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Abstract— We propose new features for emotion recognition 

from short ECG signals. The features represent the statistical 
distribution of dominant frequencies, calculated using 
spectrogram analysis of intrinsic mode function after applying the 
bivariate empirical mode decomposition to ECG. KNN was used 
to classify emotions in valence and arousal for a 3-class problem 
(low-medium-high). Using ECG from the Mahnob-HCI database, 
the average accuracies for valence and arousal were 55.8% and 
59.7% respectively with 10-fold cross validation. The accuracies 
using features from standard Heart Rate Variability analysis were 
42.6% and 47.7% for valence and arousal respectively for the 3-
class problem. These features were also tested using subject-
independent validation, achieving an accuracy of 59.2% for 
valence and 58.7% for arousal. The proposed features also showed 
better performance compared to features based on statistical 
distribution of instantaneous frequency, calculated using Hilbert 
transform of intrinsic mode function after applying standard 
empirical mode decomposition and bivariate empirical mode 
decomposition to ECG. We conclude that the proposed features 
offer a promising approach to emotion recognition based on short 
ECG signals. The proposed features could be potentially used also 
in applications in which it is important to detect quickly any 
changes in emotional state. 

Keywords—affective computing, bivariate empirical mode 
decomposition, empirical mode decomposition, spectrogram, Hilbert 
transform. 

I. INTRODUCTION 

Features for emotion recognition system relying on ECG 
signals are usually derived based on standard Heart Rate 
Variability (HRV) – variation of time interval between 
heartbeats – analysis, which often requires at least 5 minutes 
length or several hours of ECG signals [1]. These features are 
thus most suitable for affect recognition where emotional states 
do not vary much. However, it is not suitable for emotion 
tracking applications where emotions change rapidly within a 
short periods of time. Emotion tracking based on short-time 

ECG signal analysis could be useful in such applications as 
biofeedback systems in computer games, monitoring of human-
to-human interaction in psychological studies and emotional 
reactions to varying stimuli in psychiatric studies related to 
affective communication disorders. 

As suggested in [2], Ferdinando, Ye, Seppänen, and 
Alasaarela  [3] have applied the standard HRV analysis to ECG 
from the Mahnob-HCI database to obtain features for emotion 
recognition. The achieved accuracies were 42.6% and 47.7% for 
valence (it measures the degree of pleasantness as one of 
dimensional emotion variables) and arousal (it measures the 
degree of activeness as one of the dimensional emotion 
variables) respectively, on a 3-class problem (low-medium-
high). However, since ECG signals in the Mahnob-HCI database 
vary between 35 and 117 seconds in length, they may be too 
short for standard HRV analysis [1]. 

Agrafioti, Hatzinakos, and Anderson [4] proposed Hilbert 
instantaneous frequencies and local oscillation of intrinsic mode 
functions (IMFs) as features for emotion detection system after 
applying the bivariate empirical mode decomposition (BEMD) 
to ECG. The BEMD is more robust in analyzing ECG signal 
than the original empirical mode decomposition (EMD) as 
shown in [5] by solving uniqueness and mode mixing problems 
in the EMD. It uses a synthetic ECG as imaginary signal to guide 
the sifting process. 

In this study, we propose new features, i.e. statistical 
distributions of dominant frequencies (DFs) from IMFs and their 
first difference after applying the BEMD to short-time ECG, to 
emotion recognition. The proposed features were tested using 
ECG signals from the Mahnob-HCI database. The results are 
compared to emotion recognition using features from HRV 
analysis on the same database. We also calculated features based 
on the statistical distribution of instantaneous frequencies (IFs) 
and their first difference after applying EMD and BEMD as a 
comparison to the proposed features. 
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II. MATERIALS AND METHODS 

A. ECG Signals and the Signal Processing 

This study used the ECG signals from the Mahnob-HCI 
database, which contains data recorded from 27 subjects (11 
males and 16 females) watching videos and images. The system 
recorded 32-channel EEG, peripheral physiological signals 
(ECG, temperature, respiration, skin conductance), face and 
body videos using 6 cameras, eye gaze, and audio. All 
recordings were precisely synchronized, allowing researchers to 
study multimodal emotional responses. ECG signals were 
recorded at 256 Hz [2]. 

Our experiments used the same data as in [3]. This data is 
available under the Collections of the Mahnob-HCI database 
identified by Selection of Emotion Elicitation. Originally, the 
number of samples was 513, but sample from session 2508 must 
be discarded, because visual inspection showed it to be 
corrupted. Thus, the total number of data was 512.  

The recorded ECG contains baseline and response data, the 
former being unstimulated and the latter stimulated ECG. In 
addition, the database provides a synchronization signal to 
separate the two. Our experiments only employed ECG signals 
recorded during the stimulated phase.  

Motion artifact is removed by subtracting the smoothing 
signal from the original signal [2]. Later, a notch filter is used to 
remove power line interference. The final stage of signal pre-
processing is to scale down the amplitude such that the 
amplitude is close enough to the synthetic ECG signal. 

Fig. 1 shows the block diagram of the system. Feature 
extraction starts from an ECG analysis using the BEMD [6], 
which requires a complex value signal. Reference [4] used a 
synthetic ECG signal, generated based on the model developed 
by McSharry, Clifford, Tarassenko, and Smith [7], as the 
imaginary part and the original ECG signal as the real part. The 
imaginary part must be synchronized to the real one. 

R wave events (see Fig. 1), detected using Pan-Tompkins 
method [8], are used to synchronize the synthetic signal to the 
original one. It is recommended to use a one-cycle ECG signal 
as a template, see Fig. 2, and centering this template on each 
detected R wave event. The template is generated at 60 beat per 
minute with default values for the other parameters. This method 
is faster than generating a one-cycle ECG signal for each 
detected R wave event. Since the time lapse between two 
consecutive R wave events varies, the joins between two 
consecutive templates will not be smooth. However, this is not 
a big problem as soon as the discontinuity is small, which can 
be achieved by setting the start and end of the template very 
close to zero. 

Although there is no guarantee of obtaining a complete 
PQRST wave of the ECG signal at the beginning of the original 
signal, the R wave event may still be present. For this reason, we 
insert 256 (sampling frequency in Hz) zeros at the start of 
synthetic signal. After placing a template on all detected R wave 
events, we discard the first 256 samples. Fig. 3 shows the 
original ECG signal and the synchronized synthetic ECG signal. 
As expected, the figure demonstrates that the joints between two 
consecutive templates are not smooth. In addition, the first ECG 

signal cycle only shows the S and the T wave signal. Since there 
is no R wave detected, this part needs to be skipped. 

Since the length of the ECG signals varies, each ECG signal 
is divided into 5 seconds segments. The preliminary experiment 
showed that a 5 seconds signal provides appropriate number of 
IMF (this number depends on signal length and a longer signal 
produces more IMFs). Each segmented signal is subjected to the 
BEMD analysis, resulting in 5-6 IMFs plus residual as in [4].  

Karagianis and Constantinou [9] observed that the first three 
IMFs of EMD tend to preserve information from the QRS 
complex of ECG signals. Agrafioti, Hatzinakos, and Anderson 
[4] also claimed the same fact for the IMFs from BEMD. Based 
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Fig. 1. Block diagram of the system 

 
Fig. 2. A single cylce ECG signal as template 

Fig. 3. Synchronized synthetic ECG signal with its original ECG signal 
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on those claims, we also processed the first three IMFs only to 
get the features. 

From the first three of IMFs, several dominant frequencies 
(DFs) are estimated using spectrogram analysis with a window-
size parameter of 30, 50, 100, 150, 200, 250 and 300 samples 
and an overlap range of 10% to 90% (with 10% steps). Using 
window-size lower than 30 samples might result less than 5 
IMFs as it was not occurred in most of the other signals. On the 
other hand, window-size larger than 300 samples produced low 
accuracies. 

At this stage, the idea is to locate frequencies with the highest 
power spectral density (PSD), and the end result is six DFs: three 
from 1st IMF, two from 2nd IMF, and one from 3rd IMF as 
Agrafioti, Hatzinakos, and Anderson [4] got six IFs from the 
first three IMFs. Of note, the algorithm detects the peaks of the 
PSD for each time instance. The number of peaks is related to 
which IMF is being processed and a corresponding frequency is 
stored for each detected peak. A series of frequencies with the 
highest peak is considered an DF. All six DFs from each 
segment belonging to the same ECG signal are joined to obtain 
the six DFs of that ECG signal. 

The proposed new features are based on the statistical 
distribution of DFs and their first difference: mean, standard 
deviation, median, Q1, Q3, IQR, skewness, kurtosis, percentile 
2.5, percentile 10, percentile 90, percentile 97.5, maximum, and 
minimum, resulting 168 features (84 features from original DFs, 
known as feature1, another 84 from 1st difference of DFs, 
known as feature2, and combining feature1 and feature2 results 
feature12). Next, a sequential forward-floating search process is 
applied to select the best features. Most discriminant features 
vary from 2 to 28, depending on whether valence or arousal is 
recognized and the parameters used in spectrogram analysis. 

We also calculated features represented by statistical 
distribution of IFs of IMFs and the first difference as the results 
of EMD and BEMD analysis to ECG signals. The IF is 
calculated for each IMF with (1) [4], where d(t) is the IMF and 
H[ ] is the Hilbert transform. Both EMD and BEMD are also 
based on each 5-second segment of ECG signal as explained 
before. Each IMF contributes one series of IF and all IFs and 
their first difference are subject for 14 items in statistical 
distribution representation, resulting 84 features. After a 
sequential forward-floating search process, the number of 
significant features vary from 2 to 23, depending on the emotion 
label, i.e. valence and arousal. The idea is to compare the 
strength of features from DFs and IFs for emotion recognition. 
The reported accuracies are the best performance among them. 
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B. Emotion Classification 

As classifier, we use the k-nearest neighbor (KNN), for it 
was computationally feasible for a smartphone, with limited 

resources, which is the ultimate target platform, to solve 3-class 
problem (low-medium-high) for emotions in valence and 
arousal. 

The 512 samples were divided into a training, testing and 
validation part, with the validation set consisting of 20% of the 
entire sample space. The rest of the data was used to train and 
test the classifier with 10-fold cross validation. For each K (the 
number of nearest neighbor) from 1 to 50, there were 100 
repetitions with a random sampling of data to the training, 
testing and validation set. Final accuracies were calculated as 
average over the repetitions. In addition, the leave-one-subject-
out (LOSO) validation was applied to different subjects to attain 
a subject-independent assessment of classifier accuracy [10]. 

III. RESULTS 

Table I and II shows the best result from grid search based 
on the DFs for arousal and valence respectively. A range of the 
best accuracies with similar values, see highlighted cell, are 

TABLE I.  RESULTS FROM GRID SEARCH FOR VALENCE 

 
Window size (samples) 

30 50 100 150 200 250 300 

O
ve

rl
ap

 (
%

) 

10 50.6 
± 7.2 

47.1 
± 8.0 

52.7 
± 7.7 

48.8 
± 6.9 

51.9 
± 7.6 

54.5 
± 6.0 

55.5 
± 7.0 

20 50.0 
± 7.7 

49.1 
±7.8 

55.1 
± 6.8 

50.8 
± 7.1 

55.3 
± 7.4 

53.6 
± 8.1 

51.4 
± 6.7 

30 47.9 
± 6.6 

48.9 
± 6.8 

51.8 
± 7.5 

57.5 
± 7.3 

52.4 
± 8.2 

56.7 
± 7.6 

55.0 
± 6.2 

40 50.1 
± 7.6 

52.0 
± 7.5 

54.3 
± 7.2 

47.8 
± 7.5 

52.1 
± 7.2 

53.3 
± 6.7 

51.8 
± 7.6 

50 50.0  
± 6.9 

48.7 
± 6.7 

52.9 
± 7.5 

49.6 
± 7.5 

54.3 
± 6.7 

53.6 
± 7.8 

52.3 
± 6.9 

60 44.0 
± 7.5 

51.5 
± 7.4 

51.5 
± 7.7 

48.0 
± 7.8 

52.1 
± 6.8 

47.2 
± 8.0 

49.8 
± 7.0 

70 48.2 
± 7.7 

51.6 
± 7.4 

53.4 
± 6.8 

49.4 
± 8.0 

51.2 
± 7.9 

52.0 
± 8.3 

55.7 
± 6.8 

80 45.6 
± 7.6 

53.7 
± 7.9 

52.8 
± 8.2 

50.2 
± 8.5 

52.2 
± 7.2 

53.4 
± 7.1 

49.7 
± 7.8 

90 46.8 
± 8.3 

51.5 
± 6.5 

50.1 
± 6.0 

49.3 
± 6.7 

51.3 
± 7.4 

51.4 
± 6.9 

50.5 
± 8.3 

TABLE II.  RESULTS FROM GRID SEARCH FOR AROUSAL 

 
Window size (samples) 

30 50 100 150 200 250 300 

O
ve

rl
ap

 (
%

) 
10 55.9 

± 5.9 
53.6 
± 7.8 

56.2 
± 7.5 

54.7 
± 7.3 

55.8 
± 7.6 

58.3 
± 6.8 

57.8 
±6.9 

20 55.9 
± 7.0 

53.4 
± 7.8 

57.2 
± 7.2 

54.7 
± 7.0 

59.0 
± 7.3 

54.2 
± 7.6 

56.6 
± 7.0 

30 56.5 
± 6.2 

49.6 
± 7.1 

58.8 
± 6.8 

57.0 
± 6.9 

58.5 
± 6.8 

60.8 
± 7.8 

57.8 
± 7.1 

40 60.0 
± 7.1 

53.9 
± 8.0 

53.8 
± 6.7 

52.6 
± 8.0 

57.1 
± 7.5 

59.0 
± 6.8 

55.1 
± 7.1 

50 57.0 
± 6.0 

52.6 
± 7.3 

57.0 
± 7.1 

54.5 
± 6.9 

55.3 
± 6.5 

54.1 
± 7.5 

58.2 
± 6.8 

60 54.5 
± 6.1 

50.6 
± 7.6 

56.1 
± 6.2 

52.3 
± 7.7 

51.8 
± 6.6 

53.4 
± 8.2 

55.7 
± 6.4 

70 55.8 
± 7.1 

53.1 
± 6.8 

56.3 
± 7.2 

53.7 
± 7.3 

51.8 
± 6.6 

56.3 
± 7.4 

58.0 
± 6.7 

80 55.5 
± 7.5 

54.3 
± 7.3 

54.2 
± 8.3 

55.3 
± 6.9 

56.1 
± 7.2 

53.2 
± 7.1 

56.1 
± 7.2 

90 55.2 
± 6.4 

53.3 
± 7.1 

54.3 
± 7.9 

53.5 
± 8.0 

57.8 
± 7.9 

56.1 
± 6.1 

55.6 
± 6.8 



subjects for the Law of Large Numbers to reveal the true values 
as the repetition becomes larger. The results are summarized in 
Table III with the confusion matrices. According to the 
confusion matrices, the KNN worked well for low class of both 
valence and arousal. 

Table IV presents a performance comparison between 
features based on HRV analysis [3] and the ones based on the 
proposed method using the same database. With the proposed 
features, accuracy for both valence and arousal increased by 
about 12%, indicating the superiority of this approach. 

A subject-independent classification experiment was 
conducted using the leave-one-subject-out (LOSO) validation 
process, in which one subject at a time is left out of the training 
set to test the classifier. These experiments were conducted on 
the basis of Tables III with final accuracies were the average 
over individual performances. Table V gives a summary of this 
experiment, indicating that a good performance level can be 
achieved for both valence and arousal. Confusion matrices 
revealed that the proposed features worked well for low class 
from both valence and arousal but not for medium and high 
classes as in 10-fold cross validation. Results from [3] and the 
10-fold cross validation experiment in this paper show that the 
classifier for arousal achieves higher accuracy than that for 
valence, but this is not the case for the LOSO validation 

This study also compared the results to features from EMD 
and BEMD analysis to ECG. Table VI and VII present the 
summary of these experiment with 10-fold cross and LOSO 
validations with various number of IMFs involved for both 
valence and arousal respectively. For both validations method, 
features from DFs after BEMD analysis outperformed the ones 
from IFs from EMD and BEMD. In addition, the accuracies 
were close to [3], see also Table III. Table VIII and IX compare 
the experiments for 10-fold cross and LOSO validations for all 
features analysis respectively. 

IV. DISCUSSIONS 

The proposed features improve the accuracy to classify 
emotion in valence and arousal for 3-class problem: from 42.6% 
to 55.8% for valence and from 47.7% to 59.7% for arousal in 
10-fold cross validation. Generally, it increases the accuracy 
around 12%. It is a huge step for this database compared to [2] 
and [3]. Moreover, the proposed features are applicable for short 
time ECG signal which the standard HRV analysis fails. This is 
the main contribution of this study for emotion recognition 
system. 

Window-size parameter in spectrogram analysis from 30 to 
300 samples gives small difference for most performance in 
valence but not for arousal. Generally, small overlap offers 
better accuracy than the large one does, see highlighted cells in 
Table I and II. Large overlap gives more detail frequency 
content analysis but it looks like not suitable for ECG signal as 
each part in P, Q, R, S, and T waves have different frequency 
characteristic, e.g. QRS complex contains higher frequency 
among the others. Using large overlap may join part of the signal 
containing different frequency characteristic and it degrades the 
performance. 

 

 

 

TABLE III.  RESULTS AFTER APPLYING  LAW OF LARGE NUMBERS 
(10-FOLD CROSS VALIDATION) 

Valence 
150 samples, 30% overlap

 
Arousal 

250 samples, 30% overlap

55.8 ± 7.3  59.7 ± 7.0 

         

 0 1 2   0 1 2 

0 76.6 13.9 9.5  0 73.2 17.9 8.9 

1 38.8 44.7 16.5  1 44.5 46.1 9.4 

2 37.9 18.5 43.6  2 29.9 13.8 56.3 
0: low, 1: medium, 2: high  0: low, 1: medium, 2: high 

 

TABLE IV.  PERFORMANCE COMPARISON BASED ON THE MAHNOB-
HCI DATABASE USING FEATURES IN HRV ANALYSIS AND THE PROPOSED 

METHOD 

 Reference  [3] Current approach 
Feature 

calculation 
method 

Standard HRVanalysis 
 Dominant frequencies 

based on BEMD analysis 

Classifier SVM (RBF kernel) KNN (Euclidean distance) 

Valence 42.6% 55.8% 

Arousal 47.7% 59.7% 

 

TABLE V.  SUBJECT-INDEPENDENT (LOSO) VALIDATION 

Valence 
150 samples, 30% overlap

 
Arousal 

250 samples, 30% overlap
59.2 ± 11.4  58.7 ± 9.1 

         

 0 1 2   0 1 2 

0 81.6 11.0 7.4  0 75.9 18.3 5.8 

1 35.6 46.2 18.2  1 48.6 43.6 7.8 

2 37.4 19.0 43.6  2 40.4 11.9 47.7 
0: low, 1: medium, 2: high  0: low, 1: medium, 2: high 

 

TABLE VI.  SUMMARY OF EXPERIMENT WITH FEATURES BASED ON 
IFS FROM EMD ANALYSIS 

 
10-fold cross validation LOSO validation 

Valence Arousal Valence Arousal 
1 IMF 41.8 ± 8.0 46.6  ± 6.7 42.2 ± 12.3 47.0 ± 0.0 

2 IMFs 43.6 ± 7.4 47.1 ± 7.4 42.7 ± 13.1 46.3 ± 10.4 

3 IMFs 45.3 ± 7.1 45.1 ± 7.4 45.4 ± 13.0 45.9 ± 11.0 

 

TABLE VII.  SUMMARY OF EXPERIMENT WITH FEATURES BASED ON 
IFS FROM BEMD ANALYSIS 

 
10-fold cross validation LOSO validation 

Valence Arousal Valence Arousal 

1 IMF 40.9 ± 8.7 44.7  ± 7.9 40.6 ± 9.4 46.4 ± 11.8 

2 IMFs 43.5 ± 7.4 45.4 ± 7.4 41.2 ± 7.2 45.9 ± 13.3 

3 IMFs 45.6 ± 6.8 46.6 ± 6.8 41.6 ± 10.6 43.8 ± 10.0 



According to the confusion matrices in Table III, the 
classifiers work well for low class of both emotions. However, 
this is not the case for medium and high class for valence and 
arousal. Mostly, the classifier tends to classify the input to low 
class. 

LOSO validation, on the other hand, measures the 
performance of the model built by the classifier when new data 
is applied to the model for classification. Once the model can 
accommodate this new data, we can say that the model offers 
possibility as general model for a specific application. This kind 
of validation also keep the model from overfitting. As a model 
is built based on the parameter of the classifier and the features, 
it requires good tuning parameters and features. This study 
demonstrates that the proposed features is appropriate for 
general model which can accept new data. 

For valence with LOSO validation, the thus achieved 
accuracy (59.2%) was slightly higher from that provided by 10-
fold cross validation (55.8%). For arousal, moreover, accuracy 
in LOSO validation (58.7%) was similar to the corresponding 
value attained in 10-fold cross validation (59.7%). This fact is 
interesting, since in [2], [3], and in the 10-fold cross validation 
presented in this paper, the classifier for arousal outperformed 
the one for valence. Standard deviations in this validation were 
much larger, indicating large variations in accuracy between 
subjects. 

When comparing the features from EMD and BEMD 
analysis with Hilbert transform to calculate instantaneous 
frequencies, the proposed features demonstrates better 
performance for all validation methods, see Table VIII and IX. 
For these experiments, the accuracies have no significant 
difference from the ones in [3] for 10-fold cross validation. We 
tested this conclusion for the statistical significance using t-test 
method with significance level 0.05. The p-values of valence 
and arousal for differences in the classification accuracies when 
using HRV based features and IF of EMD -based features are 
0.16 and 0.31, respectively. These results show that there is no 
significant difference between the accuracies. Similarly, 
differences in the classification accuracies when using HRV 
based and IF of BEMD -based features, produced p-values for 

valence and arousal 0.14 and 0.18, respectively. These values 
also indicate that the differences of both accuracies are not 
significant. 

The instantaneous frequency calculated with Hilbert 
transform is the average of frequencies in the signal of interest. 
Using spectrogram, it is possible to define certain number of 
dominant frequencies from the signal of interest [11]. 

V. CONCLUSIONS  

This paper proposed new features for emotion recognition 
based on short ECG signals. The performance of these features 
were compared to the ones from standard HRV analysis of ECG 
signals from the same emotion recognition database, the 
Mahnob-HCI. For a 3-class problem (low-medium-high), the 
proposed features increased the performance reported in [3] 
from 42.6% to 55.8% for valence and from 47.7% to 59.7% for 
arousal, using 10-fold cross validation, see Table IV.  

Accuracies based on LOSO validation also presents good 
results as it is close to the accuracies from 10-fold cross 
validation. It shows that the proposed features are independent 
from the subject. Using k-fold cross validation may lead to 
wrong conclusion about the classifier as the structure of the 
isolated data might be learnt based on the available data. This 
kind of validation is enough when the model is applied to data 
within certain scope.  

The proposed features also showed superior over the features 
based on IFs of IMFs after applying EMD and BEMD analysis 
to the ECG signal in 10-fold cross and LOSO validations, 
compare Table III, V, VI, and VII. Hilbert transform results an 
instantaneous frequency as the average of frequencies in the 
signal of interest [11]. 

Since the proposed features use short, 5 second segments of 
ECG signals, they can be used to recognize emotions almost in 
real-time. Use of signal segments shorter than 5 seconds is 
unadvisable in BEMD analysis, because the number of IMF 
tends to be less than three and the computed features are not of 
good quality. 

The proposed features may possess potential for building 
emotion tracking systems. Such systems could be useful for 
psychiatrics who want to monitor emotional changes of patients 
under medication. Psychologists are also interested to learn and 
monitor the dynamics of emotion of the subjects under 
evaluation. Moreover, emotion tracking systems could also be 
useful in smart cars, for example, to monitor the emotion of the 
driver in order to prevent accidents. 
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