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Abstract

Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in
the biological sciences have mainly focussed on model selection in which one first selects the model with the highest
evidence and then makes inferences based on the parameters of that model. This ‘‘best model’’ approach is very useful but
can become brittle if there are a large number of models to compare, and if different subjects use different models. To
overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii)
Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure
other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it
linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to
provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the
methods using Dynamic Causal Models of brain imaging data.
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Introduction

Mathematical models of scientific data can be formally compared

using Bayesian model evidence [1–3], an approach that is now

widely used in statistics [4], signal processing [5], machine learning

[6], natural language processing [7], and neuroimaging [8–10]. An

emerging area of application is the evaluation of dynamical system

models represented using differential equations, both in neuroim-

aging [11] and systems biology [12–14].

Much previous practice in these areas has focussed on model

selection in which one first selects the model with the highest

evidence and then makes inferences based on the parameters of

that model [15–18]. This ‘best model’ approach is very useful but,

as we shall see, can become brittle if there are a large number of

models to compare, or if in the analysis of data from a group of

subjects, different subjects use different models (as is the case for a

random effects analysis [19]). This brittleness, refers to the fact that

which is the best model can depend critically on which set of

models are being compared. In random effects analysis, augment-

ing the comparison set with a single extra model can, for example,

reverse the ranking of the best and second best models. To address

this issue we propose the combination of two further approaches (i)

family level inference and (ii) Bayesian model averaging within

families.

We envisage that these methods will be useful for the

comparison of large numbers of models (eg. tens, hundreds or

thousands). In the context of neuroimaging, for example,

inferences about changes in brain connectivity can be made using

Dynamic Causal Models [20,21]. These are differential equation

models which relate neuronal activity in different brain areas using

a dynamical systems approach. One can then ask a number of

generic questions. For example: Is processing serial or parallel? Is

it linear or nonlinear? Is it mediated by changes in forward or

backward connections? A schematic of a DCM used in this paper

is shown in Figure 1. The particular questions we will address in

this paper are (i) which regions receive driving input? and (ii) which

connections are modulated by other experimental factors?

This paper proposes that the above questions are best answered

by ‘Family level inference’. That is inference at the level of model

families, rather than at the level of the individual models

themselves. As a simple example, in previous work [19] we have

considered comparison of a number of DCMs, half of which

embodied linear hemodynamics and half nonlinear hemodynam-

ics. The model space was thus partitioned into two families; linear

and nonlinear. One can compute the relative evidence of the two

model families to answer the question: does my imaging data

provide evidence in favour of linear versus nonlinear hemody-

namics? This effectively removes uncertainty about aspects of

model structure other than the characteristic of interest.

We have provided a simple illustration of this approach in

previous work [19]. We now provide a formal introduction to

family level inference and describe the key issues. These include,

importantly, the issue of how to deal with families that do not

contain the same number of models. Additionally, this paper

shows how Bayesian model averaging can be used to provide a

summary measure of likely parameter values for each model

family. We provide an example of family-level inference using data

from neuroimaging, a DCM study of auditory word processing,

but envisage that the methods can be applied throughout the

biological sciences. Before proceeding we note that the use of
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Bayesian model averaging is a standard approach in the field of

Bayesian statistics [4], but has yet to be applied extensively in

computational biology. The use of model families is also

accomodated naturally within the framework of hierarchical

Bayesian models [1] and is proposed to address the well known

issue of model dilution [4].

Materials and Methods

This section first briefly reviews DCM and methods for

computing the model evidence. We then review the fixed and

random effects methods for group level model inference, which

differ as to whether or not subjects are thought to use the same or a

different model. This includes the description of a novel Gibbs

sampling method for random effects model inference that is useful

when there are many models to compare. We then show that, for

random effects inference, the selection of the single best model can

be critically dependent on the set of models that are to be compared.

This then motivates the subsequent subsection on family level

inference, in which inferences about model characteristics are

invariant to the comparison set. We describe family level inference

in both a fixed and random effects context. The final subsection

then describes a sample-based algorithm for implementing Bayesian

model averaging using the notion of model families.

Dynamic Causal Models
Dynamic Causal Modelling is a framework for fitting differential

equation models of neuronal activity to brain imaging data using

Bayesian inference. The DCM approach can be applied to

functional Magnetic Resonance Imaging (fMRI), Electroenceph-

alographic (EEG), Magnetoencephalographic (MEG), and Local

Field Potential (LFP) data [22]. The empirical work in this paper

uses DCM for fMRI. DCMs for fMRI comprise a bilinear model

for the neurodynamics and an extended Balloon model [23] for

the hemodynamics. The neurodynamics are described by the

following multivariate differential equation

_zzt~ Az
XM
j~1

ut(j)B
j

 !
ztzCut ð1Þ

where t indexes continuous time and the dot notation denotes a

time derivative. The ith entry in zt corresponds to neuronal

activity in the ith region, and ut(j) is the jth experimental input.

A DCM is characterised by a set of ‘exogenous connections’, A,

that specify which regions are connected and whether these

connections are unidirectional or bidirectional. We also define a

Figure 1. Dynamic Causal Models. The DCMs in this paper were used to analyse fMRI data from three brain regions: (i) left posterior temporal
sulcus (region P), (ii) left anterior superior temporal sulcus (region A) and (iii) pars orbitalis of the inferior frontal gyrus (region F). The DCMs
themselves comprised the following variables; experimental inputs ut(1) for auditory stimulation and ut(2) for speech intelligibility, a neuronal activity
vector zt with three elements (one for each region P, A, and F), exogenous connections specified by the three-by-three connectivity matrix A (dotted
arrows in figure), modulatory connections specified by three-by-three modulatory matrics Bj for inputs j~1::2 (the solid line ending with a filled
circle denotes the single non-zero entry for this particular model), and a 3-by-2 direct input connectivity matrix C with non-zero entries shown by
solid arrows. The dynamics of this model are govenered by equation 1. All DCMs in this paper used all-to-all endogenous connectivity ie. there were
endogenous connections between all three regions. Different models were set up by specifying which regions received direct (auditory) input (non-
zero entries in C) and which connections could be modulated by the speech intelligibility (non-zero entries in the matrix B2).
doi:10.1371/journal.pcbi.1000709.g001

Author Summary

Bayesian model comparison provides a formal method for
evaluating different computational models in the biolog-
ical sciences. Emerging application domains include
dynamical models of neuronal and biochemical networks
based on differential equations. Much previous work in
this area has focussed on selecting the single best model.
This approach is useful but can become brittle if there are
a large number of models to compare and if different
subjects use different models. This paper shows that these
problems can be overcome with the use of Family Level
Inference and Bayesian Model Averaging within model
families.

Comparing Model Families
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set of input connections, C, that specify which inputs are

connected to which regions, and a set of modulatory connections,

Bj , that specify which intrinsic connections can be changed by

which inputs. The overall specification of input, intrinsic and

modulatory connectivity comprise our assumptions about model

structure. This in turn represents a scientific hypothesis about the

structure of the large-scale neuronal network mediating the

underlying cognitive function. A schematic of a DCM is shown

in Figure 1.

In DCM, neuronal activity gives rise to fMRI activity by a

dynamic process described by an extended Balloon model [24] for

each region. This specifies how changes in neuronal activity give

rise to changes in blood oxygenation that are measured with

fMRI. It involves a set of hemodynamic state variables, state

equations and hemodynamic parameters, h. In brief, for the ith
region, neuronal activity z(i) causes an increase in vasodilatory

signal si that is subject to autoregulatory feedback. Inflow fi

responds in proportion to this signal with concomitant changes in

blood volume vi and deoxyhemoglobin content qi.

_ssi~z(i){kisi{ci(fi{1)

_ff i~si

ti _vvi~fi{v
1=a
i

ti _qqi~fi
E(fi,ri)

ri

{v
1=a
i

qi

vi

ð2Þ

Outflow is related to volume fout~v1=a through Grubb’s expo-

nent a [20]. The oxygen extraction is a function of flow

E(f ,r)~1{(1{r)1=f where r is resting oxygen extraction

fraction. The Blood Oxygenation Level Dependent (BOLD) signal

is then taken to be a static nonlinear function of volume and

deoxyhemoglobin that comprises a volume-weighted sum of extra-

and intra-vascular signals [20]

yi~g(qi,vi)

~V0 k1(1{qi)zk2(1{
qi

vi

)zk3(1{vi)

� �

k1~7ri

k2~2

k3~2ri{0:2

ð3Þ

where V0~0:02 is resting blood volume fraction. The hemody-

namic parameters comprise h~fk,c,t,a,rg and are specific to

each brain region. Together these equations describe a nonlinear

hemodynamic process that converts neuronal activity in the i th

region zi to the fMRI signal yi (which is additionally corrupted by

additive Gaussian noise). Full details are given in [20,23].

In DCM, model parameters h~fA,B,C,hg are estimated using

Bayesian methods. Usually, the B parameters are of greatest

interest as these describe how connections between brain regions

are dependent on experimental manipulations. For a given DCM

indexed by m, a prior distribution, p(hDm) is specified using

biophysical and dynamic constraints [20]. The likelihood, p(yDh,m)
can be computed by numerically integrating the neurodynamic

(equation 1) and hemodynamic processes (equation 2). The

posterior density p(hDm,Y ) is then estimated using a nonlinear

variational approach described in [23,25]. Other Bayesian

estimation algorithms can, of course, be used to approximate the

posterior density. Reassuringly, posterior confidence regions found

using the nonlinear variational approach have been found to be

very similar to those obtained using a computationally more

expensive sample-based algorithm [26].

Model Evidence
This section reviews methods for computing the evidence for a

model, m, fitted to a single data set y. Bayesian estimation provides

estimates of two quantities. The first is the posterior distribution

over model parameters p(hDm,y) which can be used to make

inferences about model parameters h. The second is the

probability of the data given the model, otherwise known as the

model evidence. In general, the model evidence is not straight-

forward to compute, since this computation involves integrating

out the dependence on model parameters

p(yDm)~

ð
p(yDh,m)p(hDm)dh: ð4Þ

A common technique for approximating the above integral is

the Variational Bayes (VB) approach [27]. This is an analytic

method that can be formulated by analogy with statistical physics

as a gradient ascent on the ‘negative variational Free Energy’ (or

Free Energy for short), F (m), of the system. This quantity is

related to the model evidence by the relation [27,28]

log p(yDm)~F (m)zKL(q(hDy,m)DDp(hDy,m)): ð5Þ

where the last term in Eq.(5) is the Kullback-Leibler (KL)

divergence between an ‘approximate’ posterior density, q(hDy,m),
and the true posterior, p(hDy,m). This quantity is always positive,

or zero when the densities are identical, and therefore log p(yDm)
is bounded below by F (m). Because the evidence is fixed (but

unknown), maximising F (m) implicitly minimises the KL

divergence. The Free Energy then becomes an increasingly tighter

lower bound on the desired log-model evidence. Under the

assumption that this bound is tight, model comparison can then

proceed using F(m) as a surrogate for the log-model evidence.

The Free Energy is but one approximation to the model

evidence, albeit one that is widely used in neuroimaging [29,30]. A

simpler approximation, the Bayesian Information Criterion (BIC)

[11], uses a fixed complexity penalty for each parameter. This is to

be compared with the free energy approach in which the

complexity penalty is given by the KL-divergence between the

prior and approximate posterior [11]. This allows parameters to

be differentially penalised. If, for example, a parameter is

unchanged from its prior, there will be no penalty. This

adaptability makes the Free Energy a better approximation to

the model evidence, as has been shown empirically [6,31].

There are also a number of sample-based approximations to the

model evidence. For models with small numbers of parameters the

Posterior Harmomic Mean provides a good approximation. This has

been used in neuroscience applications, for example, to infer based

on spike data whether neurons are responsive to particular features,

and if so what form the dependence takes [32]. For models with a

larger number of parameters the evidence can be well approximated

using Annealed Importance Sampling (AIS) [33]. In a comparison of

sample-based methods using synthetic data from biochemical

networks, AIS provided the best balance between accuracy and

computation time [13]. In other comparisons, based on simulation of

graphical model structures [6] the Free Energy method approached

the performance of AIS and clearly outperformed BIC. In this paper

model evidence is approximated using the Free Energy.

Comparing Model Families
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Fixed Effects Analysis
Neuroimaging data sets usually comprise data from multiple

subjects as the perhaps subtle cognitive effects one is interested in

are often only manifest at the group level. In this and following

sections we therefore consider group model inference where we fit

models m~1::M to data from subjects n~1::N . Every model is

fitted to every subjects data. In Fixed Effects (FFX) Analysis it is

assumed that every subject uses the same model, whereas Random

Effects (RFX) Analysis allows for the possibility that different

subjects use different models. This section focusses on FFX.

Given that our overall data set, Y , which comprises data for

each subject, yn, is independent over subjects, we can write the

overall model evidence as

p(Y Dm)~P
N

n~1
p(ynDm)

log p(Y Dm)~
XN

n~1

log p(ynDm)

ð6Þ

Bayesian inference at the model level can then be implemented

using Bayes rule

p(mDY )~
p(Y Dm)p(m)PM

m~1

p(Y Dm)p(m)

ð7Þ

Under uniform model priors, p(m), the comparison of a pair of

models, m~i and m~j, can be implemented using the Bayes

Factor which is defined as the ratio of model evidences

BFij~
p(Y Dm~i)

p(Y Dm~j)
ð8Þ

Given only two models and uniform priors, the posterior model

probability is greater than 0.95 if the BF is greater than twenty.

Bayes Factors have also been stratified into different ranges

deemed to correspond to different strengths of evidence. ‘Strong’

evidence, for example, corresponds to a BF of over twenty [34].

Under non-uniform priors, pairs of models can be compared using

Odds Ratios. The prior and posterior Odds Ratios are defined as

p0
ij~

p(m~i)

p(m~j)
ð9Þ

pij~
p(m~iDY )

p(m~jDY )

resepectively, and are related by the Bayes Factor

pij~BFij|p0
ij ð10Þ

When comparing two models across a group of subjects, one can

multiply the individual Bayes factors (or exponentiate the sum of

log evidence differences); this is referred to as the Group Bayes

Factor (GBF) [16]. As is made clear in [19] the GBF approach

implicitly assumes that every subject uses the same model. It is

therefore a Fixed Effects analysis. If one believes that the optimal

model structure is identical across subjects, then an FFX approach

is entirely valid. This assumption is warranted when studying a

basic physiological mechanism that is unlikely to vary across

subjects, such as the role of forward and backward connections in

visual processing [35].

Random Effects Analysis
An alternative procedure for group level model inference allows

for the possibility that different subjects use different models. This

may be the case in neuroimaging when investigating pathophys-

iological mechanisms in a spectrum disease or when dealing with

cognitive tasks that can be performed with different strategies.

RFX inference is based on the characteristics of the population

from which the subjects are drawn. Given a candidate set of

m~1::M models, we denote rm as the frequency with which

model m is used in the population. We also refer to rm as the

model probability.

We define a prior distribution over rm which in this paper, and

in previous work [19], is taken to be a Dirichlet density (but see

later)

p(rDa)~Dir(a)~
1

Z(a)
P
M

m~1
ram{1

m ð11Þ

where Z(a) is a normalisation term and the parameters, am, are

strictly positively valued and can be interpreted as the number of

times model m has been observed or selected. For am§1 the

density is convex in r-space, whereas for amv1 it is concave.

Given that we have drawn n~1::N subjects from the

population of interest we then define the indicator variable anm

as equal to unity if model m has been assigned to subject n. The

probability of the ‘assignation vector’, an, is then given by the

multinomial density

p(anDr)~Mult(r)~ P
M

m~1
ranm

m ð12Þ

The model evidence, p(ynDm), together with the above densities for

model probabilities and model assignations constitutes a genera-

tive model for the data, Y (see figure 1 in [19]). This model, can

then be inverted to make inferences about the model probabilites

from experimental data. Such an inversion has been described in

previous work, which developed an approximate inference

procedure based on a variational approximation [19] (this was

in addition to the variational approximation used to compute the

Free Energy for each model). The robustness and accuracy of this

method was verified via simulations using data from synthetic

populations with known frequencies of competing models [19].

This algorithm produces an approximation to the posterior density

p(rDY ) on which subsequent RFX inferences are based.

As we shall see in the following section, unbiased family level

inferences require uniform priors over families. This requires that

the prior model counts, aprior(m), take on very small values (see

equation 24). These values become smaller as the number of

models in a family increases. It turns out that although the

variational algorithm is robust for aprior(m)§1, it is not accurate

for aprior(m)vv1. This is a generic problem with the VB

approach and is explained further in the the supporting material

(see file Text S1). For this reason, in this paper we choose to take a

Gibbs sampling instead of a VB approach. Additionally, the use of

Gibbs sampling allows us to relax the assumption made in VB that

the posterior densities over a and r factorise [19]. Gibbs sampling

is the Monte-Carlo method of choice when it is possible to

iteratively sample from the conditional posteriors [1]. Fortunately,

this is the case with the RFX models as we can iterate between

sampling from p(rDa,Y ) and p(aDr,Y ). Such iterated sampling

Comparing Model Families
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eventually produces samples from the marginal posteriors p(rDY )
and p(aDY ) by allowing for a sufficient burn-in period after which

the Markov-chain will have converged [1]. The procedure is

described in the following section.

Gibbs sampling for random effects inference over models.

First, model probabilites are drawn from the prior distribution

r*Dir(aprior) ð13Þ

where by default we set aprior(m)~a0 for all m (but see later). For

each subject n~1::N and model m~1::M we use the model

evidences from model inversion to compute

unm~ exp log p(ynDm)z log rmð Þ ð14Þ

gnm~
unmPM

m~1

unm

Here, gnm is our posterior belief that model m generated the data

from subject n (these posteriors will be used later for Bayesian model

averaging). For each subject, model assignation vectors are then

drawn from the multinomial distribution

an*Mult(gn) ð15Þ

We then compute new model counts

bm~
XN

n~1

anm

am~aprior(m)zbm

ð16Þ

and draw new model probabilities

r*Dir(a) ð17Þ

Equations 14 to 17 are then iterated Nd times. For the results in this

paper we used a total of Nd~20,000 samples and discarded the first

10,000. These remaining samples then constitute our approximation

to the posterior distribution p(rDY ). From this density we can

compute usual quantities such as the posterior expectation, denoted

E½rDY � or vrDYw. This completes the description of model level

inference.

The above algorithm was derived for Dirichlet priors over

model probabilities (see equation 11). The motivation for the

Dirichlet form originally derived from the use of a free-form VB

approximation [27] in which the optimal form for the approxi-

mate posterior density over r would be a Dirichlet if the prior over

r was also a Dirichlet. This is not a concern in the context of Gibbs

sampling. In principle any prior density over r will do, but for

continuity with previous work we follow the Dirichlet approach.

We end this section by noting that the Gibbs sampling method

is to be preferred over the VB implementation for model level

inferences in which the number of models exceeds the number of

subjects, MwN. This is because it is important that the total prior

count, Ma0, does not dominate over the number of subjects,

otherwise posterior densities will be dominated by the prior rather

than the data. This is satisfied, for example, by a0~1=M.

However, as described in the the supporting material (see file Text

S1), the VB implementation does not work well for small a0. But if

we wish to compare a small number of models then VB is the

preferred method because it is faster as well as being accurate, as

shown in previous simulations [19].

Comparison Set
We have so far described procedures for Bayesian inference

over models m~1::M. These models comprise the comparison

set, S. This section points out a number of generic features of

Bayesian model comparison.

First, for any data set there exists an infinite number of possible

models that could explain it. The purpose of model comparison is

not to discover a ‘true’ model, but to determine that model, given

a set of plausible alternatives, which is most ‘useful’, ie. represents

an optimal balance between accuracy and complexity. In other

words Bayesian model inference has nothing to say about ‘true’

models. All that it provides is an inference about which is more

likely, given the data, among a set of candidate models.

Second, we emphasise that posterior model probabilities depend

on the comparison set. For FFX inference this can be clearly seen

in equation 7 where the denominator is given by a sum over S.

Similarly, for RFX inference, the dependence of posterior model

probabilities on the comparison set can be seen in equation 14.

Other factors being constant, posterior model probabilities are

therefore likely to be smaller for larger S.

Our third point relates to the ranking of models. For FFX

analysis the relative ranking of a pair of models is not depen-

dent on S. That is, if p(m~iDY ,S1)wp(m~jDY ,S1) then

p(m~iDY ,S2)wp(m~jDY ,S2) for any two comparison sets S1

and S2 that contain models i and j. This follows trivially from

equation 7 as the comparison set acts only as a normalisation term.

However, for group random effects inference the ranking of

models can be critically dependent on the comparison set. That is,

if E½ri DY ,S1�wE½rj DY ,S1� then it could be that E½rj DY ,S2�w
E½ri DY ,S2� where E½ri DY ,Sk� is the posterior expected probability

of model i given comparison set Sk. The same holds for other

quantities derived from the posterior over r, such as the

exceedance probability (see [19] and later). This means that the

decision as to which is the best model depends on S. This property

arises because different subjects can use different models and we

illustrate it with the following example.

Consider that S1 comprises just two models m~1 and m~2.

Further assume that we have N~17 subjects and model m~1 is

preferred by 7 of these subjects and m~2 by the remaining 10.

We assume, for simplicity, that the degrees of preference (ie

differences in evidence) are the same for each subject. The

quantity E½rmDY � then simply reflects the proportion of sub-

jects that prefer model m [19]. So E½r1DY ,S1�~7=17~0:41,

E½r2DY ,S1�~10=17~0:59 and for comparison set S1 model 2 is

the highest ranked model. Although the differences in posterior

expected values are small the corresponding differences in

exceedance probabilities will be much greater. Now consider a

new comparison set S2 that contains an addditional model m~3.

This model is very similar to model m~2 such that, of the ten

subjects who previously preferred it, six still do but four now prefer

model m~3. Again, assuming identical degrees of preference, we

now have E½r1DY ,S2�7=17~0:41, E½r2DY ,S2�~6=17~0:35 and

E½r3DY ,S2�~4=17~0:24. So, for comparison set S2 model m~1 is

now the best model. So which is the best model: model one or two?

We suggest that this seeming paradox shows, not that group

random effects inference is unreliable, but that it is not always

appropriate to ask which is the best model. As is usual in Bayesian

inference it is wise to consider the full posterior density rather than

just the single maximum posterior value. We can ask what is

common to models two and three. Perhaps they share some

Comparing Model Families
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structural assumption such as the existence of certain connections

or other characteristic such as nonlinearity. If one were to group

the models based on this characteristic then the inference about the

characteristic would be robust. This notion of grouping models

together is formalised using family-level inference which is

described in the following section. One can then ask: of the

models that have this characteristic what are the typical parameter

values? This can be addressed using Bayesian Model Averaging

within families.

Family Inference
To implement family level inference one must specify which

models belong to which families. This amounts to specifying a

partition, F , which splits S into k~1::K disjoint subsets. The

subset fk contains all models belonging family k and there are Nk

models in the k th subset.

Different questions can be asked by specifying different

partitions. For example, to test model space for the ‘effect of

linearity’ one would specify a partition into linear and nonlinear

subsets. One could then test the same model space for the ‘effect of

seriality’ using a different partition comprising serial and parallel

subsets. The subsets must be non-overlapping and their union

must be equal to S. For example, when testing for effects of

‘‘seriality’’, some models may be neither serial or parallel; these

models would then define a third subset.

The usefulness of the approach is that many models (perhaps all

models) are used to answer (perhaps) all questions. This is similar

to factorial experimental designs in psychology [36] where data

from all cells are used to assess the strength of main effects and

interactions. We now relate the two-levels of inference: family and

model.

Fixed effects. To avoid any unwanted bias in our inference

we wish to have a uniform prior at the family level

p(fk)~
1

K
ð18Þ

Given that this is related to the model level as

p(fk)~
X
m[fk

p(m) ð19Þ

the uniform family prior can be implemented by setting

p(m)~
1

KNk

Vm [ fk ð20Þ

The posterior distribution over families is then given by summing

up the relevant posterior model probabilities

p(fkDY )~
X
m[fk

p(mDY ) ð21Þ

where the posterior over models is given by equation 7. Because

posterior probabilities can be very close to unity we will sometimes

quote one minus the posterior probability. This is the combined

probability of the alternative hypotheses which we refer to as the

alternative probability, p(f k DY ).
Random effects. The family probabilities are given by

sk~
X
m[fk

rm ð22Þ

where sk is the frequency of the family of models in the population.

We define a prior distribution over this probability using a

Dirichlet density

p(s)~Dir(c) ð23Þ

A uniform prior over family probabilities can be obtained by

setting ck~1 for all k. From equations 13 and 22 we see that this

can be achieved by setting

aprior(m)~
1

Nk

Vm [ fk ð24Þ

We can then run the Gibbs sampling method described above for

drawing samples from the posterior density p(rDY ). Samples from

the family probability posterior, p(sDY ), can then be computed

using equation 22.

The posterior means, vsk DYw, are readily computed from

these samples. Another option is to compute an exceedance

probability, Qk, which corresponds to the belief that family k is

more likely than any other (of the K families compared), given the

data from all subjects:

Qk~p(sk DYwsj DY ,Vj=k) ð25Þ

Exceedance probabilities are particularly intuitive when compar-

ing just two families as they can be written:

Q1~p(s1ws2DY )~p(s1w0:5DY ): ð26Þ

Family level inference addresses the issue of ‘dilution’ in model

selection [4]. If one uses uniform model priors and many models

are similar, then excessive prior probability is allocated to this set

of similar models. One way of avoiding this problem is to use

priors which dilute the probability within subsets of similar models

([4]). Grouping models into families, and setting model priors

according to eg. equation 24, achieves exactly this.

Bayesian Model Averaging
So far, we have dealt with inference on model-space, using

partitions into families. We now consider inference on parameters.

Usually, the key inference is on models, while the maximum a

posteriori (MAP) estimates of parameters are reported to provide a

quantitative interpretation of the best model (or family).

Alternatively, people sometimes use subject-specific MAP esti-

mates as summary statistics for classical inference at the group

level. These applications require only a point (MAP) estimate.

However for completeness, we now describe how to access the full

posterior density on parameters, from which MAP estimates can

be harvested.

The basic idea here is to use Bayesian model averaging within a

family; in other words, summarise family-specific coupling

parameters in a way that avoids brittle assumptions about any

particular model. For example, the marginal posterior for subject n
and family k is

p(hnDY ,m [ fk)~
X
m[fk

q(hnDyn,m)p(mnDY ) ð27Þ

where q(hnDY ,m)&p(hnDY ,m) is our variational approximation

to the subject specific posterior and p(mnDY ) is the posterior

Comparing Model Families

PLoS Computational Biology | www.ploscompbiol.org 6 March 2010 | Volume 6 | Issue 3 | e1000709



probability that subject n uses model m. We could take this to be

p(mnDY )~p(mDY ) under the FFX assumption that all subjects use

the same model, or p(mnDY )~gnm under the RFX assumption

that each subject uses their own model (see equation 14).

Finally, to provide a single posterior density over subjects one

can define the parameters for an average subject

h~
1

N

XN

n~1

hn ð28Þ

and compute the posterior density p(hDY ) from the above relation

and the individual subject posteriors from equation 27.

Equation 27 arises from a straightforward application of

probability theory in which a marginal probability is computed

by marginalising over quantities one is uninterested in (see also

equation 4 for marginalising over parameters). Use of equation 27

in this context is known as Bayesian Model Averaging (BMA)

[4,37]. In neuroimaging BMA has previously been used for source

reconstruction of MEG and EEG data [9]. We stress that no

additional assumptions are required to implement equation 27.

One can make fk [ S small or large. If we make fk~S, the entire

model-space, the posteriors on the parameters become conven-

tional Bayesian model averages where p(hDY ,m [ S)~p(hDY ).
Conversely, if we make fk~m, a single model, we get con-

ventional parameter inference of the sort used when selecting the

best model; i.e., fk~mMAP. This is formally identical to using

p(hDY ) under the assumption that the posterior model density is a

point mass at mMAP. More generally, we want to average within

families of similar models that have been identified by inference

on families.

One can see from equation 27 that models with low probability

contribute little to the estimate of the marginal density. This

property can be made use of to speed up the implementation of

BMA by excluding low probability models from the summation.

This can be implemented by including only models for which

p(mDY )

p(mMAPDY )
§pOCC ð29Þ

where pOCC is the minimal posterior odds ratio. Models satisfying

this criterion are said to be in Occam’s window [38]. The number

of models in the window, NOCC , is a useful indicator as smaller

values correspond to peakier posteriors. In this paper we use

pOCC~1=20. We emphasise that the use of Occam’s window is for

computational expedience only.

Although it is fairly simple to compute the MAP estimates of the

Bayesian parameter (MAP) averages analytically, the full posteriors

per se have a complicated form. This is because they are mixtures

of Gaussians (and delta functions for models where some

parameters are precluded a priori). This means the posteriors

can be multimodal and are most simply evaluated by sampling.

The sampling approach can be implemented as follows. This

generates i~1::NBMA samples from the posterior density p(hDY ).
For each sample, i, and subject n we first select a model as follows.

For RFX we draw from

mi*Mult(gn) ð30Þ

where the mth element of the vector gn is the posterior model

probability for subject n, gnm (we will use the expected values from

equation 14). For FFX the model probabilities are the same for all

subjects and we draw from

mi*Mult(r) ð31Þ

where r is the M|1 vector of posterior model probabilities with

mth element equal to rm~p(mDY ). For each subject one then

draws a single parameter vector, hin from the subject and model

specific posterior

hin*q(hnDyn, mi) ð32Þ

These N samples can then be averaged to produce a single sample

hi~
1

N

XN

n~1

hin ð33Þ

One then generates another sample by repeating steps 30/31, 32

and 33. The i~1::NBMA samples then provide a sample-based

representation of the posterior density p(hDY ) from which the

usual posterior means and exceedance probabilities can be

derived. Model averaging can also be restricted to be within-

subject (using equations 30/31 and 32 only). Summary statistics

from the resulting within-subject densities can then be entered into

standard random effects inference (eg using t-tests) [19].

For any given parameter, some models assume that the

parameter is zero. Other models allow it to be non-zero and its

value is estimated. The posterior densities from equation 27 will

therefore include a delta function at zero, the height of which

corresponds to the posterior probability mass of models which

assume that the parameter is zero. For the applications in this

paper, the posterior densities from equation 27 will therefore

correspond to a mixture of delta functions and Gaussians because

q(hnDyn,mi) for DCMs have a Gaussian form. This is reminiscent

of the model selection priors used in [39] but in our case we have

posterior densities.

Results

We illustrate the methods using neuroimaging data from a

previously published study on the cortical dynamics of intelligible

speech [17]. This study applied dynamic causal modelling of fMRI

responses to investigate activity among three key multimodal

regions: the left posterior and anterior superior temporal sulcus

(subsequently referred to as regions P and A respectively) and pars

orbitalis of the inferior frontal gyrus (region F). The aim of the

study was to see how connections among regions depended on

whether the auditory input was intelligible speech or time-reversed

speech. Full details of the experimental paradigm and imaging

parameters are available in [17].

An example DCM is shown in figure 1. Other models varied as

to which regions received direct input and which connections

could be modulated by ‘speech intelligibility’. Given that each

intrinsic connection can be either modulated or not, there are

26~64 possible patterns of modulatory connections. Given that

the auditory stimulus is either a direct input to a region or is not

there are 23~8 possible patterns of input connectivity. But we

discount models without any input so this leaves 7 input patterns.

The 64 modulatory patterns were then crossed with the 7 input

patterns producing a total of M~448 different models. These

models were fitted to data from a total of N~26 subjects (see [17]

for details). Overall 26|448~11,648 DCMs were fitted. The

next two sections focus on family level inference. As this is a

methodological paper we present results using both an FFX and

RFX approach (ordinarily one would use either FFX or RFX

alone).

Comparing Model Families
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Input Regions
Our first family level inference concerns the pattern of input

connectivity. To this end we assign each of the m~1::448 models

to one of k~1::7 input pattern families. These are family A

(models 1 to 64), F (65 to 128), P (129 to 192), AF (193 to 256), PA

(257 to 320), PF (321 to 384) and PAF (285 to 448). Family PA, for

example, has auditory inputs to both region P and A.

The first two numerical columns of Table 1 show the posterior

family probabilities from an FFX analysis computed using equation

21. These are overwhelmingly in support of models in which region P

alone receives auditory input (alternative probability p~1:4|10{11).

The last two columns in Table 1 show the corresponding posterior

expectations and exceedance probabilities from an RFX analysis

computed using equation 25. The conclusions from RFX analysis are

less clear cut. But we can say, with high confidence (total exceedance

probability, p~0:97) that either region A alone or region P alone

receives auditory input. Out of these two possibilities it is much more

likely that region P alone receives auditory input (exceedance

probability p~0:78) rather than region A (exceedance probability

p~0:19). Figure 2 shows the posterior distributions p(skDY ), from an

RFX analysis, for each of the model families.

Forward versus Backward
Having established that auditory input most likely enters region

P we now turn to a family level inference regarding modulatory

structure. For this inference we restrict our set of candidate

models, S, to the 64 models receiving input to region P. We then

assign each of these models to one of k~1::4 modulatory families.

These were specified by first defining a hierarchy with region P at

the bottom, A in the middle and F at the top; in accordance with

recent studies that tend to place F above A in the language

hierarchy [40]. For each structure we then counted the number of

forward, nF , and backward, nB, connections and defined the

following families: predominantly forward (F, nF wnB), predom-

inantly backward (B, nBwnF ), balanced (BAL, nF ~nB), or None.

The first two numerical columns of Table 2 show the posterior

family probabilities from an FFX analysis. We can say, with high

confidence (total posterior probability, p~0:93) that nF §nB. The

last two columns in Table 2 show the posterior expectations and

exceedance probabilities from an RFX analysis. These were

computed from the posterior densities shown in Figure 3. The

conclusions we draw, in this case, are identical to those from the

FFX analysis. That is, we can say, with high confidence (total

exceedance probability, p~0:94) that nF §nB.

Relating Family and Model Levels
Family level posteriors are related to model level posteriors via

summation over family members according to equation 21 for

FFX and equation 22 for RFX. Figure 4 shows the how the

posterior probabilities over input families break down into

posterior probabilities for individual models. Figure 5 shows the

same for the modulatory families.

The maximum posterior model for the input family inference is

model number 185 having posterior probability p(mDY )~0:0761.

Given that all families have the same number of members, the

model priors are uniform, so the maximum posterior model is also

the one with highest aggregate model evidence. This model has

input to region P and modulatory connections as shown in

Figure 6(a).

The model evidence for the DCMs fitted in this paper was

computed using the free energy approximation. This is to be

contrasted with previous work in which (the most conservative of)

AIC and BIC was used [17]. One notable difference arising from

this distinction is that the top-ranked models in [17] contained

significantly fewer connections than those in this paper (one

Table 1. Inference over input families.

Input FFX RFX

Posterior
p(fk DY)

Log Posterior
log p(fk DY)

Expected
vsk DYw

exceedance
Qk

A 0.00 225.33 0.27 0.19

F 0.00 255.08 0.16 0.03

P 1.00 0.00 0.44 0.78

AF 0.00 286.97 0.03 0.00

PA 0.00 261.70 0.03 0.00

PF 0.00 268.59 0.03 0.00

PAF 0.00 2134.67 0.03 0.00

All values are tabulated to two decimal places (dp). For an FFX inference, the
alternative probability for input family P is p(f 3 DY )~1:4|10{11 . The expected
and exceedance probabilities for RFX were computed from the posterior
densities shown in Figure 2. For RFX inference the total exceedance probability
that either region A alone or region P alone receives auditory input is p~0:97.
doi:10.1371/journal.pcbi.1000709.t001

Figure 2. RFX posterior densities for input families. The histograms show p(sk Dy) versus sk for the k~1::7 input families. Input family ‘P’ has the
highest posterior expected probability vsk DYw~0:44. See Table 1 for other posterior expectations.
doi:10.1371/journal.pcbi.1000709.g002
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sample t-test, p~2:9|10{6). The top 10 models in [17]

contained an average 2.4 modulatory connections whereas those

in this paper contained an average of 4.5. This difference reflects

the fact that the AIC/BIC approximation to the log evidence

penalizes models for each additional connection (parameter)

without considering interdependencies or covariances amongst

parameters, whereas the free energy approximation takes such

dependencies into account.

Model Averaging
We now follow up the family-level inferences about input

connections with Bayesian model averaging. As previously discussed,

this is especially useful when the posterior model density is not

sharply peaked, as is the case here (see Figure 4. All of the averaging

results in this paper are obtained with an Occam’s window defined

using a minimal posterior odds ratio of pOCC~1=20.

For FFX inference the input was inferred to enter region P only.

We therefore restrict the averaging to those 64 models in family P.

This produces 16 models in Occam’s window (itself indicating that

the posterior is not sharply peaked). The worst one is m~163 with

p(mDY )~0:0504. The posterior odds of the best relative to the

worst is only 1:51 (the largest it could be is 1=pOCC ), meaning these

models are not significantly better than one another. Four of the

models in Occam’s window are shown in Figure 6. Figure 7 shows

the posterior densities of average modulatory connections

(averaging over models and subjects). The height of the delta

functions in these histograms correspond to the total posterior

probability mass of models which assume that the connection is

zero.

For RFX inference the input was inferred to most likely enter

region P alone (posterior exceedance probability, wk~0:78). In the

RFX model averaging the Occam’s windowing procedure was

specific to each subject, thus each subject can have a different number

of models in Occam’s window. For the input model P family there

were an average of NOCC~30+5 models in Occam’s window and

Figure 8 shows the posterior densities of the average modulatory

connections (averaging over models and subjects). Both the RFX and

FFX model averages within family P show that only connections from

P to A, and from P to F, are facilitated by speech intelligibility.

Discussion

This paper has investigated the formal comparison of models

using Bayesian model evidence. Previous application of the method

in the biological sciences has focussed on model selection in which

one first selects the model with the highest evidence and then makes

inferences based on the parameters of that model. We have shown

that this ‘best model’ approach, though useful when the number of

models is small, can become brittle if there are a large number of

models, and if different subjects use different models.

To overcome this shortcoming we have proposed the combi-

nation of two further approaches (i) family level inference and (ii)

Bayesian model averaging within families. Family level inference

Figure 3. RFX Posterior densities for modulatory families. The histograms show p(sk Dy) versus sk for the k~1::4 modulatory families.
Modulatory family ‘F’ has the highest posterior expected probability vsk DYw~0:52. See Table 2 for other posterior expectations.
doi:10.1371/journal.pcbi.1000709.g003

Table 2. Inference over modulatory families.

Modulation FFX RFX

Posterior
p(fk DY)

Log Posterior
log p(fk DY)

Expected
vsk DYw

exceedance
Qk

Forward, nF wnB 0.64 20.44 0.52 0.66

Backard, nBwnF 0.07 22.71 0.13 0.06

Balanced, nF ~nB 0.29 21.22 0.28 0.28

None 0.00 238.37 0.07 0.00

All values are tabulated to two decimal places (dp).
doi:10.1371/journal.pcbi.1000709.t002
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Figure 4. Model level inference for input families. For FFX (top panel) the figure shows that models in the P family have by far the greatest
posterior probability mass. For RFX (bottom panel) models in both A and P families have high posterior expected probability, although the
probability mass for P dominates.
doi:10.1371/journal.pcbi.1000709.g004

Figure 5. Model level inference for modulatory families. For FFX (top panel) the figure shows that models in the F and BAL families have most
probability mass. The expected posteriors from the RFX inference show a similar pattern (bottom panel). The ordering of models in this figure is not
the same as the ordering of P models in figure 4.
doi:10.1371/journal.pcbi.1000709.g005
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removes uncertainty about aspects of model structure other than

the characteristic one is interested in. Bayesian model averaging

can then be used to provide a summary measure of likely

parameter values for each family.

We have applied these approaches to neuroimaging data,

specifically a DCM study of auditory word processing using fMRI.

Our results indicate that spoken words most likely stimulate a

region in posterior STS and that if the word is intelligible

connections are strengthened both to anterior STS and an inferior

frontal region. These conclusions were drawn based on family

level inference and Bayesian model averaging.

The model evidence for the DCMs fitted in this paper was

computed using the free energy approximation whereas previous

work used (the most conservative of) AIC and BIC [17]. This

resulted in the highly ranked models containing significantly more

connections than in the previous study. This is due to a bias in the

AIC/BIC criterion which leads to overly simple models being

selected. Previous work in graphical models favours the free energy

approach over BIC [6] and work on biochemical models finds AIS

to be the best of the more computationally expensive sampling

methods. The relative merits of the different model selection

criteria, as applied to brain imaging models and data, will be

addressed in a future publication. The family level inference

procedures described in this paper can be applied whatever

method is used for estimating the model evidence.

Interestingly, the use of BMA produced an average network

structure with speech input to region P, and modulatory

connections from P to A and from P to F. This is exactly the

winning model from earlier work [17] (based on AIC/BIC

approximation of model evidence). It is not, however, the best

model as indicated by the free energy. The model with the highest

free energy (see figure 6(a)) does not, however, have significantly

higher evidence than the second best model, or indeed, any model

in Occam’s window. This indicates that in the particular example

we have studied the use of Bayes factors or posterior odds ratios

would be inconclusive, whereas clear conclusions can be drawn

from family level inference.

This paper has also introduced a Gibbs sampling method for

RFX model level inference when the number of models is large.

This sampling method should be preferred to the previously

suggested VB method [19] when the number of models exceeds

the number of subjects (ie. MwN). We do emphasise, however,

that for RFX model level inferences involving a small number of

models (as in previous work [19]) the VB approach is perfectly

valid, and is indeed the preferred approach because it is faster.

The issue of family versus model level inference is orthogonal to

the issue of random versus fixed effects analysis. The same critera

re. FFX versus RFX apply at the family level as at the model level.

For the data in this paper one might use RFX analysis as auditory

word processing is part of the high level language system and one

expect might expect differences in the neuronal instantiation (eg.

lateralisation). If the issue remains unclear one could adopt a more

pragmatic approach by first implementing a FFX analysis, and if

there appear to be outlying subjects, then one could follow this up

with an RFX analysis.

Family level inferences under FFX assumptions are simple to

implement. Families with (the same and) different numbers of

models are accommodated by setting model priors using equation

20, model posteriors are computed using equation 7, and family

level posteriors using equation 21. This is a simple non-iterative

procedure. Family level inferences under RFX assumptions are

more subtle and have been the main focus of this paper. Families

with (equal and) unequal numbers of models are accommodated

using the model priors in equation 24, model posteriors are

Figure 6. Likely models. The figure shows the input (filled square and solid arrow) and modulatory connectivity (solid arrows) stuctures for four
models in Occam’s window (assessed using FFX). Note that all models also have full endogenous connectivity (not shown). These four models are (a)
model m~185 with p(mDY )~0:0761, rank = 1, (b) model m~191 with p(mDY )~0:0759, rank = 2, (c) model m~136 with p(mDY )~0:0507, rank = 15
and (d) model m~163 with p(mDY )~0:0504, rank = 16. All models have auditory input entering region P.
doi:10.1371/journal.pcbi.1000709.g006
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computed using an iterative Gibbs sampling procedure, and family

level posteriors are computed using equation 22. We envisage that

family level inference under RFX assumptions will be particularly

useful in neuroimaging studies of high level cognition or for clinical

groups where there is a high degree of intersubject variability.

Where subjects can be clearly divided into two or more groups on

behavioural or other grounds (e.g. patients and controls), then it

would be correct to group the models accordingly, and proceed

with a between group analysis on selected parameters of the

averaged models.

Finally, we comment on the broader issue of comparison of

discrete models (the ‘Discrete’ approach adopted in this work) versus

a hierarchical approach embodying Automatic Relevance Deter-

mination (ARD) in which irrelevant connections are ‘switched off’

during model fitting [41] (for the case of DCMs the ARD approach

is currently hypothetical as no such algorithm has yet been

Figure 7. Average Modulatory Connections from FFX for input family P. The figures show the posterior densities of average network
parameters from fixed effects Bayesian model averaging for the modulatory connections. Only forward connections from P to A and from P to F are
modulated by speech intelligibility.
doi:10.1371/journal.pcbi.1000709.g007
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implemented). The ARD approach provides an estimate of the

marginal density p(hDY ) directly without recourse to Bayesian model

averaging. The Discrete approach allows for quantitative family-

level inferences about issues such as whether processing is serial or

parallel, linear or nonlinear. Additionally, Bayesian Model Averag-

ing can be used with the Discrete approach to provide estimates of

the marginal density p(hDY ). Overall, the ARD approach is probably

the preffered method if one is solely interested in the marginal

density over parameters, because it will likely be faster. If one is

additionally interested in quantitative family-level inference then the

Discrete approach would be the method of choice.

We expect that the comparison of model families will prove

useful for a range of model comparison applications in biology,

from connectivity models of brain imaging data, to behavioural

models of learning and decision making, and dynamical models in

molecular biology.

Figure 8. Average Modulatory Connections from RFX for input family P. The figures show the posterior densities of average network
parameters from random effects Bayesian model averaging for the modulatory connections. Only forward connections from P to A and from P to F
are modulated by speech intelligibility.
doi:10.1371/journal.pcbi.1000709.g008
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