from negative examples. 

All the four algorithms run in real time on a Pentium III PC, with 

a maximum latency of less than 2 seconds during relevance 

feedback on the COREL set of 17695 images with a 37 

dimensional feature space. 

6.2 Non-linear Case 
For the non-linear case, we compare the kernel BDA with BDA, 

and SVM, over the same RBF kernel. 

6.2.1 Does Kernel Help? 
To test the ability of the KBDA in dealing with non-linearly 

distributed positive examples, six sets of synthetic data in two-

dimensional space are used (see Figure 5).  

A significant boost in averaged hit rates is observed when using 

KBDA.  

Next we try KBDA on a real image 

database to see whether it helps to 

introduce kernel for nonlinearity in 

the real world applications.  

A fully labeled set of 500 images 

from COREL is used for automated 

testing in the next experiment. It 

contains five classes, each with 100 

images. Each round 10 positive and 

10 negative images are randomly 

drawn as training samples. For each 

 

 

 

 

 

 

 

 

 

   
 (d)                                                         (e) 

Figure 4.  The open circles represent positive examples and the 

crosses negative. (a) the system uses Euclidean distance for one 

query; (b) the system uses the subspace spanned by the 

positive examples. It can stagnate at a local minimum; (c) 

adding negative examples the system finds a better 

transformation; (d) Top 20 returns with only positive 

feedback. The system stagnates at this point, repeating the 

same response; (e) Adding negative feedback and using BDA 

can pull the system out of stagnation and arrive at a much 

better solution. 
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Figure 5 Test results on synthetic training data: six different 

configurations of non-linearity. The circles are positive 

examples and the crosses negative. A simulated query process 

is used for training sample selection, i.e., the 20 nearest 

neighbors of a randomly selected positive point are used as 

training samples. The bar diagram shows the averaged hit 

rate in top 20 returns. 
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round the error rate in the top 100 returns is recorded as the 

performance measures. 500 rounds of testing are performed on the 

5 classes and the averaged hit rates are shown in Figure 6 where 

four schemes are compared: WT, FDA, BDA, and KBDA. One 

can see that KBDA outperforms BDA on average by a significant 

margin. 

6.2.2 KBDA vs. SVM 
It is also desirable to see how the proposed kernel method 

compares with support vector machines (SVM).  

SVM assumes that negative examples are representative of the 

true distribution, which is far from the reality for the relevance 

feedback scenario. In the information retrieval application, given 

the usually large number of classes the unlabeled areas in the 

feature space are very likely to be negative. When SVM is directly 

implemented as a two-class learning machine during information 

retrieval, the result is that after the user’s feedback, the machine 

returns a totally different set of points, with most of them likely to 

be negative. Of course incremental training iterations [2] can be 

applied to eventually arrive at the correct boundary, but this may 

require a significant number of further iterations and more 

training examples, from an extremely patient user.  

Here we compare KBDA and SVM in the context of face and 

non-face classification under small number of training samples, 

this example shall reveal more clearly the nature of the two 

algorithms. Among the 1000 faces and 1000 non-face images, 

some examples are shown in Figure 7. All the images are 16-by-

16 in size and the original pixel values are used as the features, 

resulting in a 256-dimensional space. We use different numbers of 

positive and negative examples to train a KBDA and a SVM 

learner. For the SVM, the distance to the hyperplane is used to 

rank order all the points and the percentage of face images in the 

top 1000 returns is used to compare with the hit rate of KBDA in 

its top 1000 returns.  

Figure 8 illustrates the experimental results with a fixed number 

of positive examples—100, and a varying number of negative 

examples—from 1, 2, …, to 500.  The vertical axis denotes the hit 

rate in top 1000 returns. Each point on the two curves represents 

the averaged rate of 100 random trials. This figure clearly shows 

that when the number of negative examples is small (< 200), 

KBDA outperforms SVM.   

7. CONCLUSION  
In this paper, we briefly reviewed existing relevance feedback 

techniques. Emphasize was put on the analysis of the unique 

characteristics of multimedia information retrieval problems and 

the corresponding on-line learning algorithms. A novel scheme 

was proposed with experimental results supporting its superior 

performance than existing schemes. The proposed KBDA 

algorithm can be applied not only in multimedia information 

retrieval problems, but also for other classification problems 

whenever the number of negative training samples is too small to 

be representative for the true distribution.  
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