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ABSTRACT
A significant amount of research effort has been dedicated to
learning prediction models that allow project managers to ef-
ficiently allocate resources to those parts of a software system
that most likely are bug-prone and therefore critical. Promi-
nent measures for building bug prediction models are prod-
uct measures, e.g., complexity or process measures, such as
code churn. Code churn in terms of lines modified (LM) and
past changes turned out to be significant indicators of bugs.
However, these measures are rather imprecise and do not re-
flect all the detailed changes of particular source code enti-
ties during maintenance activities. In this paper, we explore
the advantage of using fine-grained source code changes (SCC)
for bug prediction. SCC captures the exact code changes and
their semantics down to statement level. We present a series
of experiments using different machine learning algorithms
with a dataset from the Eclipse platform to empirically eval-
uate the performance of SCC and LM. The results show that
SCC outperforms LM for learning bug prediction models.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance measures,
process measures, software science

General Terms
Management, Measurement, Reliability, Experimentation

Keywords
Software bugs, code churn, source code changes, prediction
models, nonlinear regression

1. INTRODUCTION
Bugs in software systems are a key risk and major cost

driver for both, companies that develop software and com-
panies that consume software systems in their daily busi-
ness. Development teams are typically exposed to time pres-
sure and costs. Often, Quality Assurance (QA) suffers from
these constraints, and project managers are forced to allocate
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their limited resources with maximum efficiency. Research
has developed bug prediction models that help managers in
a structured manner to allocate QA resources to those parts
of a system that likely contain most of the bugs rather than
relying solely on their experience.

Prominent measures for building bug prediction models
are product measures, e.g., complexity [26], or process mea-
sures, such as code churn [15]. Prior work found out that
process measures perform explicitly well [24]. However, ex-
isting measures such as code churn based on lines modified
(LM) suffer from the fact that they do not capture the seman-
tics of code changes. For example, the source file Binary-
CompareViewerCreator.java of the Eclipse plugin Com-
pare had 8 revisions and in total 81 lines were changed. None
of these changes affected any source code entity since only
license header or indentation updates have been performed.
Fine-grained source code changes (SCC) as introduced by Fluri
et al. [13] on the other hand capture the semantics of changes.
For example, between revision 1.1 and 1.2 of the source file
CompareEditorSelectionProvider.java of the same
plugin a single if-statement was removed. Between revisions
1.2 and 1.3 a nested if-statement was added, import state-
ments were updated, and two methods were added.

In our previous work, we pointed out this discrepancy be-
tween changes based on a text-line level and fine-grained
source code changes, and showed that fine-grained source
code changes can be used to qualify change couplings be-
tween source files [11].

In this paper, we explore with a series of prediction ex-
periments using data from the Eclipse platform how SCC re-
lates to bugs and to what extent bug prediction models bene-
fit from having more detailed information about source code
changes. In particular, we investigate the following three re-
search hypotheses:

H 1: SCC does have a stronger correlation with the num-
ber of bugs than LM.
H 2: SCC achieves better performance to classify source
files into bug- and not bug-prone files than LM.
H 3: SCC achieves better performance when predicting
the number of bugs in source files than LM.

The results of our study with Eclipse projects show that
SCC significantly outperforms LM for learning bug predic-
tion models to classify source files into bug- and not bug-prone,
as well as to predict the number of bugs in source files.

The remainder of this paper is organized as follows: In
Section 2, we give an overview of our approach and outline
the steps to prepare the data. Section 3 presents the empirical
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study with the Eclipse projects. We discuss our findings in
Section 4 and threats to validity in Section 5. In Section 6,
we present related work and then draw our conclusions in
Section 7.

2. APPROACH
In this section, we describe the methods and tools we used

to extract and preprocess the data (see Figure 1). Basically,
we take into account three main pieces of information about
the history of a software system to assemble the dataset for
our experiments: (1) versioning data including lines modi-
fied (LM), (2) bug data, i.e., which files contained bugs and
how many of them (Bugs), and (3) fine-grained source code
changes (SCC).

4. Experiment

2. Bug Data

3. Source Code Changes (SCC)1.Versioning Data

CVS, SVN,
GIT

Evolizer 
RHDB

Log Entries ChangeDistiller

Subsequent
Versions

Changes

#bug123

Message Bug

Support
Vector

Machine

1.1 1.2

AST
Comparison

Figure 1: Stepwise overview of the data extraction process.

1. Versioning Data. We use EVOLIZER [14] to access the ver-
sioning repositories , e.g., CVS, SVN, or GIT. They provide
log entries that contain information about revisions of files
that belong to a system. From the log entries we extract the
revision number (to identify the revisions of a file in correct
temporal order), the revision timestamp, the name of the de-
veloper who checked-in the new revision, and the commit
message. We then compute LM for a source file as the sum of
lines added, lines deleted, and lines changed per file revision.
2. Bug Data. Bug reports are stored in bug repositories such
as Bugzilla. Traditional bug tracking and versioning repos-
itories are not directly linked. We first establish these links
by searching references to reports within commit messages,
e.g.,”fix for 12023” or ”bug#23467”. Prior work used this
method and developed advanced matching patterns to catch
those references [10, 33, 39]. Again, we use EVOLIZER to au-
tomate this process. We take into account all references to
bug reports. Based on the links we then count the number of
bugs (Bugs) per file revision.
3. Fine-Grained Source Code Changes (SCC): Current ver-
sioning systems record changes solely on file level and tex-
tual basis, i.e., source files are treated as pure text files. In [11],
Fluri et al. showed that LM recorded by versioning systems
might not accurately reflect changes in the source code. For
instance, source formatting or license header updates gen-
erate additional LM although no source code entities were
changed; changing the name of a local variable and a method
likely result both in ”1 line changed” but are different modi-
fications. Fluri et al. developed a tree differencing algorithm
for fine-grained source code change extraction [13]. It allows
to track fine-grained source changes down to the level of

Table 1: Eclipse dataset used in this study.
Eclipse Project Files Rev. LM SCC Bugs Time
Compare 278 3’736 140’784 21’137 665 May01-Sep10
jFace 541 6’603 321582 25’314 1’591 Sep02-Sep10
JDT Debug 713 8’252 218’982 32’872 1’019 May01-July10
Resource 449 7’932 315’752 33’019 1’156 May01-Sep10
Runtime 391 5’585 243’863 30’554 844 May01-Jun10
Team Core 486 3’783 101’913 8’083 492 Nov01-Aug10
CVS Core 381 6’847 213’401 29’032 901 Nov01-Aug10
Debug Core 336 3’709 85’943 14’079 596 May01-Sep10
jFace Text 430 5’570 116’534 25’397 856 Sep02-Oct10
Update Core 595 8’496 251’434 36’151 532 Oct01-Jun10
Debug UI 1’954 18’862 444’061 81’836 3’120 May01-Oct10
JDT Debug UI 775 8’663 168’598 45’645 2’002 Nov01-Sep10
Help 598 3’658 66’743 12’170 243 May01-May10
JDT Core 1’705 63’038 2’814K 451’483 6’033 Jun01-Sep10
OSGI 748 9’866 335’253 56’238 1’411 Nov03-Oct10

single source code statements, e.g., method invocation state-
ments, between two versions of a program by comparing
their respective abstract syntax trees (AST). Each change then
represents a tree edit operation that is required to transform
one version of the AST into the other. The algorithm is imple-
mented in CHANGEDISTILLER [14] that pairwise compares
the ASTs between all direct subsequent revisions of each file.
Based on this information, we then count the number of dif-
ferent source code changes (SCC) per file revision.

The preprocessed data from step 1-3 is stored into the Re-
lease History Database (RHDB) [10]. From that data, we then
compute LM, SCC, and Bugs for each source file by aggregat-
ing the values over the given observation period.

3. EMPIRICAL STUDY
In this section, we present the empirical study that we per-

formed to investigate the hypotheses stated in Section 1. We
discuss the dataset, the statistical methods and machine learn-
ing algorithms we used, and report on the results and find-
ings of the experiments.

3.1 Dataset and Data Preparation
We performed our experiments on 15 plugins of the Eclipse

platform. Eclipse is a popular open source system that has
been studied extensively before [4, 27, 38, 39].

Table 1 gives an overview of the Eclipse dataset used in
this study with the number of unique *.java files (Files), the
total number of java file revisions (Rev.), the total number of
lines added, deleted, and changed (LM), the total number of
fine-grained source code changes (SCC), and the total num-
ber of bugs (Bugs) within the given time period (Time). Only
source code files, i.e., *.java, are considered.

After the data preparation step, we performed an initial
analysis of the extracted SCC. This analysis showed that there
are large differences of change type frequencies, which might
influence the results of our empirical study. For instance, the
change types Parent Class Delete, i.e., removing a super class
from a class declaration, or Removing Method Overridability,
i.e., adding the java keyword final to a method declaration,
are relatively rare change types. They constitute less than one
thousandth of all SCC in the entire study corpus. Whereas
one fourth of all SCC are Statement Insert changes, e.g., the in-
sertion of a new local variable declaration. We therefore ag-
gregate SCC according to their change type semantics into 7
categories of SCC for our further analysis. Table 2 shows the
resulting aggregated categories and their respective mean-
ings.
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Table 2: Categories of fine-grained source code changes
Category Description

cDecl
Aggregates all changes that alter the declaration of a class:
Modifier changes, class renaming, class API changes, par-
ent class changes, and changes in the ”implements list”.

oState Aggregates the insertion and deletion of object states of a
class, i.e., adding and removing fields.

func Aggregates the insertion and deletion of functionality of a
class, i.e., adding and removing methods.

mDecl

Aggregates all changes that alter the declaration of a
method: Modifier changes, method renaming, method API
changes, return type changes, and changes of the parame-
ter list.

stmt Aggregates all changes that modify executable statements,
e.g., insertion or deletion of statements.

cond Aggregates all changes that alter condition expressions in
control structures.

else Aggregates the insertion and deletion of else-parts.

Table 3: Relative frequencies of SCC categories per Eclipse
project, plus their mean and variance over all selected
projects.

Eclipse Project cDecl oState func mDecl stmt cond else
Compare 0.01 0.06 0.08 0.05 0.74 0.03 0.03
jFace 0.02 0.04 0.08 0.11 0.70 0.02 0.03
JDT Debug 0.02 0.06 0.08 0.10 0.70 0.02 0.02
Resource 0.01 0.04 0.02 0.11 0.77 0.03 0.02
Runtime 0.01 0.05 0.07 0.10 0.73 0.03 0.01
Team Core 0.05 0.04 0.13 0.17 0.57 0.02 0.02
CVS Core 0.01 0.04 0.10 0.07 0.73 0.02 0.03
Debug Core 0.04 0.07 0.02 0.13 0.69 0.02 0.03
jFace Text 0.04 0.03 0.06 0.11 0.70 0.03 0.03
Update Core 0.02 0.04 0.07 0.09 0.74 0.02 0.02
Debug UI 0.02 0.06 0.09 0.07 0.70 0.03 0.03
JDT Debug UI 0.01 0.07 0.07 0.05 0.75 0.02 0.03
Help 0.02 0.05 0.08 0.07 0.73 0.02 0.03
JDT Core 0.00 0.03 0.03 0.05 0.80 0.05 0.04
OSGI 0.03 0.04 0.06 0.11 0.71 0.03 0.02
Mean 0.02 0.05 0.07 0.09 0.72 0.03 0.03
Variance 0.000 0.000 0.001 0.001 0.003 0.000 0.000

Some change types defined in [11] such as the ones that
change the declaration of an attribute are left out in our anal-
ysis as their total frequency is below 0.8%. The complete list
of all change types, their meanings and their contexts can be
found in [11].

Table 3 shows the relative frequencies of each category of
SCC per Eclipse project, plus their mean and variance over
all selected projects. Looking at the mean values listed in
the second last row of the table, we can see that 70% of all
changes are stmt changes. These are relatively small changes
and affect only single statements. Changes that affect the ex-
isting control flow structures, i.e., cond and else, constitute
only about 6% on average. While these changes might af-
fect the behavior of the code, their impact is locally limited
to their proximate context and blocks. They ideally do not in-
duce changes at other locations in the source code. cDecl, oS-
tate, func, and mDecl represent about one fourth of all changes
in total. They change the interface of a class or a method
and do—except when adding a field or a method—require a
change in the dependent classes and methods. The impact
of these changes is according to the given access modifiers;
within the same class or package (private or default) or
external code (protected or public).

The values in Table 3 show small variances and relatively
narrow confidence intervals among the categories across all

Table 4: Spearman rank correlation between SCC cate-
gories (*marks significant correlations at α = 0.01.)

cDecl oState func mDecl stmt cond else
cDecl 1.00∗ 0.33∗ 0.42∗ 0.49∗ 0.23∗ 0.21∗ 0.21∗

oState 1.00∗ 0.65∗ 0.53∗ 0.62∗ 0.51∗ 0.51∗

func 1.00∗ 0.67∗ 0.66∗ 0.53∗ 0.53∗

mDecl 1.00∗ 0.59∗ 0.49∗ 0.48∗

stmt 1.00∗ 0.71∗ 0.7∗

cond 1.00∗ 0.67∗

else 1.00∗

projects. This is an interesting observation as these Eclipse
projects do vary in terms of file size and changes (see Table 1).

3.2 Correlation of SCC Categories
We first performed a correlation analysis between the dif-

ferent SCC categories of all source files of the selected projects.
We use the Spearman rank correlation because it makes no
assumptions about the distributions, variances and the type
of relationship. It compares the ordered ranks of the vari-
ables to measure a monotonic relationship. This makes Spear-
man more robust than Pearson correlation, which is restricted
to measure the strength of a linear association between two
normal distributed variables [8]. Spearman values of +1 and
-1 indicate a high positive or negative correlation, whereas 0
tells that the variables do not correlate at all. Values greater
than +0.5 and lower than -0.5 are considered to be substan-
tial; values greater than +0.7 and lower than -0.7 are consid-
ered to be strong correlations [31].

Table 4 lists the results. Some facts can be read from the
values: cDecl does neither have substantial nor strong cor-
relation with any of the other change types. oState has its
highest correlation with func. func has approximately equal
high correlations with oState, mDecl, and stmt. The strongest
correlations are between stmt, cond, and else with 0.71, 0.7,
and 0.67.

While this correlation analysis helps to gain knowledge
about the nature and relation of change type categories it
mainly reveals multicollinearity between those categories that
we have to address when building regression models. A
causal interpretation of the correlation values is tedious and
must be dealt with caution. Some correlations make sense
and could be explained using common knowledge about pro-
gramming. For instance, the strong correlations between stmt,
cond, and else can be explained that often local variables are
affected when existing control structures are changed. This
is because they might are moved into a new else-part or be-
cause a new local variable is needed to handle the different
conditions. In [12], Fluri et al. attempt to find an expla-
nation why certain change types occur more frequently to-
gether than others, i.e., why they correlate.

3.3 Correlation of Bugs, LM, and SCC
H 1 formulated in Section 1 aims at analyzing the correla-

tion between Bugs, LM, and SCC (on the level of source files).
It serves two purposes: (1) We analyze whether there is a sig-
nificant correlation between SCC and Bugs. A significant cor-
relation is a precondition for any further analysis and predic-
tion model. (2) Prior work reported on the positive relation
between Bugs an LM. We explore the extent to which SCC
has a stronger correlation with Bugs than LM. We apply the
Spearman rank correlation to each selected Eclipse project to
investigate H 1.
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Table 5: Spearman rank correlation between Bugs and LM,
SCC, and SCC categories (*marks significant correlations at
α = 0.01).
Eclipse Project LM SCC cDecl oState func mDecl stmt cond else
Compare 0.68∗ 0.76∗ 0.54∗ 0.61∗ 0.67∗ 0.61∗ 0.66∗ 0.55∗ 0.52∗

jFace 0.74∗ 0.71∗ 0.41∗ 0.47∗ 0.57∗ 0.63∗ 0.66∗ 0.51∗ 0.48∗

Resource 0.75∗ 0.86∗ 0.49∗ 0.62∗ 0.7∗ 0.73∗ 0.67∗ 0.49∗ 0.46∗

Team Core 0.15∗ 0.66∗ 0.44∗ 0.43∗ 0.56∗ 0.52∗ 0.53∗ 0.36∗ 0.35∗

CVS Core 0.60∗ 0.79∗ 0.39∗ 0.62∗ 0.66∗ 0.57∗ 0.72∗ 0.58∗ 0.56∗

Debug Core 0.63∗ 0.78∗ 0.45∗ 0.55∗ 0.61∗ 0.51∗ 0.59∗ 0.45∗ 0.46∗

Runtime 0.66∗ 0.79∗ 0.47∗ 0.58∗ 0.66∗ 0.61∗ 0.66∗ 0.55∗ 0.45∗

JDT Debug 0.62∗ 0.80∗ 0.42∗ 0.45∗ 0.56∗ 0.55∗ 0.64∗ 0.46∗ 0.44∗

jFace Text 0.75∗ 0.74∗ 0.50∗ 0.55∗ 0.54∗ 0.64∗ 0.62∗ 0.59∗ 0.55∗

JDT Debug UI 0.80∗ 0.81∗ 0.46∗ 0.57∗ 0.62∗ 0.53∗ 0.74∗ 0.57∗ 0.54∗

Update Core 0.43∗ 0.62∗ 0.63∗ 0.4∗ 0.43∗ 0.51∗ 0.45∗ 0.38∗ 0.39∗

Debug UI 0.56∗ 0.81∗ 0.44∗ 0.50∗ 0.63∗ 0.60∗ 0.72∗ 0.54∗ 0.52∗

Help 0.54∗ 0.48∗ 0.37∗ 0.43∗ 0.42∗ 0.43∗ 0.44∗ 0.36∗ 0.41∗

JDT Core 0.70∗ 0.74∗ 0.39∗ 0.6∗ 0.69∗ 0.70∗ 0.67∗ 0.62∗ 0.6∗

OSGI 0.70∗ 0.77∗ 0.47∗ 0.6∗ 0.66∗ 0.65∗ 0.63∗ 0.57∗ 0.48∗

Mean 0.62 0.74 0.46 0.53 0.6 0.59 0.63 0.51 0.48
Median 0.66 0.77 0.45 0.55 0.62 0.60 0.66 0.54 0.48

Table 5 lists the results of the correlation analysis per project.
The second and third columns on the left hand side show
the correlation values between Bugs and LM, and total SCC.
The values for LM show that except for two projects all cor-
relations are at least substantial, some are even strong. The
mean of the correlation is 0.62 and the median is 0.66. This
indicates that there is a substantial, observable positive cor-
relation between LM and bugs meaning that an increase in
LM leads to an increase in bugs in a source file. This result
confirms previous research presented in [15, 25, 27].

The values in the third column show that all correlations
for SCC are positive and most of them are strong. The mean
of the correlation is 0.74 and the median is 0.77. Some Eclipse
projects show correlation values of 0.8 and higher. Two val-
ues are below 0.7 and only one is slightly lower than 0.5. All
values are statistically significant. This denotes an overall
strong correlation between Bugs and SCC that is even stronger
than between Bugs and LM. We applied a One Sample Wilcoxon
Signed-Ranks Test on the SCC correlation values against the
hypothesized limits of 0.5< (substantial) and 0.7< (strong).
They were significant at α = 0.05. Therefore we conclude
that there is a significant strong correlation between Bugs and
SCC.

We further compared the correlation values of LM and SCC
in Table 5 to test whether the observed difference is signifi-
cant. On average, the correlation between Bugs and SCC is
0.12 stronger than the correlation between Bugs and LM. In
particular, 12 out of 15 cases show a stronger correlation to-
wards SCC with an average difference of 0.16. In some cases
the differences are even more pronounced, e.g., 0.51 for Team
Core or 0.25 for Debug UI. Other projects experience smaller
differences such as 0.01 for JDT Debug UI and jFace, and 0.04
for JDT Core. Only in three cases the correlation of LM is
stronger. The largest difference is 0.06 for Eclipse Help.

We used a Related Samples Wilcoxon Signed-Ranks Test to test
the significance of the correlation differences between LM
and SCC. The rationale for such a test is that (1) we calculated
both correlations for each project resulting in a matched cor-
relation pair per project and (2) we can relax any assumption
about the distribution of the values. The test was significant
at α = 0.05 rejecting the null hypothesis that the two medi-
ans are the same. Based on this result we can accept H 1—
SCC does have a stronger correlation with Bugs than LM.

As part of investigating H 1, we also analyzed the correla-
tion between bugs and the SCC categories we have defined in
Table 2 to answer the question whether there are differences
in how change types correlate with bugs.

The columns 4–10 on the right hand side of Table 5 show
the correlations between the different categories and bugs for
each Eclipse project. Regarding their mean, the categories
stmt, func, and mDecl show the strongest correlation with
Bugs. For some projects their correlation values are close or
above 0.7, e.g., func for Resource or JDT Core; mDecl for Re-
source and JDT Core; stmt for JDT Debug UI and Debug UI.
oState and cond still have a substantial correlation with the
number of bugs indicated by an average correlation value of
0.53 and 0.51. cDecl and else have means below 0.5. This in-
dicates that SCC categories do correlate differently with the
number of bugs in our dataset.

To test whether this assumption holds, we first performed
a Related Samples Friedman Test. The result was significant at
α = 0.05, so we can reject the null hypothesis that the dis-
tribution of the correlation values of SCC categories, i.e., the
rows on the right hand side in Table 5 are the same. The Fried-
man Test operates on the mean ranks of related groups. We
used this test because we repeatedly measured the correla-
tions of the different categories on the same dataset, i.e., our
related groups, and because it does not make any assump-
tion about the distribution of the data and the sample size.

A Related Samples Friedman Test is a global test that only
tests whether all of the groups differ. It does not tell any-
thing between which groups the difference occurs. To test
whether some pairwise groups differ stronger than others or
do not differ at all post-hoc tests are required. We performed
a Wilcoxon Test and Friedman Test on each pair including α-
adjustment.

The results showed two groups of SCC categories whose
correlation values are not significantly different among each
other: (1) else, cond, oState, and cDecl, and (2) stmt, func, and
mDecl. The difference of correlation values between these
groups is significant.

In summary, we found strong positive correlation between
SCC and Bugs that is significantly stronger than the correla-
tion between LM and Bugs. This indicates that SCC exhibits
good predictive power, therefore we accepted H 1. Further-
more, we observed a difference in the correlation values be-
tween several SCC categories and Bugs.

3.4 Predicting Bug- & Not Bug-Prone Files
The goal of H 2 is to analyze how SCC performs compared

to LM when discriminating between bug-prone and not bug-
prone files in our dataset. We built models based on differ-
ent machine learning techniques (in the following also called
classifiers) and evaluated them with our Eclipse dataset.

Prior work states that some machine learning techniques
perform better than others. For instance, Lessman et al. found
out with an extended set of various classifiers that Random
Forest performs the best on a subset of the NASA Metrics
dataset [20]. But in return they state as well that performance
differences between classifiers are marginal and not neces-
sarily significant.

For that reason we used the following classifiers: Logis-
tic Regression (LReg), J48 (C 4.5 Decision Tree), RandomForest
(RFor), Bayesian Network (BNet) implemented by the WEKA
toolkit [35], Exhaustive CHAID, a Decision Tree based on chi
squared criterion by SPSS 18.0, Support Vector Machine (Lib-
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SVM) [7], Naive Bayes Network (NBayes) and Neural Nets (NN)
both provided by the Rapid Miner toolkit [23]. The classi-
fiers calculate and assign a probability to each source file to
be classified either into bug-prone or not bug-prone.

For each Eclipse project, we binned files into bug-prone and
not bug-prone using the median of the number of bugs per
file:

bugClass =

{
not bug − prone : Bugs <= median

bug − prone : Bugs > median

When using the median as cut point the labeling of a file is
relative to how much bugs other files have in a project. This
resulted in an average 57:43 prior probability towards not
bug-prone file in our dataset. There exist several ways of bin-
ning files afore. They mainly vary in that they result in dif-
ferent prior probabilities: For instance Zimmerman et al. [39]
and Bernstein et al. [4] labeled files as bug-prone if they had
at least one bug. When having heavily skewed distributions
this approach may lead to a high prior probability towards
one class. Nagappan et al. [27] used a statistically lower con-
fidence bound. The different prior probabilities make the
use of accuracy as a performance measure for classification
difficult. As proposed in [20, 22], we therefore use the area
under the receiver operating characteristic curve (AUC) as per-
formance measure. AUC is independent of prior probabili-
ties and therefore a robust measure to asses and compare the
performance of predictor models [4]. AUC can be seen as the
probability that a trained model assigns a higher score to the
bug-prone file when choosing randomly a bug-prone and a not
bug-prone file [16]. We mainly use AUC for discussing and
comparing the performance of prediction models. In addi-
tion, we also report on precision (P) and recall (R) to facilitate
the comparison with existing work.

We performed two experiments to investigate H 2: In Ex-
periment 1 (E 1), we used logistic regression once with to-
tal number of LM and once with number of SCC per file as
predictors. In Experiment 2 (E 2), we used the above men-
tioned classifiers and SCC categories as predictors to inves-
tigate whether the additional information about the change
type category can improve the performance of classification
models. In the following we discuss the results of both ex-
periments by means of the AUC measure.

Experiment 1: Table 6 lists the AUC values of E 1 for each
project in our dataset. The models were validated using 10
fold cross validation, and the performance measures were
computed when reapplying the prediction model to the data-
set it was obtained from. Overall denotes the AUC of the
model that was learned when merging all files of the projects
into one larger dataset. SCC achieves a very good perfor-
mance with a median of 0.90 (see column AUCSCC ). This
means that logistic regression using SCC as predictor ranks
bug-prone files higher than not bug-prone ones with a proba-
bility of 90%. Even the Help project, that shows the lowest
AUC value, is still within the range of 0.7 what Lessman et al.
call ”promising results” [20]. This comparatively low value
is accompanied with the smallest correlation of 0.48 between
SCC and Bugs in Table 5. The good performance of logistic
regression and SCC is confirmed by an overall AUC value of
0.89 when learning from the entire dataset. With a value of
0.004 AUCSCC has a low variance across all projects indicat-
ing consistent prediction models.

With a median AUC of 0.85, LM shows a lower perfor-
mance than SCC (see column AUCLM ). Help is the only

Table 6: AUC, precision, and recall of E 1 using logistic re-
gression with LM and SCC to classify source files into bug-
prone or not bug-prone.

Eclipse Project AUCLM AUCSCC PLM PSCC RLM RSCC

Compare 0.84 0.85 0.76 0.78 0.88 0.81
jFace 0.90 0.90 0.81 0.83 0.85 0.87
JDT Debug 0.83 0.95 0.79 0.85 0.71 0.91
Resource 0.87 0.93 0.75 0.8 0.85 0.93
Runtime 0.83 0.91 0.71 0.85 0.89 0.83
Team Core 0.62 0.87 0.48 0.69 0.73 0.82
CVS Core 0.80 0.90 0.78 0.89 0.78 0.83
Debug Core 0.86 0.94 0.68 0.82 0.92 0.91
jFace Text 0.87 0.87 0.7 0.67 0.87 0.86
Update Core 0.78 0.85 0.63 0.72 0.91 0.88
Debug UI 0.85 0.93 0.64 0.76 0.87 0.91
JDT Debug UI 0.90 0.91 0.76 0.78 0.89 0.87
Help 0.75 0.70 0.75 0.63 0.69 0.63
JDT Core 0.86 0.87 0.76 0.77 0.82 0.83
OSGI 0.88 0.88 0.8 0.87 0.86 0.81
Median 0.85 0.90 0.75 0.78 0.85 0.86
Overall 0.85 0.89 0.7 0.74 0.77 0.86

Table 7: AUC of E 2 using different classifiers with the SCC
categories as predictors for bug-prone and not bug-prone
files (AUC of the best performing classifier per project is
printed in bold).
Eclipse Project LReg J48 RFor BNet eCHAID LibSVM NBayes NN
Compare 0.82 0.77 0.77 0.83 0.74 0.81 0.82 0.82
jFace 0.90 0.85 0.88 0.89 0.83 0.91 0.87 0.88
JDT Debug 0.94 0.92 0.94 0.95 0.89 0.95 0.87 0.89
Resource 0.89 0.86 0.89 0.91 0.77 0.92 0.90 0.91
Runtime 0.89 0.82 0.83 0.87 0.80 0.87 0.86 0.87
Team Core 0.86 0.78 0.79 0.85 0.77 0.86 0.85 0.86
CVS Core 0.89 0.81 0.87 0.88 0.74 0.87 0.86 0.88
Debug Core 0.92 0.86 0.89 0.91 0.79 0.93 0.92 0.86
jFace Text 0.86 0.77 0.81 0.85 0.76 0.79 0.82 0.81
Update Core 0.82 0.87 0.90 0.86 0.86 0.89 0.89 0.90
Debug UI 0.92 0.88 0.91 0.92 0.82 0.92 0.89 0.91
JDT Debug UI 0.89 0.89 0.90 0.89 0.81 0.90 0.85 0.89
Help 0.69 0.65 0.67 0.69 0.63 0.69 0.69 0.68
JDT Core 0.85 0.86 0.88 0.90 0.80 0.88 0.85 0.87
OSGI 0.86 0.81 0.86 0.88 0.77 0.87 0.87 0.87
Median 0.89 0.85 0.88 0.88 0.79 0.88 0.86 0.87
Overall 0.88 0.87 0.84 0.89 0.82 0.89 0.85 0.84

project where LM is a better predictor than SCC. This is not
surprising as it is the project that yields the largest differ-
ence in correlation in favor of LM, see Table 5. In general, the
correlation values in Table 5 reflect the picture given by the
AUC values. For instance, jFace, jFace Text, and JDT Debug
UI that exhibit similar correlations performed nearly equal.
A Related Samples Wilcoxon Signed-Ranks Test on the AUC val-
ues of LM and SCC was significant at α = 0.05: Logistic re-
gression based on SCC is not only a good predictor but is
a significant better predictor than LM to classify source files
of Eclipse projects into bug-prone or not bug-prone. Therefore,
we can accept H 2—SCC achieves better performance when
discriminating between bug- and not bug-prone files than LM.

Experiment 2: Table 7 lists the AUC values of each classi-
fier for each project in our dataset. Analogously to E 1, the
values for AUC, precision, and recall were computed when
reapplying the prediction model to the dataset it was ob-
tained from (we skip the values for precision and recall for
readability and space reasons). As before, the models were
validated using 10 fold cross validation. Overall denotes the
AUC of the model that was learned when merging all files
of the projects into one larger dataset. When using logis-
tic regression, multicollinearity between multiple predictors
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(see Table 3) may compromise the validity of the resulting
model [8]. To avoid this problem, we applied principal com-
ponent analysis (PCA) based on the covariance matrix and
a variance threshold of 0.95. PCA extracted one component
which has been used to perform the logistic regression.

The results in Table 7 show median AUC values of approx-
imately 0.8 and higher, which indicates that all selected clas-
sifiers obtain models with adequate performance. Further-
more, we can observe that LibSVM is the best classifier for 8
projects. BNet obtains similarly good results: According to
the AUC values it is the top classifier for 6 projects and has
together with LibSVM the highest AUC value when learning
from the entire dataset. Not surprisingly, logistic regression
also yields a good performance with a high median AUC of
0.89 which is similar to the result in E 1 (the input from PCA
accounts for more than 0.95 of the SCC in our dataset).

RFor and NN—though not the best—are still good classi-
fiers and among the best for some projects. They fall slightly
back because of their performance on the overall dataset. The
decision tree methods J48 and eCHAID show lower perfor-
mance compared to the other classifiers. None of them per-
forms best for one project. Furthermore, eCHAID has the
lowest median for AUC and performs the worst on the en-
tire dataset.

Next, we compared the results of both experiments to find
out whether including the information about the SCC cate-
gory helps to improve the performance of prediction mod-
els. We compared the AUC values from LibSVM (the best
performing classifier in E 2) with the AUC values from the
logistic regression in E 1 using the Wilcoxon Test. The test was
not significant, therefore we can conclude that the inclusion
of the SCC category does not lead to better performing pre-
diction models.

For the discussion of the performance differences between
several classifiers we used a Related Samples Friedman Test and
an adjusted α level for the post-hoc comparison of each clas-
sifier pair. The test was significant at α = 0.05. This means
that there is a statistically significant difference between the
mean ranks of the AUC values. However, a look at the pair-
wise tests revealed that the significance is mainly due to the
low performance of eCHAID and to some extent due to J48.
The differences between the other pairs that did not involve a
decision tree method were not significant. These results con-
firm the experience drawn in prior work: (1) There is a rel-
atively good performance of more complex classifiers in our
experiments, e.g., LibSVM or RFor. But their performance
does not differ statistically significant in most cases [20]; (2)
the good performance of Bayesian methods [22]; and (3) in
particular the comparably good predicting power of SVM for
Eclipse data [32].

Based on the AUC values in Table 6 and Table 7 we con-
clude that SCC (E 1) as well as their categories (E 2) are good
predictors for bug-prone and not bug-prone files. SCC outper-
formed the prediction models built with LM, therefore we
accepted H 2.

3.5 Predicting the Number of Bugs
In this section, we investigate H 3—SCC is a better predic-

tor for the number of bugs in Eclipse source files than LM.
The most common technique to solve this kind of predic-

tion problem is linear regression. In its simplest case, the
relation between bugs and source code changes is modeled
as the best fitting straight line, i.e., a linear relationship is es-

tablished [8]. In [4], Bernstein et al. stated that using the
nonlinear MP5 regression is more adequate for this kind of
data and yields better results when predicting the number of
bugs compared to linear regression.

For nonlinear regression analysis, we first need to deter-
mine what type of nonlinear function, such as a polynomial,
cubic, or exponential, describes the relationship between the
dependent and independent variables. Figure 2 shows the
scatterplot of the CVS Core project on file level. The plot
shape is representative for all the Eclipse projects in our data-
set. One can see that a straight line does indeed not fully

SCC
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Figure 2: Scatterplot between Bugs and SCC of source files
of the Eclipse CVS Core project.

capture the characteristic of the relationship as stated in [4].
The curve that fits best exhibits a steep slope in the begin-
ning and then flattens out to some extent as SCC moves to-
wards large values. This can be interpreted as: When a file
already has been subject to a large amount of changes, each
additional change is probably less and less important with
respect to an increase in Bugs. This is similar to the sigmoidal
s-shaped function that underlies the logistic regression we
used in Section 3.4, and that models a saturation effect in
terms of probabilities.1

An appropriate model for such data as in Figure 2 is the
asymptotic model described by the function (see [30]):
f(x) = b1 + b2 × eb3×SCC with b1 > 0, b2 < 0, and b3 < 0

We used this function to compute the nonlinear regression
once with LM and once with SCC as independent variables
and Bugs as the dependent variable.

Table 8 lists the resulting R2 values of validating the mod-
els with 10 fold cross validation. R2 is the coefficient of deter-
mination that shows how much of the variance in the dataset
is explained by the obtained predicting model. Overall de-
notes the performance of the model that resulted when merg-
ing all files into one dataset. With a median R2

SCC of 0.79
the models using SCC exhibit good explanative power across
all projects. Four projects even exhibit an R2

SCC of 0.85 or
higher. These models explain a large amount of the vari-
ance in their respective dataset. There are three projects in
our dataset where nonlinear regression has lower explana-
tive power meaning an R2

SCC < 0.7: In Update Core not even
half of the variance is explained by the model; in JDT Debug
and Help around two third of the variance is explained. An
average Spearman correlation of 0.77 indicates the sensitivity
1Logistic regression itself is a nonlinear regression when the
dependent variable is non-numerical, e.g., dichtomous.
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Table 8: Results of the nonlinear regression in terms of R2

and Spearman correlation using LM and SCC as predictors.
Project R2

LM R2
SCC SpearmanLM SpearmanSCC

Compare 0.84 0.88 0.68 0.76
jFace 0.74 0.79 0.74 0.71
JDT Debug 0.69 0.68 0.62 0.8
Resource 0.81 0.85 0.75 0.86
Runtime 0.69 0.72 0.66 0.79
Team Core 0.26 0.53 0.15 0.66
CVS Core 0.76 0.83 0.62 0.79
Debug Core 0.88 0.92 0.63 0.78
Jface Text 0.83 0.89 0.75 0.74
Update Core 0.41 0.48 0.43 0.62
Debug UI 0.7 0.79 0.56 0.81
JDT Debug UI 0.82 0.82 0.8 0.81
Help 0.66 0.67 0.54 0.84
JDT Core 0.69 0.77 0.7 0.74
OSGI 0.51 0.8 0.74 0.77
Median 0.7 0.79 0.66 0.77
Overall 0.65 0.72 0.62 0.74

of the models, i.e., an accompanied increase/decrease of the
actual and the predicted number of bugs.

With an average R2
LM of 0.7, LM has less explanatory pow-

er compared to SCC using an asymptotic model. Except for
the case of JDT Debug UI having equal values, LM performs
lower than SCC for all projects including Overall. The Re-
lated Samples Wilcoxon Signed-Ranks Test on the R2 values of
LM and SCC in Table 8 was significant, denoting that the ob-
served differences in our dataset are significant.

To asses the validity of a regression model one must pay at-
tention to the distribution of the error terms. Figure 3 shows
two examples of fit plots with normalized residuals (y-axis)
and predicted values (x-axis) of our dataset: The plot of the
regression model of the Overall dataset on the left side and
the one of Debug Core having the highest R2

SCC value on
the right side. On the left side, one can spot a funnel which
is one of the ”archetypes” of residual plots and indicates that
the constance-variance assumption may be violated, i.e., the
variability of the residuals is larger for larger predicted val-
ues of SCC [19]. This is an example of a model that shows
an adequate performance, i.e., R2

SCC of 0.72, but where the
validity is questionable. On the right side, there is a first sign
of the funnel pattern but it is not as evident as on the left
side. The lower part of Figure 3 shows the corresponding his-
togram charts of the residuals. They are normally distributed
with a mean of 0.

Therefore, we accept H 3–SCC (using asymptotic nonlin-
ear regression) achieves better performance when predicting
the number of bugs within files than LM. However one must
be careful to investigate wether the models violate the as-
sumptions of the general regression model. We analyzed all
residual plots of our dataset and found that the constance-
variance assumption may be generally problematic, in par-
ticular when analyzing software measures and open source
systems that show highly skewed distributions. The other
two assumptions concerning the error terms, i.e., zero mean
and independence, are not violated. When using regression
strictly for descriptive and prediction purposes only, as it
is the case for our experiments, these assumptions are less
important, since the regression will still result in an unbi-
ased estimate between the dependent and independent vari-
able [19]. However, when inference based on the obtained
regression models is made, e.g., conclusions about the slope
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Figure 3: Fit plots of the Overall dataset (left) and Debug
Core (right) with normalized residuals on the y-axis and
the predicted values on the x-axis. Below are the corre-
sponding histograms of the residuals.

(β coefficients) or the significance of the entire model itself,
the assumptions must be verified.

3.6 Summary of Results
The results of our empirical study can be summarized as

follows:
SCC correlates strongly with Bugs . With an average Spear-
man rank correlation of 0.77, SCC has a strong correlation
with the number of bugs in our dataset. Statistical tests in-
dicated that the correlation of SCC and Bugs is significantly
higher than between LM and Bugs (accepted H 1).
SCC categories correlate differently with Bugs . Except for
cDecl all SCC categories defined in Section 3.1 correlate sub-
stantially with Bugs. A Friedman Test revealed that the cate-
gories have significantly different correlations. Post-hoc com-
parisons confirmed that the difference is mainly because of
two groups of categories: (1) stmt, func, and mDecl, and (2)
else, cond, oState, and cDecl. Within these groups the post-hoc
tests were not significant.
SCC is a strong predictor for classifying source files into
bug-prone and not bug-prone. Models built with logistic re-
gression and SCC as predictor rank bug-prone files higher than
not bug-prone with an average probability of 90%. They have
a significant better performance in terms of AUC than logis-
tic regression models built with LM as a predictor (accepted
H 2).

In a series of experiments with different classifiers using
SCC categories as independent variables, LibSVM yielded
the best performance—it was the best classifier for more than
half of the projects. LibSVM was closely followed by BNet,
RFor, NBayes, and NN. Decision tree learners resulted in a
significantly lower performance. Furthermore, using cate-
gories, e.g., func, rather than the total number of SCC did not
yield better performance.
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SCC is a strong predictor for the number of bugs in source
files. Asymptotic nonlinear regression using SCC showed
high explanative power with a median R2

SCC of 0.79 and
significantly outperforms the regression models computed
with LM (accepted H 3).

4. DISCUSSION
The results of our study showed that the use of SCC im-

proves bug prediction models significantly. The models com-
puted with SCC outperformed the models computed with
LM (i.e., code churn). As a result, our models based on SCC
can help allocating resources more efficiently to bug-prone
parts of a system, i.e., those parts where most of the defects
are expected.

The gain in performance comes with the additional effort
that is needed to extract the fine-grained source code changes
from the project history. This is, however, not an issue when
tools, such as CHANGEDISTILLER, are available that perform
this extraction fully automatically (e.g., during nightly builds).

The comparison of different classifiers confirmed the re-
sults of prior work and showed the strength of advanced ma-
chine learning techniques, in particular LibSVM. The impor-
tance of the differences in performance should not be over-
estimated. For instance, the differences between LibSVM,
BNet, RFor, NBayes, and NN were not significant in terms of
AUC; only the decision tree methods J48 and eCHAID per-
formed significantly lower. As a consequence one might con-
sider other criteria, such as readability and interpretability of
the resulting models when choosing an appropriate classi-
fier. In [9], Fenton and Neil argue that multivariate methods
often result in models that are difficult to understand. For
instance, PCA used for logistic regression in E 2 produces
components that are delicate to explain causally. Similarly,
SVM and NN often lack explanative power, i.e., it is difficult
for end users to extract concrete rules as their internal mech-
anisms are complex to interpret, and the insights into their
learning process and decisions are limited [28, 34]. In con-
trast, decision tree learners produce rules that are easier to
extract [18].

Despite the fact that some classification techniques outper-
form others, an analysis of the distribution of the values and
a correlation analysis need to be performed first for this type
of experiments. With a value of 0.48 the Help project showed
the lowest correlation between Bugs and SCC (see Table 5).
Consequently, all selected classifiers resulted in AUC values
below 0.7 in that particular case (see Table 7). Similar results
were obtained for Team Core, which showed almost no cor-
relation (0.15) between LM and Bugs and consequently low
values for AUC (see Table 6). This confirms and strengthen
the results from prior work, e.g., [26, 39], that an initial cor-
relation analysis can not only reveal multicollinearity in the
dataset but also give a first idea of the strength of the rela-
tionship between variables and what their predictive power
is.

In Section 3.5, we performed a study to predict the num-
ber of bugs in files using regression analysis with SCC. The
distributions of our dataset and the highly skewed and non-
normal distribution of software properties [3] suggested that
linear regression is not appropriate for such data. We recom-
mend to use nonlinear regression that better represents the
data. The experiments showed that an asymptotic model
with a median R2

SCC of 0.79 has high explanative power.
The prediction models of 7 projects showed an R2

SCC of 0.8

or higher, 4 had values of 0.85 or higher. An analysis of the
residuals indicates that the constance-variance assumption is
violated in some cases. Therefore, such models must not be
used for inference purposes because the results of (inference)
tests are possibly biased. Since we use the models mainly in
a descriptive manner, this assumption is of less concern.

5. THREATS TO VALIDITY
From an external validity point of view this work is possibly

biased by our sole focus on Eclipse projects. Although we
collected data from 15 different projects that vary in terms
of size, source code changes, and their respective function,
they are all part of the larger Eclipse platform. This might
question the generalizability of the results and findings for
other software systems. In fact, every conclusion based on
empirical work is threatened by the bias of the dataset it
was drawn from [22]. Especially in software engineering
where the development process of a system depends on a
large number of factors that potentially vary widely across
different systems and domains, the issue of sampling bias
may be more prominent [2]. Nevertheless, Eclipse is a repre-
sentative case study that emerged to a standard IDE since its
first release in 2001. It has been studied extensively before,
and we can build upon the valuable findings of prior work,
e.g., [24, 29, 32, 39]. Therefore, our study contributes to an
existing body of knowledge, strengthen existing hypothesis,
and presents new results.

Threats to internal validity arise from two measurement is-
sues: (1) We counted the number of bugs and established
the link between bug data and source files by searching ref-
erences to bug reports in the log messages of the versioning
system (Section 2). We rely on the fact that bug fixes are con-
sistently tracked and recorded manually. Bird et al. reported
on evidence about a systematic bias in bug datasets [5]. (2)
When comparing the ASTs of two revisions, CHANGEDIS-
TILLER occasionally extracts a nonoptimal set of changes, i.e.,
more changes than actually required for AST transformation.
However, the transformation itself between two AST ver-
sions is always correct. The accuracy of the change extracting
algorithm was evaluated using a benchmark in [13].

6. RELATED WORK
Since software defects are an important cost factor and de-

velopment teams often operate with limited time and bud-
get constraints, building bug prediction models is an active
research field. There are roughly three main factors upon
which prediction models are based: Product and process mea-
sures and organizational aspects—or a combination of them.
Product measures are directly computed on the source code.
In particular, complexity and size metrics have been inves-
tigated to build prediction models [1, 9, 22]. The rationale
is that larger and more complex parts of a system contain
more defects. Several approaches used source code depen-
dency information. Findings from [37] showed that the posi-
tion of a binary within the static dependency graph of Win-
dows Server 2003 correlates with the number of post-release
failures. Nguyen et al. replicated this study on the Eclipse
project [29]. In [32], the import relationship of Eclipse files
and packages achieves good predicting power. Similar to our
results SVM performed the best. The good predictive power
of advanced classifiers, e.g., SVM, Random Forest, and Neu-
ral Networks, was confirmed by Lessman et al. [20]. They
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compared the performance for defect prediction of different
learning algorithms using product measures of the NASA
dataset. Despite the good performance of some classifiers
compared to others, no significant difference could be de-
tected.
Process measures are often obtained from software reposi-
tories. SCC, as used in this study, falls under this category.
Among the first to study the relation between code churn
defined as LM and Bugs was [17]. Work carried out in [25]
explored the extent to which the use of relative code churn
measures, e.g., LM weighted by total lines of code, outper-
formed absolute measures when predicting defect density:
In Windows Server 2003, absolute churn measures showed
a lower performance compared to relative ones. The results
of several studies showed that process measures might be
better defect predictors than product measures: Graves et
al. found out that the number of changes and the age of
a module yield better prediction models than product mea-
sures [15]. A comparative study showed that, especially in
Eclipse, process measures outperformed product measures
[24]. In [18], the J48 decision tree with a combination of prod-
uct and process measures were used to predict defect density
of Mozilla releases. The results showed that process mea-
sures are good predictors. The extent to which measuring
within different time frames improves bug prediction was
investigated in [4]. Consistently with our experiments, prior
work validated the usefulness of nonlinear models for build-
ing prediction models based on process measures [4, 15]. A
study on Windows Vista showed that the number of consec-
utive changes rather than the number of single changes have
high predictive power [27].
Organizational measures describe the management circum-
stances that influence the development of software. Bird et
al. compared the failure differences between components of
Windows Vista that were developed in a distributed way and
those that were developed at collocated sites [6]. Contrary to
common wisdom they stated that geographical differences
had little or no effect on failures. A strong organizational
indicator of software quality in Windows Vista is developer
contribution [31]: The number of developers working on a
binary positively correlates with post-release failures.

Recent work focused the discussion on prediction models
themselves. A critical review about the current state of the
art regarding defect prediction models is given in [9]. For in-
stance, the authors mention that current prediction models
suffer from problems in statistical methods and data quality.
Following the results presented in [22] a discussion emerged
about the practical usefulness of defect prediction models
[21,36]. Prediction models require a sufficient amount of ini-
tial training data. Often, such data is not available before-
hand. Therefore, Zimmerman et al. raised the importance of
exploring the cross-project prediction ability of models, i.e.,
applying the models to data of a project other than it was ob-
tained from [38]. Their results of reapplying models trained
on data from different Microsoft products and several open
source projects among each other showed that cross-project
prediction is a serious challenge.

7. CONCLUSION AND FUTURE WORK
In this paper, we empirically analyzed the relationship be-

tween fine-grained source code changes (SCC) and the num-
ber of bugs in source files (Bugs) using data from the Eclipse
platform. Based on an initial correlation analysis, we com-

puted a set of prediction models using several machine learn-
ing methods. The results of our study are:

• SCC shows a significantly stronger correlation with the
number of bugs than code churn based on lines modi-
fied (LM) (accepted H 1).

• Classification models using SCC rank bug-prone files hi-
gher than not bug-prone ones with an average probabil-
ity of 90%. This is an improvement compared to mod-
els computed with LM (accepted H 2).

• Although advanced learning methods performed bet-
ter, we could not always observe a significant differ-
ence between them.

• Nonlinear asymptotic regression using SCC obtained
models to predict the number of bugs with a median
R2 of 0.79 which is an improvement over models com-
puted with LM (accepted H 3).

Our results clearly show the good performance of SCC and
the improvements over LM for bug prediction. This can help
allocating maintenance and testing resources to bug-prone
parts of a software system.

Currently, our dataset is solely Eclipse focused. Therefore,
conclusions made in this work can be biased by characteris-
tics of the development process that are specific and unique
to Eclipse. To address this issue replications of our study
with other projects are required [2]. Regarding our predic-
tion models, we plan to use other cut points than the median,
e.g., the third quartile, to investigate how this affects their
performance. Furthermore, including information about the
categories of change types did not result in better prediction
performance although some categories showed a stronger
correlation with bugs than others. We plan to investigate
the relationship between bugs and categories of change types
more in depth, e.g., which change types are used to fix bugs.
The choice of an asymptotic regression model was based on
the analysis of the scatterplots. However, more complex or
segmented regression models exist that we plan to explore.
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