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Abstract. Using a non-thermal local search, called Extremal Optimization (EO), in conjunction with a
recently developed scheme for classifying the valley structure of complex systems, we analyze a short-
range spin glass. In comparison with earlier studies using a thermal algorithm with detailed balance, we
determine which features of the landscape are algorithm dependent and which are inherently geometrical.
Apparently a characteristic for any local search in complex energy landscapes, the time series of successive
energy records found by EO is also characterized approximately by a Poisson statistic with logarithmic
time arguments. Differences in the results provide additional insights into the performance of EO. In
contrast with a thermal search, the extremal search visits dramatically higher energies while returning to
more widely separated low-energy configurations. Two important properties of the energy landscape are
independent of either algorithm: first, to find lower energy records, progressively higher energy barriers
need to be overcome. Second, the Hamming distance between two consecutive low-energy records is linearly
related to the height of the intervening barrier.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 75.10.Nr
Spin-glass and other random models – 02.60.Pn Numerical optimization

1 Introduction

The exploration of complex energy landscapes poses a se-
ries of problems of wide interest. Their multi-modal geom-
etry is on one side challenging for optimization algorithms
attempting to find the global minimum [1], while on the
other side it provides a framework to model slow relax-
ation dynamics in nature [2]. Typically, in a physical (ther-
mal) exploration of such relaxation phenomena, the static
(geometric) and dynamic (algorithmic) aspects are inter-
twined. To disentangle the inherently geometric features,
we apply a decidedly non-thermal optimization algorithm,
called Extremal Optimization (EO) [1,3,4], to explore the
energy landscape of a spin glass whose structure has been
studied recently with a thermal algorithm [5]. Further-
more, the comparison with the thermal algorithm high-
lights distinct performance features of the EO algorithm.

Focusing on the temporal succession of energy values
of record magnitude, we present a set of measures which
characterizes the difficulty of local searches and the com-
plexity of the landscape. There are at least two geometri-
cal features of the spin glass landscape which are robust.
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For one, progressively higher energy states have to be sur-
mounted in order to reach ever lower energy records. Sec-
ond, a linear relation emerges between the Hamming dis-
tance of consecutive low-energy record configurations and
the height of the highest intervening energy state. Such a
relation has previously been found by other authors using
different local search methods, as well as for other mod-
els [6–8]. Yet, in stark contrast to the thermal method,
EO reaches a rapidly (exponentially) growing succession
of high-energy records, projecting the search through con-
figuration space by an exponentially growing Hamming
distance between consecutive low-energy records.

In the following section, we describe how the land-
scape features explored by the dynamics can be assessed
on the basis of a time series of suitably defined ‘valleys’.
In Section 3, we review the Extremal Optimization heuris-
tic used here to produce such a time series for a non-
thermal relaxation process. The main results of our nu-
merical studies are discussed in Section 4, and in Section 5
we present our conclusions.

2 Energy valleys in complex landscapes

The idea that progressively deeper, i.e. thermally more
stable valleys are explored by the thermal dynamics of



318 The European Physical Journal B

Fig. 1. The definition of a valley is illustrated with a fictitious
series of energy values. A search produces a time sequence of
energy (E) and barrier (B) records, where each “E” labels the
lowest energy seen so far, and “B” refers to the highest barrier
(relative to the most recent “E”) reached up to that time. As
explained in the text, in the end, only the highest barriers
and the lowest energy records in each subsequence of “E”s and
“B”are kept, and the intermediate values are stricken from the
record to give a strictly alternating sequence “EBEBE...”. In
particular, any two subsequent “B”s demarcate (entrance to
and exit from) valleys, here separated by vertical dashed lines.

complex system is well-established and accounts for many
important features of aging dynamics [9–18]. Qualitatively
speaking, a valley would be a set of configurations suffi-
ciently close to a local energy minimum. These configu-
rations are repeatedly visited by the dynamics before the
valley is “exited” and altogether different regions are ex-
plored. Ideally, in thermal systems the states within a val-
ley would be visited with frequencies given by the respec-
tive Boltzmann weights, i.e. a local thermal equilibrium
state is established before the valley is left.

The standard way of giving these concepts an oper-
ational meaning is to subject the dynamics to repeated
thermal quenches, each leading to a local energy mini-
mum or Intrinsic State (IS). The set of IS thus obtained
partitions configuration space into basins of attraction
with respect to thermal quenches, and each basin can
be considered as a valley. A different approach [5], which
we presently generalize to non-thermal algorithms such
as EO, uses a time series of unperturbed energy data. It
defines valleys on the basis of the lowest energy visited so
far and is motivated by the fact that, for thermal dynam-
ics, the dynamics is recurrent and equilibrium-like as long
as this lowest energy state does not change.

As the details can be found in reference [5], only a
brief account will be given for completeness (see Fig. 1):
We keep track of the current lowest energy value E en-
countered up to time t and always measure the energy
of the current state as the difference from this particular
value. We furthermore keep track of the highest energy
barrier B visited, of the times at which both low and high
records occur, and of the corresponding configurations. A
trajectory is thus mapped into a symbolic sequence such as
. . . EEEBBBBBEEEEEEBBEEE . . ., where the num-

ber of symbols in each subsequence of contiguous E or
B values is larger or equal to one.

Consider first any subsequence of E’s: since a trajec-
tory ‘sliding’ downhill will produce such a sequence, all
but the last E correspond to transient states. By contrast,
the last E record may stand for a long time, i.e. at least
until a record high energy value, the first subsequent B,
is encountered. This makes it a good proxy for the low-
est energy value in the ‘current’ valley. Similarly, while a
trajectory explores high energy states it will likely visit
several closely spaced energy maxima, producing a sub-
sequence of B values. The last B value remains a record
for long time, and is chosen to mark the passage from one
valley to the next. In summary, all finite subsequences
are pruned to their last element, producing a sequence
. . . BEBEBE . . . where each triplet BEB marks a val-
ley, see Figure 1. The Bs mark the enter and exit events
and the the E marks the lowest energy of the valley. The
last sequence of E’s or B’s encountered in the simulation
is not terminated and is discarded.

We note that this scheme produces trivial results (very
few or no valleys, only infinitesimally increasing barri-
ers, nearly same configurations for different E ’s) in cases
where there is only one global minimum, or when the
ground state can be chosen as starting point. Consider e.g.
the case of a Metropolis random walk in a discrete set of
energy value with a single minimum at energy zero. The
downward drift implies that this minimum would most
likely be reached without intervening barrier maxima, and
the scheme will produce no output. In cases where a few
‘false positives’ are produced, i.e. valleys with no physi-
cal counterparts, these will closely resemble each other in
terms of their configurations, energies etc. and will be im-
mediately identified as such in the subsequent analysis. In
any case, the time needed to reach the global minimum de-
pends linearly, or in the lack of a bias, quadratically on the
initial energy. The situation is completely different in com-
plex energy landscapes, where, for thermal dynamics [5],
and as shown below, for EO as well, the scheme gives a
succinct but highly informative description of the dynam-
ics: new valleys are accessed on a logarithmic time scale,
and there is a systematic variation of their properties with
the ‘valley index’. We finally note that subsequent valleys
are defined on coarsening energy and time scales. Hence,
each valley can be expected to contain many valleys of the
previous kinds as sub-features. An illustration of the val-
ley structure in a thermal and an extremal search is given
in Figure 2.

From an optimization point of view, the E values in
the series represent the best the algorithm can do on a
given time scale. The B values act as energy barriers for
a thermal type of algorithm, but not for an algorithm of
the EO type, where energy differences have less dynamical
significance. Nevertheless, if, as we expect, a geometric re-
lationship links the Hamming distance between two “suf-
ficiently low” minima and the height of the intervening
barrier, the link should appear irrespective of the algo-
rithm chosen. As shown below, the expectation is borne
out by our simulations.
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Fig. 2. Plot of a typical run with a thermal search (above) and
an extremal search (below) for a d = 3 Gaussian spin glass of
size L = 7. The fluctuating line marks the sequence of energies
visited by the search. In terms of the definition in the text and
Figure 1, energy records (E) are marked by down-triangles,
barrier records (B) by up-triangles. The barrier records also
demarcate the beginning and the end of a valley, so each time
interval between two consecutive vertical lines constitutes a
valley. Counting valleys starts (with nV = 0) for updates > N
(where N = 73 = 343 here) to avoid early transient behavior.
While the absolute energy scale between both searches is not
significant here (two distinct bond realizations were used), the
difference in range and shape of the fluctuations is remarkable.

3 Extremal optimization

An energy record statistic as described in the previous
section can be generated by a variety of dynamical rules.
Physically most relevant are those which evolve according
to a thermal process that preserves detailed balance. The
record statistics of a thermal process has been extensively
studied for a number of different systems [5], including
the Edwards-Anderson model with Gaussian couplings on
a cubic lattice. A priori, it is not obvious which of the
properties of this process can be attributed to the dynamic
update rule, and which are inherently properties of the
system.

A significant alteration of the update dynamics may
in turn elucidate the origin of certain properties. To
this end, we consider the Extremal Optimization (EO)

heuristic [3,4] as a decidedly different, athermal, update
rule to explore the system. EO, like Simulated Annealing
(SA) [19,20], attempts to advance toward lower energy
values via a local search of the landscape. Unlike SA, EO
is modeled after driven dissipative processes, intentionally
pushing the dynamics away from local equilibrium and de-
tailed balance.

While a distinction between static landscape and dy-
namic properties is desirable in its own right, the similarity
of these physical systems to many practical combinatorial
optimization problems in computer science provides ad-
ditional incentive for a broad-based investigation of local
search methods and their ability to exploit the landscape
geometry. EO in particular has proved to be a compet-
itive heuristic to determine low-energy configuration for
some of the hardest combinatorial optimization problems
known, including graph bipartitioning [21], coloring [4,22],
and also spin glass problems [23]. We can hope that a more
detailed view at the interplay of heuristic search and land-
scape geometry will lead to improvements in the quality
of the results found as well as in the speed of convergence.

The extremal optimization algorithm, τ -EO, which we
employ in this paper, has been discussed previously in [4],
and in [24,25] with regard to the setting of its sole free
parameter, τ . At each instant during the search of a par-
ticular instance, τ -EO assigns to each spin xi in the con-
figuration its contribution to the total energy as “fitness”,

λi =
1

2
xi

∑

〈,j〉

Ji,j xj −
1

2

∑

〈,j〉

|Ji,j | , (1)

where the summation extends over all neighboring spins xj

of xi. Note that the second term on the right corresponds
to the (absolute) weight attributable to that spin; it en-
sures that for each variable its optimal fitness is zero, ir-
respective of its overall weight. Accordingly,

H = −
∑

i

λi −
∑ ∑

〈i,j〉
|Ji,j | , (2)

i.e. the sum of all fitnesses tallies the total energy, aside
from a trivial offset.

During a search with τ -EO, we rank all xi according
to fitness λi, i.e., we find a permutation Π of the variable
labels i with

λΠ(1) ≤ λΠ(2) ≤ . . . ≤ λΠ(N). (3)

The variable xj with the worst burden on the total en-
ergy is of rank 1, j = Π(1), and the best variable is of
rank n. Consider a scale-free probability distribution over
the ranks k,

Pk ∝ k−τ , 1 ≤ k ≤ N, (4)

for a fixed value of τ . At each update, select a rank k
according to Pk. The spin xj with j = Π(k) is forced un-
conditionally to change state. For τ > 0 this selection
process ensures a certain preference in fixing the state
of spin variables which put a higher burden on the to-
tal energy. In particular, it has been found that inter-
mediate choices for the value of τ in equation (4), with
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τ − 1 ∼ 1/ ln(N) [24], often lead to the best results for a
given runtime of the algorithm. Values of τ much larger
or smaller than these quickly produce too confined or too
random searches, as we will see. The same issue has been
explored in reference [26].

The definition of fitness, which generally permits vari-
ations that can significantly impact performance [3], as
given in equation (1) is purely a measure of “badness”
in each variable. The constant offset in each λi in equa-
tion (1), consisting of the absolute weight of all attached
bonds, ensures that perfectly well adapted spins, i.e. those
bordering on bonds that are all satisfied, have zero fit-
ness, irrespective of their overall weight. Spins bordering
on unsatisfied bonds get penalized according to their bur-
den on the total energy. Considering that the absolute
sum of all weights associated with spins is distributed
unevenly, heavy-weighted spins (and bonds) are satisfied
with a higher priority. At later stages of the search, the
overwhelming number of weaker bonds are attended to.

4 Numerical results

In this section, we present the results of extensive nu-
merical investigations of the τ -EO search for the d = 3
Edwards-Anderson spin glass. The procedure, as outlined
in Section 2, follows closely that of reference [5]. There,
a rejection free implementation of the Metropolis algo-
rithm, the Waiting Time Method (WTM) [27], was used
to study the thermal dynamics of this spin glass at low
temperatures starting from a hard quench. In the process,
many salient features of the record statistics have been
measured, which we also will focus on in this study.

We run the τ -EO search for a large number of instances
of varying lattice size N = L3 to explore the finite-size
scaling properties of the observables with sufficient accu-
racy. In particular, we have used from 100,000 bond real-
izations for L = 8 to 1,000 such instances for L = 20 and
performed 3 runs each. As in the thermal process, each run
starts from random initial conditions in the spin configu-
ration. A form of local “equilibration” is reached within a
few EO-sweeps of the system, during which each spin gets
to arrange itself with the local field imposed by its neigh-
bors. After one sweep, we start sampling low-energy and
barrier records through a sequence of valleys. In particu-
lar, we run the EO algorithm on each instance for O(N2)
update steps or about 10N sweeps of the system. Here, a
“sweep” refers to N EO-update steps, which are stochas-
tic and do not imply that each variable is updated exactly
once. Note that the valley index is gauged to be nV = 0
after the first (t = 1) sweep of the system.

4.1 Varying τ

First, we have studied the dependence of EO’s perfor-
mance on the parameter τ . To this end, we have con-
ducted about 10,000 runs of EO on random instances at
fixed system size L = 16 for τ = 0.2, 0.7, 1.2, 1.7, and 2.2.
The behavior of EO has previously been show to be very

 

 

 

 

 

 

Fig. 3. Plot of the valleys found by EO on a logarithmic
timescale for a system of L = 16 but with values of τ = 0.2,
0.7, 1.2, 1.7, and 2.2. The exploration of new valleys occurs at
a much faster rate for intermediate values of τ , until at later
times saturation due to finite size effects permits runs with
higher τ to catch up.

sensitive to this parameter. Overall, we notice that, in-
deed, the results of the record statistics are as well strongly
τ -dependent. This dependence is often not monotone in τ .

Most significantly, as Figure 3 shows, the most val-
leys, and the best energy records, are obtained at inter-
mediate values of τ , i.e. those valleys are found on much
shorter timescales than for τ values that are too large or
too small. Since there is a rapid gain in new valleys for
τ = 1.2, saturation effects due to finite system size set in
faster, a trend to which higher values of τ eventually catch
up. Overall, there is a more pronounced variation with the
parameter τ than in the corresponding data for a thermal
search (see Fig. 1 in Ref. [5]). From an optimization stand-
point, τ -EO progresses through these valleys with about
ten times fewer sweeps than a fixed-temperature search.

The trend that an intermediate value of τ provides
the favorable search results is also reflected in the energy
records found in those valleys, as Figure 4 shows. Thus, for
an “optimal” value of τ near unity, EO finds new valleys
faster and the energy states accessed within those valleys
are lower. In fact, the exploration for larger values of τ
proves qualitatively similar, just on a slower timescale.
The behavior for τ < 1 is quite distinct, more akin to
a high-temperature thermal diffusion. These observations
are consistent with the phase transition at τ = 1 in the
search dynamics of τ -EO found for a model problem in
reference [24].

At low values of τ the search is too random, and
whatever valleys are found are not explored with suffi-
cient “greed.” This randomness expresses itself also in very
high energy states accessed in between valleys, and the to-
tal decorrelation between successive valleys as illustrated
by the large Hamming distances between the consecutive
records in energy. (Hamming distance refers to the num-
ber of spin flips that separates any two configurations.)
These features are displayed in Figures 5 and 6, in which
the barrier records and Hamming distances of consecutive
energy records are plotted for each valley index. These
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Fig. 4. Plot of the energy records found by EO within a given
valley as a function of the valley index nV . Not only do we find
new valleys faster at intermediate τ ≈ 1.2 (as Fig. 3 shows), but
also are lower energy records found within, even at equalized
valley index nV . (For L → ∞, average ground state energies
are ≈ −1.70 [28].) Note the dramatic shift between τ = 0.7
and τ = 1.2. (Data for τ = 0.2 is even further above that for
τ = 0.7 and has been dropped here.)

     

     

Fig. 5. Plot of the highest energy level (or barrier) accessed
between two successive low-energy records as a function of val-
ley index nV . (Note that the height is measured relative to the
most recent low-energy record.) Unlike in Figures 3 and 4, the
τ -dependence here is monotone. Yet, for τ < 1 (upper figure)
the barrier height varies only linearly with the valley index,
similar to a thermal search, while for τ > 1 (lower figure) bar-
rier heights rise exponentially.

     

Fig. 6. Plot of the Hamming distance between successive low-
energy records as a function of valley index nV . As in Figure 5,
the τ -dependence here is monotone, showing that the search
gets increasingly narrow for increasing τ . For small τ , the
Hamming distance quickly saturates at the system size (N/2).

properties are monotone in τ as can be expected from the
nature of the optimal EO search as a compromise between
too random and too greedy behavior [24,25]. Hence, on the
greedy side, for larger τ , EO spends a long time in each val-
ley, while reaching down to very low-energy states within
each valley, before escaping through an equally low bar-
rier, which only provides access to a new valley with states
highly correlated (small Hamming distance) with those in
the previous one. Conversely, for smaller τ , the search ap-
proaches a random walk through the configuration space
that is unlikely to reach down to very low-energy states.
Any memory of fit variables in the list in equation (3)
is short-lived, and the search trajectory quickly decorre-
lates such that the Hamming distances between consecu-
tive barrier records soon saturate at the system size (N/2),
see Figure 6.

Most surprising is the rapid increase of both, barrier
heights and Hamming distances, which scale exponentially
with the valley index for sufficiently large values of τ .
This is in marked difference with the behavior of the ther-
mal relaxation, where both grow about linearly with the
index (see Figs. 2 and 3 in Ref. [5]). In contrast, near
τ = 0 (which rigorously corresponds to T = ∞) we re-
cover the linear scaling of the barrier heights with valley
index observed for a thermal search, as the upper plot in
Figure 5 demonstrates, again a hint of the phase transi-
tion at τ = 1. In general, barrier heights and Hamming
distances vary significantly for both extremal and thermal
exploration with their respective parameters.

Despite this difference between extremal and thermal
exploration, in both cases the scaling of the Hamming dis-
tance itself with the barrier, as shown in Figure 7, is quite
linear aside from finite-size effects. Hence, this is all but
the first indication of a quantity attributable the land-
scape geometry itself. The purely geometric origin of this
feature is further emphasized by the fact that the data
for all τ very nearly collapses onto a single line, showing
only a weak τ -dependence in the slope. While it is not
too surprising to obtain such a linear relation from the
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Fig. 7. Plot of the Hamming distance between successive low-
energy records as a function of the intervening barrier height,
obtained from Figures 5 and 6 by eliminating the valley index
dependence between them. The relation for each value of τ
appears to be in fact linear, even for τ < 1 before the Ham-
ming distances saturate. Linearity is exemplified by the dashed
line of slope 1; the log-log scale was merely chosen for better
visibility.

ratio of two linear relations for the thermal search in refer-
ence [5], in turn, it is outright amazing to extract a simple
linear relation from the ratio of two exponentials in the
case of EO here. A linear relationship between Hamming
distance and barrier records was obtained long ago for
the SK-model [6,7], and was inferred experimentally from
thermo-remanent magnetization data [10]. We also note
that the largest Hamming distance achievable for a given
barrier, as opposed to the typical one, grows exponentially
with the barrier in both 2d and 3d spin-glasses [29].

A qualitative snapshot of the difference between con-
secutive record configurations is provided in Figure 8.
There, we plot the clusters of overturned spins between
two energy records at nV = 9 and nV = 10 for some ran-
dom instance of L = 16 and various τ . As can be expected
from Figure 6, these records differ by fewer spins for in-
creasing τ . Hence, for low τ , the interfaces between flipped
and unflipped spins percolates and is rather indistinct, for
τ > 1 isolated individual clusters become discernible.

Further quantitative insight into the scope of the
search can be obtained by looking at the overlap between
earlier-found configurations and those arrived at for later
times of the search. To this end, we store the optimal con-
figuration found after one sweep in valley nV = 0 and
measure its overlap with later record energy configura-
tions in valley nV = k. This allows us to define a correla-
tion between c(k) = c(nV = 0; nV = k) via the Hamming
distance H(k) between them:

c(k) = 1 −
H(k)

N/2
. (5)

Figure 9 shows that the extremal search decorrelates uni-
formly faster for decreasing τ , similar to a thermal search
for increasing T . But for τ > 1 the correlations decay
about exponentially with the valley index and appear to
converge to a plateau value c∞ at large k, similar to a

Fig. 8. Snapshot of the clusters of spins which have changed
between the configurations of two consecutive energy records
at nV = 9 and 10 found by τ -EO with τ = 0.2, . . . , 2.2, for
some instance of L = 16. Patches cut across bonds along which
the relative state of adjacent spins has changed. All surfaces
are actually closed and only appear to be open due to the peri-
odic boundary conditions. For small τ , all spins appear to have
flipped many times, and it is impossible to tell “inside” from
“outside”, while for larger τ a large number of spins clearly
have remained “frozen”. It appears that for the optimal τ = 1.2
flipped spins just about percolate.
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Fig. 9. Plot of the correlations c(k) defined in equation (5)
between configurations of record energy in valley nV = k
and nV = 0. As in Figure 6, the τ -dependence here is mono-
tone. The search for small τ quickly decorrelates, but reaches
a plateau value for τ > 1.

low-temperature search. Such a plateau indicates a cer-
tain number of “frozen” variables which provide a “back-
bone” for any near-optimal configuration. In contrast, for
τ < 1 the extremal search decorrelates almost instantly,
and there is only a plateau at H = N/2, the most likely
distance for any two random configurations.

Finally, we also look at the hitting time for energy
records with a valley, which illuminates their internal
structure. If we call tw (“waiting time”) the time when
a valley was entered, tm the time when the energy mini-
mum was hit, and tx the time when the valley was exited
(and the next one entered), then reference [5] defined a
relative hitting time as

h =
tm − tw
tx − tw

, 0 ≤ h ≤ 1, (6)

(called “τ” in Ref. [5]). For valleys without any structure,
the average h would be close to zero, but close to one for
highly structured valleys. In reference [5] for the thermal
search at low temperatures it was found that the distribu-
tion for h is peaked at large h values, indicative of the high
internal structure of the spin glass valleys. In Figure 10,
we plot the probability density function G(h, tw) of ob-
serving hitting time h in a valley entered at tw. We find
a strong variation with the parameter τ in the way τ -EO
explores that internal structure. For large τ , the extremal
search behaves similar to the lowest-temperature thermal
search, i.e. G is right-skewed, while for very small τ , the
extremal search seems to ignore the internal structure and
discovers what it considers the minimum quite quickly. For
the search at τ = 1.2, which typically provides the best
energy overall, h is almost uniformly distributed over the
time spent in the valley, at least for large tw.

In Figure 11, we find that the average hitting time 〈h〉
decreases for increasing valley index, ever more rapidly
for smaller τ , until it saturates. It may appear that hitting
onto the record minimum soon after entering a valley may
be a good thing for an optimization with a local search.
Yet, since h is measured relative to the length of the res-

Fig. 10. Plot of the hitting probability G(h, tw) as a function
of the hitting time h defined in equation (6) for valleys with
increasing entry times tw. Shown are the probabilities for τ -
EO for τ = 0.2, 1.2, and 2.2, all at L = 16. Note that for
τ = 1.2 a near-uniform distribution is quickly reached while for
small and large τ small and large hitting times h predominate,
respectively.

 

 

     

Fig. 11. Plot of the average hitting time 〈h〉 defined in equa-
tion (6) as a function of the valley index nV . For too small τ ,
extremal search quickly saturates at short hitting times, unable
to leave the current valley. There is a noticeable transition in
behavior for τ > 1 with a linear decay in 〈h〉 with a slope that
slowly decreases with increasing τ .

idence within a valley, small 〈h〉 here means only that it
takes a long time to exit a valley, without ever taking full
account of its internal structure. The best compromise
in terms of finding energy records (and leaving valleys)
quickly seems to be provided by τ = 1.2.

4.2 Varying system size

Based on the findings in Section 4.1, it appears that the
most favorable behavior of τ -EO from the standpoint of
optimization is obtained near τ = 1.2. To study the be-
havior of the extremal search for varying system size in
comparison with the thermal search in reference [5], we
will therefore fix τ = 1.2 in this section.

First, we look again at the number of valleys found for
increasing runtime. As Figure 12 shows, the gain in the
number of valleys entered increases roughly on a logarith-
mic timescale. The growth slows at later times, apparently
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Fig. 12. Plot of the valleys found by EO on a logarithmic
timescale at fixed τ = 1.2 but for system sizes L = 8, 12, 16,
and 20. Progress toward new valleys occurs linearly on a loga-
rithmic time scale, altered at later times by finite size effects,
which become less pronounced for larger L.

     

Fig. 13. Plot of the energy records found by EO within a
given valley as a function of the valley index nV . Here τ = 1.2
is fixed and linear system size L is varied. The dashed line
at ≈−1.70 marks the average ground state energy density for
L → ∞ [28]. Convergence toward this limit at our fixed runtime
becomes ever more difficult for increasing L. Yet, the saturation
at larger nV clearly indicates the proximity of the ground state
effecting the search.

due to system size effects, since the increase becomes more
linear, and differences between data less pronounced, for
increasing system size. These findings are very similar to
fixed-temperature data (see inset of Fig. 1) in reference [5].

After one system sweep from a random initial state,
the energy per spin reaches a typical level that strongly
depends on τ , as Figure 4 shows, albeit very little on L, ac-
cording to Figure 13. But progressing further toward lower
energy records through subsequent valleys soon yields di-
minishing returns. In contrast, for the thermal search in
reference [5] (see Fig. 4 there) new energy records pro-
vide a constant gain ∆ in energy, which in itself depends
on L and T . It should be noted, though, that the ex-
tremal search reaches extremely low energies quickly and
becomes sensitive to the presence of the ground state. The
behavior of a thermal algorithm is more closely resembled
at smaller τ , such as τ = 0.7 in Figure 4, for which the
decrease in energy scales linearly with nV .

     

Fig. 14. Plot of the barrier height as a function of valley in-
dex nV as in Figure 5 but for fixed τ = 1.2 and different system
sizes L. Since τ > 1, barrier heights rise exponentially. Barriers
are measured relative to the most recent low-energy record and
appear to be independent of L.

     

Fig. 15. Plot of the Hamming distance between successive low-
energy records as a function of valley index nV at fixed τ = 1.2
and variable L. The inset shows the same data rescaled by N0.8

where N = L3.

As in Figure 5 for τ > 1, Figure 14 shows that bar-
rier heights scale exponentially for τ = 1.2, independent
of system size. In fact, that data for different L appears to
collapse automatically, without any rescaling. This effect
can be explained by the definition of barrier heights as
measured relative to the lowest preceding energy record.
This would imply that to leave the ith valley an extremal
search needs to scale a certain barrier height that is largely
insensitive to the system size. (Any deviation from col-
lapse could well be due to a certain arbitrariness in gaug-
ing nV = 0 after a single sweep.) Although on a different
scale, the barrier heights for a thermal search were also
found to be only weakly dependent on system size (see
Fig. 2 in Ref. [5]).

Hamming distances between consecutive energy
records are shown in Figure 15. Similar to the barrier
height, the Hamming distance also grows exponentially
with the valley index nV , showing a significant, but non-
extensive, L-dependence. The Hamming distances found
for τ = 1.2 here correspond about to the largest found
in the thermal search in reference [5] at the highest
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Fig. 16. Plot of the Hamming distance as a function of the
barrier height at fixed τ = 1.2 and variable L. This data was
obtained from Figures 14 and 15 by eliminating the valley-
index dependence between them. Linearity is exemplified by
the dashed line of slope 1.

 

     

 

   

Fig. 17. Plot of the average hitting time 〈h〉 defined in equa-
tion (6) as a function of the valley index nV for fixed τ = 1.2
and various L. Like in Figure 11, 〈h〉 falls linearly with nV ,
but with a L-independent slope. The inset shows that a simple
shift in nV collapses the data for large nV quite well.

temperatures, i.e. just below Tg. This demonstrates the
breadth of the extremal search for an optimal choice of τ .

Eliminating the valley-index dependence between bar-
rier heights in Figure 14 and Hamming distances in Fig-
ure 15, as in Figure 7, we again find a nearly linear rela-
tion. This fact re-affirms the purely geometrical origin of
this relation, independent of system size.

Finally, in Figure 17 we show the behavior of the aver-
age hitting time 〈h〉 for different L. In each case, 〈h〉 falls
linearly with valley index nV with a size-independent
slope. Hence, the data can be collapsed with a simple shift
in nV . That shift is not uniform in L, which could well be
due to the ambiguity in gauging nV .

5 Conclusions

The energy landscape of a spin-glass is probed in this work
with a non-thermal optimization algorithm, Extremal Op-
timization (EO). Energy values of record magnitude are

used to partition the states visited into a sequence of val-
leys, indexed by nV . Within each valley the state of lowest
energy, or minimum, is the best result obtained with the
algorithm on a given time scale. The energy barrier sep-
arating two consecutive minima is, by construction, the
largest ever barrier scaled on the same time scale. The sole
adjustable parameter of EO, τ and the system size N = L3

are both varied systematically in the investigations.

Comparing our present results to those of reference [5],
which uses the same classification scheme in connection
with a thermal algorithm, the Waiting Time Algorithm
(WTM), we are able to disentangle the intrinsic, or geo-
metrical, properties of the landscape from those specifi-
cally linked to the two algorithms. These aspects are sep-
arately discussed in this sequel.

Both EO and WTM uncover a non-trivial valley struc-
ture whose overall features are broadly similar. The first
observation is that, in order to find states of lower energy,
progressively higher barriers must be surmounted. The ex-
tremal property of these intervening barriers implies that
the sequence of lowest minima encountered can (approxi-
mately) be treated as a Poisson process with logarithmic
time arguments [5]. Such description can only work as
long as the system remains far away from the global min-
imum. Indeed, the number nV of valleys explored grows
on average in near logarithmic fashion and the decreas-
ing logarithmic slope apparent for the ‘best’ value of τ
likely reflects the fact that once the system is near to the
global optimum, further improvements become harder to
achieve.

The magnitude of the highest barrier scaled grows lin-
early with nV in the WTM analysis, but exponentially
with EO. The same is true for the Hamming distance be-
tween consecutive minima. By eliminating nV , from these
exponential relationships a linear dependence emerges,
which links the barrier and the Hamming distance between
consecutive minima. This concurs with the WTM result,
and the linear dependence thus stands out as a geomet-
ric property of the energy landscape. For growing system
size, and τ = 1.2, the Hamming distance between consec-
utive minima grows as N0.8, which is qualitatively similar
to the N0.95 scaling found with the WTM. Also similar is
the decay of the configuration overlap between minima k
valleys apart, in both cases nearly exponential in k.

The aspect where WTM and EO mostly differ is in
the distribution of the time spent searching for the low-
est energy state within a fixed valley. Unlike the WTM,
EO locates this minimum fairly quickly, at least for val-
ues of τ close to 1.2, which is the best value in terms of
optimization performance. In other words, EO seems to
be able to roam more easily through configuration space,
which is in accord with the original intention behind its
design. Short-ranged spin glasses are probably the test
problem where EO is at its worst in terms of optimization
performance, yet its performance is slightly better than
what WTM can achieve in terms of, say, the lowest energy
achieved in a fixed number of updates. However, from a
broader optimization perspective the performance of the
two algorithms is similar, since lower energy values are
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logarithmically spaced in time. This, we suggest, might be
a general feature of local searches in complex landscapes
with a large number of near-equivalent minima.

From a physics point of view, applying a non-thermal
algorithm to landscape exploration removes the appeal of
using concepts adapted from thermal-equilibrium, such as
the free energy, to describe the dynamics. Since, as we
have shown, the process of jumping from one valley to a
lower-lying valley, is only weakly dependent on the algo-
rithm chosen, thermal concepts are likely to be generally
irrelevant for the drift part of the dynamics even though
the dynamical update rules obey detailed balance. As we
have argued elsewhere [30,31] the reason for this is that
these jumps are effectively irreversible on the time scale
at which they occur.

We would like to thank J. Dall for helpful discussions. This
work was partially funded by NSF grant DMR-0312510.
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