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Comparing Fuzzy and Intelligent PI Controllers in Stop-and-Go Manoeuvres 
Vicente Milanés, Jorge Villagrá, Jorge Godoy, and Carlos González, 

Abstract—The aim of this work was twofold: on the one hand, 
to describe a comparative study of two intelligent control tech-
niques—fuzzy and intelligent proportional-integral (PI) control, 
and on the other, to try to provide an answer to an as yet unsolved 
topic in the automotive sector—stop-and-go control in urban en-
vironments at very low speeds. Commercial vehicles exhibit non-
linear behavior and therefore constitute an excellent platform on 
which to check the controllers. This paper describes the design, 
tuning, and evaluation of the controllers performing actions on the 
longitudinal control of a car—the throttle and brake pedals—to 
accomplish stop-and-go manoeuvres. They are tested in two steps. 
First, a simulation model is used to design and tune the controllers, 
and second, these controllers are implemented in the commercial 
vehicle—which has automatic driving capabilities—to check their 
behavior. A stop-and-go manoeuvre is implemented with the two 
control techniques using two cooperating vehicles. 

Index Terms—Fuzzy control, intelligent control, nonlinear con-
trol, proportional-integral-derivative (PID), road vehicles. 

I. INTRODUCTION 

S AFETY is crucial in the development of autonomous sys-
tems in the transportation research field, with both man-

ufacturers and research groups focusing efforts in this direc-
tion. The aim is to develop advanced driver assistance systems 
(ADAS) that will increase safety in carrying out driving-related 
tasks. The first system introduced in commercial vehicles with 
the potential to influence traffic safety and traffic flow charac-
teristics was adaptive cruise control (ACC) [1], [2]. 

ACC is an extension of cruise control (CC)—CC allows the 
driver to set a driving speed—in which the vehicle is capable of 
following a leading car on highways by actions on the throttle 
pedal. These commercial systems work at speeds greater than 
30 km/h. Their main drawback is that they are useless in urban 
environments. 

Recently, commercial systems capable of stopping the ve-
hicle when a collision is imminent at speeds below 15 km/h have 
been developed by car manufacturers, but their dependence on 
the human driver to restart the vehicle might cause traffic jams. 
Thus, autonomous intelligent driving in traffic jam conditions 

is one of the most challenging topics of large city traffic man-
agement. These kinds of system are known in the literature as 
stop-and-go systems [3]. They deal with the vehicle in urban 
scenarios with frequent and sometimes hard braking and accel-
eration. The main idea of these control systems is to regulate 
the vehicle around the well-known 2-s headway rule, which at-
tempts to maintain a distance proportional to the human reac-
tion time (approximately 2 s) [4]. Some approaches have tried 
to reproduce human behavior with deterministic models in order 
to achieve smooth control actions. Unfortunately, this kind of 
strategy may not necessarily lead to safe operation. 

In [5], Martinez and de Wit proposed a nonlinear reference 
model taking into account safety and comfort specifications in 
an intuitive way. However, their approach assumes that the ref-
erence acceleration generated by the dynamic inter-distance (or 
gap-distance) model is applied instantaneously to the following 
vehicle. Since this assumption is hardly ever satisfied in real 
urban situations, an advanced feedback controller should be 
introduced to cope with vehicle nonlinearities—especially in 
brake and engine dynamics at low speed—and environmental 
disturbances. 

Different approaches have been proposed to tackle the actu-
ators' nonlinear dynamics. Input/output linearization [6], fuzzy 
logic [7], [8], and sliding mode control [9], [10] have been used 
to deal with engine control. Feedback linearization [11] and 
sliding modes [12] have also been implemented to control a 
nonlinear brake model. However, most of these approaches re-
quire precise models, so that any parameter variation during 
the vehicle's lifetime may lead to deteriorating performance, 
or even to unstable behavior. The present work is an attempt 
to And an engine/brake control algorithm that yields the ex-
pected reference speed and acceleration of the trailing vehicle, 
while keeping a reference distance from the leading vehicle. 
Moreover, the control law will have to be robust to measure-
ment noise, unmodeled (brake and engine) dynamics and dis-
turbances (road inclination, aerodynamic forces, and rolling re-
sistance). 

To that end, two control techniques will be implemented and 
compared both in simulation and in a commercial vehicle: fuzzy 
logic and an intelligent proportional integral (PI) controller. 

The first of these is one of the class of soft computing tech-
niques [13]. These techniques are recognized as having a strong 
learning and cognition capability as well as good tolerance to 
uncertainty and imprecision. Among them, fuzzy logic—devel-
oped by Prof. L. A. Zadeh in 1965 [14]—gives a good approxi-
mation to human reasoning, and hence provides an intuitive ap-
proach to autonomous control of the nonlinear behavior of com-
mercial vehicles [15]. 

The second control algorithm uses a novel technique that, 
based on the classical PI controller structure, is capable of 
dealing with parameter uncertainties and unmodeled nonlinear 
dynamics. This control paradigm [16], [17] replaces physical 
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Fig. 1. Stop-and-Go scheme. 

models by local input/output differential equations, valid over 
short lapses of time. The main advantage of this new approach 
is that these phenomenological models are merged into a PI 
transparently, so that an "intelligent" (hence the name i-PI) 
term compensates the effects of poorly-known dynamics. 

In brief, the following issues will be tackled in the present 
communication. 

• Design and development of two valid solutions for an as yet 
unresolved issue in the automotive sector: ACC in urban 
environments at very low speeds. 

• A comparative study of these intelligent control tech-
niques, examining their robustness via a Monte Carlo 
analysis. 

• Comparison with previously presented solutions [5] to this 
problem to illustrate the improvements contributed by the 
present work. 

• Implementation in a commercial car—a convertible Cit-
roen C3 Pluriel with automated brake and throttle—to val-
idate the controllers in a real environment. 

The rest of this brief is organized as follows. The second sec-
tion will be devoted to briefly presenting the dynamic inter-dis-
tance and relative velocity model. In Section III, the design and 
tuning of the controllers will be presented using a vehicle model. 
Then the fuzzy and the i-PI controllers will be detailed. Finally, 
a test of the controllers in a simulation environment will be de-
scribed, using a Monte Carlo analysis to assess the system's ro-
bustness. In Section IV, the two control techniques will be eval-
uated and compared to a classical PI controller on a real exper-
imental platform, with a focus on comfort and safety aspects. 
Finally, Section V will present some concluding remarks and a 
description of future work in this line. 

II. GENERATION OF THE REFERENCE INTER-DISTANCE AND 

RELATIVE VELOCITY 

As mentioned above, the goal of the control strategies will be 
to use the throttle and brake (control variables ue and «j, re-
spectively) to track as precisely as possible a reference distance 
between vehicles dr and a target relative velocity vr. A reference 
model proposed by [5] will provide these two variables, and the 
ideal acceleration xtr the trailing car should have to follow the 
trajectories of those two reference variables. 

Note in Fig. 1 that dr is related to the safe nominal inter-dis-
tance do—the maximum distance at which the control algo-
rithm will be activated—and the critical distance dc—the min-
imum distance between cars which is only attained when they 
are stopped. Note also that the dynamic reference model used 
in the present work will provide a reference inter-distance less 
than the 2-s headway rule if the allowed maximum acceleration 
is high enough (for more details, see Fig. 2). 
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Fig. 2. Comparison of different distance policies: constant headway rule (2 s) 
and the inter-distance model [5] with different maximum accelerations. 

The inter-distance reference model describes the virtual dy-
namics of a vehicle which is positioned at a distance dr (the 
reference distance) from the leading vehicle 

dr = xi- xtr (i) 

where x¡ is the leading vehicle's acceleration and 

xtr = ur(dr,dr) (2) 

is the trailing acceleration, which is a nonlinear function of the 
inter-distance and its temporal derivative. 

Considering d — do - dr in (2), where do is the safe nom-
inal inter-distance, the control problem is then to find a suitable 
trailing car acceleration ur, when d > 0, such that all the solu-
tions of (1) satisfy the following comfort and safety constraints: 

• dr ^ dc, with dc the minimal inter-distance; 
• \xr\ ^ 7max> where 7 m a x is the maximum attainable lon-

gitudinal acceleration; 
• | xr | < Jm a x , with Jm a x a driver desired bound on the jerk. 
Martinez and de Wit [5] propose the use of a nonlinear 

damping model ur — -c|d|d—where c plays the role of a 
damping constant—which can be introduced into (1) to give 

d = —c|d|d — x¡. 

This equation can be integrated analytically and expressed in 
terms of dr as follows: 

dr = - ( d 0 - d r ) 2 + i / ( i ) - / 3 , 

/3 = it,.(0) + | ( d 0 - d r ( 0 ) ) 2 . (3) 

Note that this reference speed depends upon the leading ve-
hicle's speed, the distance do, and the parameter c, which is in 
turn an algebraic function of the safety and comfort parameters 
dC; Vmax, 7m a x , and Jm a x [5]. Fig. 2 shows how 7 m a x influences 
the reference inter-vehicle distance. 

Finally, from (2) the trailing acceleration is 

xtr = ur = c|do — dr\dr (4) 



where the inter-distance evolution is given by the numerical in-
tegration of (3). 

Once the reference inter-distance and its time derivative (dr 

and vr = dr, respectively) have been generated, the fuzzy and 
i-PI controllers will seek to ensure that these two variables are 
tracked as closely as possible. 

III. DESIGN AND TUNING OF THE CONTROLLERS 

To design the controllers, a vehicle model was developed 
which includes the vehicle's dynamics at very low speeds so 
as to constitute a good starting point in tuning the controllers. 
This section briefly describes the model and the design of each 
of the controllers, a simulation comparing the controllers before 
their implementation in a real car, and finally Monte Carlo sim-
ulations to analyze the robustness to disturbances or parameter 
uncertainties. 

A. Vehicle Model 

The balance of forces along the vehicle's longitudinal axis 
[18] is 

MVX = FXf + FXr -Fa- RXf - RXr - Mgsme (5) 

where M is the mass of the vehicle, Vx the longitudinal velocity, 
FXf and FXr the front and rear longitudinal tyre forces, respec-
tively, RXf and RXr the front and rear tyre forces due to rolling 
resistance, 8 the angle of inclination of the road, and Fa the lon-
gitudinal aerodynamic drag. 

The rolling resistance forces are often modeled as linear func-
tions of the normal forces on each tyre, i.e., Rx = krFz, with 
kr the rolling resistance coefficient and Fz the vertical load of 
the vehicle. The aerodynamic forces can be expressed as 

Fa = ^pCdAF(Vx + Vwind)
2 

with p being the mass density of air, Cd the aerodynamic drag 
coefficient, AF the frontal area of the vehicle (the projected area 
of the vehicle in the direction of travel), and Vw[n¿ the wind 
speed. The Pacejka model [19] is used for longitudinal tyre/road 
interaction forces Fx. 

The rotation dynamics of each wheel can be expressed as 

Iúi = -rFx% + re% - rh% (6) 

where I is the wheel's moment of inertia, LUÍ the angular velocity 
of each wheel, r the tyre radius, re • the applied engine torque, 
and Tfc. the brake torque, both applied to each wheel's center. 

The total engine torque re can be expressed in terms of the 
throttle opening ue by the expression [20] 

Te = UUeTm I 1 - (3m ( 1 J J 

where n is the gear ratio, to is the average wheel speed, (3m 

is an engine torque parameter, and the maximum torque r m is 
obtained at engine speed u;m. 

Finally, the dynamics between the braking control variable ub 

and braking torque rb can be modeled as a second-order linear 
system 

n(s) = 2 •—2U b (s) 
S2 + 2f]b0ObS + CÜ¿ 

TABLE I 
MODEL PARAMETERS 

Parameter 
M 

cd AF 

(-SX 

r 
I 
n 

Tm 

Pm 
UJm 

Kh 

Vb 

^b 

Nominal Value 
1418 
0.32 
2.4 

40000 
0.21 

2 
25 
190 
0.4 
420 
220 
0.45 
1023 

with Kb,r}b, and icb being the static gain, damping factor, and 
natural frequency, respectively. Since the braking dynamics is 
much faster than that of the vehicle, it can be replaced in the ve-
hicle model by an algebraic expression, without loss of realism 
[21]. The numerical values of the model parameters are given in 
Table I. 

B. Fuzzy Controller 

Fuzzy logic was selected as one of the control techniques to 
compare because it is a well-tested method for dealing with this 
kind of system, yields good results, and can incorporate human 
procedural knowledge into the control algorithms [22]. Also, it 
allows the designer to partially mimic human driving behavior. 

The rationale behind the design of the fuzzy controller is to 
select two errors—distance and speed—as inputs so that the 
controller can emulate the behavior of a human driver who, in 
this situation, would control these two parameters. To this end, 
for each fuzzy variable a central membership function is intro-
duced to define an area of good performance. Two further mem-
bership functions are defined to represent the higher and lower 
error regions with respect to the target reference. In this sense, 
to keep a reference distance, a driver does the following: 

• presses the throttle if the distance is greater than the refer-
ence distance; 

• presses the brake if the distance is less than the reference 
distance; 

• lifts the pedal foot off the pedals if the distance is correct. 
These will also be the actions of our controller since it will 

try to mimic human behavior. 
The membership function definition for each of the input vari-

ables are shown Fig. 3. The two variables used to perform the 
control are the SpeedError, defined as the difference between 
the desired relative velocity between the leading and trailing car 
and its actual value (dr — (xi—xt)), and the DistanceError, de-
fined as the difference between the optimal distance determined 
using the dynamic inter-distance model generator and the real 
distance between cars {dr — {xi — xt)). Obviously the goal of 
our controller is to perform actions maintaining the values of 
these two variables close to zero. 

The choice of the membership functions of each input vari-
able is based on expert drivers' experience. In this sense, the 
goal of our approach to stop-and-go scenarios is based on fol-
lowing both a reference distance and a reference relative ve-
locity. One can easily adjust the fuzzy controller for this purpose 
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Fig. 4. Speed control surface. 

Fig. 3. Membership functions. 
TABLE II 

RULE BASE 

by defining errors of these values with respect to actual values 
obtained from the vehicle's sensors. For tuning, simulation with 
the car model is used to adjust the membership functions to the 
actual vehicle that will subsequently be used in the experimental 
phase. The controller can be easily readjusted to suit any kind 
of vehicle by slightly modifying the membership functions, in 
particular, by searching for the optimal tradeoff between good 
reference tracking and smooth control actions. 

The output generated is the action on the longitudinal actu-
ators—i.e., throttle and brake pedals. In particular, the fuzzy 
output variable Pedal determines which actuator has to be 
pressed, and the magnitude of the action. The shape of its 
membership function is defined in terms of Sugeno singletons. 
The possible output values lie within the range [—1,1], where 
— 1 indicates the brake pedal Uh is completely depressed and 
1 indicates the maximum action is applied to the accelerator 
pedal ue. In the present case, these values will be less than 
unity since the controller will be used at very low speeds (see 
the bottom plot in Fig. 3). Fig. 4 shows the control surface for 
the output variable as a function of the input variables of our 
fuzzy controller. The output values assigned for each rule are 
listed in Table II. 

SpeedError 

Negative 
Centre 

Positive 

DistanceError 

Negative 
Brake 

MBrake 
Medium 

Center 
MBrake 
Medium 

MThrottle 

Positive 
Medium 

MThrottle 
Throttle 

where a G R and /i G N are two constant parameters, which 
do not necessarily represent physical magnitudes, and whose 
choice is based on the following guidelines: 

• ¡i is usually 1 or 2, and may, although not necessarily, rep-
resent the system order. 

• a should allow F and au to be of the same order of mag-
nitude. 

The term F, which is a sort of nonlinear black box identifier 
[17], is computed from the input value at the preceding sample 
time u{tk-\) and the ¡it\\ derivative estimate of the output 
y^\tk) at the current sample time 

F(tk) = yM(tk)-au(tk-1). (8) 

Using the formalism introduced in (7) and (5) for the two 
vehicles, the relative velocity dynamics can be expressed as 

xtr(t) = F(t) + au(t) (9) 

C. i-PI Controller 

Intelligent PI controllers are used in this work because they 
combine the well-known PI structure with an "intelligent" term 
that compensates the effects of nonlinear dynamics, distur-
bances, or uncertainties in the parameters. As a consequence, 
the nonlinear dynamics of the car at low speeds become con-
trollable with this novel technique. 

Following [17], [23], a finite-dimensional nonlinear system 
can be written locally as 

y 
O) _ p. (7) 

where u = {t¿e, Ub} are respectively the engine and brake con-
trol variables. 

If (9) is inverted and merged with a PI controller [20], the 
resulting i-PI control law is 

u = -{xu - F) + KPe + Ki \ edt, 
a J 

e = dr - {xi - xt) (10) 

where Kp, Kj G IR+ are PI gains. Even though this system is 
nonlinear and has varying parameters, the linearized model of 
(5) can be useful to tune the PI controller classically (see [20]). 

Two extra parameters ae and a& are chosen (see Table III) to 
enhance the dynamic behavior and disturbance rejection of the 



TABLE III 
CONTROL PARAMETERS 

Controller 

PI 
i-PI 

K
P e 

0.203 
0.203 

K i e 

0.243 
0.243 

CKe 

30 

K
P b 

0.277 
0.277 

K
i h 

0.146 
0.146 

ah 

40 

closed-loop system, particularizing (10) in our case to control 
the throttle 

1 
ue(tk) = —(xtr(tk) - Fe(tk)) + KPee(tk) 

J(e(tk))dt 

Fe{tk) = xt(tk) - aeue{tk-i) 

and to do likewise with the brake 

Ub(tk) = —(xtr(tk) - Fb(tk)) + KPbe(tk) 
Ctb 

+ Kn I\e(tk))dt 

Fbitk) = xt(tk) - abuh{tk-i) 

(11) 

(12) 

where xt is a velocity derivative estimate. Since measurements 
of the acceleration are available from the CAN bus, this second 
derivative estimate will not be necessary in this case. 

Finally, a decision rule will be established to determine 
whether brake or throttle actions are needed. The control law 
(12) will be triggered if the reference acceleration is negative 
and the inter-distance error is less than a fixed value e. In any 
other case, the throttle control law (11) will be used. The re-
sulting control law turns the automated vehicle into a nonlinear 
hybrid system. It is well known how difficult it is to assess 
the stability of such complex systems. However, a recent work 
addressing this issue [24] has demonstrated the generalized 
applicability of this kind of controller to such hybrid systems 

ue = 

ub 

iixtr < 0 A \dr - {xi — xt)\< e 
otherwise 

0, 
Eq.( l l ) 

Eq. (12), iixu < 0 A \dr - (xt - xt)\ < e 
0, otherwise. 

1) Tuning Procedure: To evaluate the closed-loop system's 
behavior with the two controllers, the vehicle's dynamics will 
be simulated, as mentioned above, with a realistic model which 
takes into account tyres, brakes, and engine dynamics. Measure-
ment noise in the velocity and acceleration CAN-based sensors 
will also be considered. These corrupting noises will be modeled 
as additive white Gaussian variables [see the inset in Fig. 6(a)]. 
The value taken for the transmission rate will be 5 Hz, set by the 
GPS receiver as detailed in Section IV-A. 

Fig. 5 shows a velocity profile plot for the leading vehicle. 
The idea behind this scenario was to evaluate the control algo-
rithms over a wide operating range, trying to emulate coping 
with the most demanding manoeuvres in urban driving condi-
tions. A robust longitudinal control algorithm [25] will be ap-
plied to the first car to track the setpoints as precisely as possible. 
Furthermore, both the leading and the trailing cars will have to 
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Fig. 5. Leading vehicle speed and road slope profiles. 

accomplish their control goals while rejecting disturbances in-
duced by the slope of the roadway depicted in Fig. 5. 

The leading and trailing cars will initially be separated by a 
distance of 49 m and running at the same speed, x\ — xt = 
11 ms"1 . The inter-distance dynamic model is parameterized 
to provide a maximum speed VmdbX = 50 km/h -1 , a maximum 
acceleration 7 m a x = 2 ms - 2 , a maximum jerk Jm a x = 5 ms - 3 , 
and a minimum inter-distance dc = 6 m. 

The controllers will be quantitatively tuned and evaluated 
with respect to an optimization criterion. Several fitness func-
tions are commonly used to tune PI controllers. Among them, 
the integral absolute error (IAE) is the best adapted to our situa-
tion because of its sensitivity. Thus, a cost function including the 
distance error, the speed error, and the control action's smooth-
ness will be used to design our PID-based controllers 

J •*fi ep\ + \ev\ +us)dt 

where ep = dr (xi — xt) is the distance tracking error, 
ev = vr — (xi — xt) is the relative velocity error, and us = 
\(due(t))I(dt)\ + \{dub(t))I(dt)\ measures the control smooth-
ness. The sum of engine and brake control variables ue and ub 

is equivalent to the Pedal variable in the fuzzy control imple-
mentation. 

The optimization process gives as a result the PI parameters 
listed in Table III. Note that i-PI parameters are chosen such that 
PI gains are the same than for the optimal PI controller and the 
a parameter, for both brake and throttle, was manually tuned 
thereafter. 

D. Simulation Results 

The evolution of the vehicles' speeds, the distance between 
them, the error with respect to the dynamic inter-distance model, 
acceleration, jerk, and the control action are shown in Fig. 6, 
which thus provides a synthesis of the most important aspects of 
the controllers' behavior. In this figure and henceforth, the dash-
dotted red line will be used to correspond to the fuzzy controller, 
the dashed green line to the i-PI controller, and the solid blue line 
to the PI controller. 

One appreciates that the PI controller presents the poorest be-
havior. With respect to the i-PI and fuzzy controllers, at first 
sight their behavior is satisfactory, but there are some important 
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TABLE IV 
SIMULATION PERFORMANCE CRITERIA 
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Fig. 6. (a) Leading and trailing vehicle speeds, (b) Inter-vehicular distance, (c) 
Inter-distance error, (d) Acceleration, (e) Jerk, (f) Normalized control action. 

differences in terms of safety, comfort, and rejection of distur-
bances. 

Concerning the inter-distance error relative to the dynamic 
reference, all the controllers present an initial transient that is 
corrected after approximately 5 seconds. From then on, i-PI 
provides more precise tracking than the fuzzy controller (see 
Table IV). Even though the fuzzy controller's tracking quality 
is not as good as i-PI's, the vehicle rarely exceeds the safe ref-
erence distance. The PI controller presents the worst behaviour, 
with inter-distance errors greater than 3 m. Also the values of the 

IAE 

6 p 

ev 

Us 

J 

PI 

0.5858 
0.2522 
0.233 
1.071 

i-PI 

0.0899 
0.0619 
0.2905 
0.4423 

Fuzzy 

0.2086 
0.1187 
0.5892 
0.9165 

comfort indicator in Table IV—which shows that the i-PF s con-
trol action is smoother than the fuzzy controller's—is coherent 
with the fluctuating behavior of the fuzzy controller observed 
in the bottom plot of Fig. 6. Both the acceleration and the jerk 
constraints (7m a x = 2 ms - 2 , Jmax = 5 ms - 3 ) are satisfied by 
all three controllers. 

E. Robustness Analysis 

Since no parameters appear explicitly in the closed form con-
troller, classical robust control tools cannot here be exploited to 
analyze the closed loop system's sensitivity to disturbances or 
to parameter uncertainty. Non-deterministic techniques, in par-
ticular Monte Carlo methods, seem to be the most suitable tool 
to test robustness when model-free control laws are used. 

To account for parameter uncertainty, we define the model's 
parameters as distributions of values rather than as single fixed 
values. We then perform a Monte Carlo simulation, running the 
model repeatedly with 1000 random combinations of param-
eter values. The parameters pi in Table I will be considered to 
follow centred normal distributions of the form A/"(/i¿, <TÍ),/J>Í = 
Pi, ai = 0.1 fa. The amplitudes and frequencies of disturbances 
due to sinusoidal slopes are defined as uniform distributions be-
tween their maximum and minimum values ([0.1 /¿¿, 10 /¿¿]) to 
ensure that a wide design space is covered. 

Table V summarizes the Monte Carlo results. One observes 
that all the implemented controllers are stable within the pre-
defined uncertainty domain. However, there are significant dif-
ferences between the three approaches. The smoothest action is 
provided by the PI controller. But with a slightly greater control 
action activity i-PI tracks distance and relative velocity much 
better than the optimized PI controller. The fuzzy controller 
also yields good tracking under the nominal conditions (see 
Table IV), but is more sensitive to disturbances and parameter 
uncertainty than the i-PI control law. 

Fig. 7 shows the inter-distance and speed errors in the worst 
case for all three control strategies. One observes that both the 
fuzzy and the i-PI controllers improve the inter-distance and 
relative velocity tracking results obtained with the optimized PI. 
It also confirms that i-PI's behavior is remarkably good for both 
distance and relative velocity. 

IV EVALUATION OF THE CONTROLLERS 

To validate the proposed control algorithms, the two con-
trollers were implemented in the AUTOPIA program control ar-
chitecture for autonomous vehicles [26]. This section presents a 
brief description of the real cars used for the experimental phase 
and their automation process. Then the real results at the CAR's 
facilities will be described. 



TABLE V 
MONTE CARLO ROBUSTNESS ANALYSIS 

Controller 

PI 

i-PI 

Fuzzy 

Distance error 

Mean 
0.6552 
0.0893 
0.4620 

Std 
1.2742 
0.0118 
1.5816 

Max 
21.9283 
0.1282 

35.6460 

Speed error 

Mean 
0.2514 
0.0625 
0.1568 

Std 
0.0857 
0.0052 
0.0991 

Max 
2.7353 
0.0837 
1.9259 

Control smoothness 

Mean 
0.2324 
0.3870 
0.6739 

Std 
0.0246 
0.1437 
0.2654 

Max 
0.3833 
1.6215 
4.7409 

Total 

Mean 
1.1052 
0.5388 
1.1359 

Std 
0.7475 
0.1514 
1.5792 

Max 
23.6856 
1.7754 

35.9256 

Fig. 7. Worst case in Monte Carlo simulations for all three controllers, (a) Po-
sition error, (b) Speed error. 

Fig. 8. Commercial prototype vehicles used for the experimental phase. 

A. Experimental Vehicles 

Two vehicles were used for the experimental phase: a 
fully-automated vehicle and a manually driven one. The former 
is a convertible Citroen C3 Pluriel (see Fig. 8). The car is 
equipped with automatic driving capabilities with hardware 
modifications made to the throttle and the brake pedal actions. 
The latter vehicle is an electric Citroen Berlingo van (see 
Fig. 8) also equipped with automatic driving capabilities. For 
the purpose of this work, it was driven by a human driver 
making the leading car's behavior as close to a real traffic 
situation as possible. 

With respect to the automation process, the Pluriel's throttle 
is controlled by an analogue signal that represents the pressure 
on the pedal, generated with an analogue card [27]. For the 
brake, an electro-hydraulic braking system is mounted in par-
allel with the original one [28], and is controlled via an I/O dig-
ital-analogue CAN card. 

Both vehicles are equipped with real time kinematic—differ-
ential global positioning systems (RTK-DGPS) working at 5 Hz 
as the main sensor. This sensor is used to acquire driving infor-

mation, providing 1-cm precision. An inertial measurement unit 
(IMU) is installed in the convertible car to provide positioning 
in case of GPS receiver failure [29]. A Personal Computer 
Memory Card International Association (PCMCIA) Proxim 
Wireless ComboCard is installed in the PC of each car, and a 
central station is used to send the relevant information from the 
leading to the trailing car [30]. The trailing vehicle is equipped 
with an industrial on-board PC that is in charge of receiving the 
information coming from the wireless communication system 
and the sensorial inputs, and of sending the output generated to 
the actuators in each control cycle (200 ms). 

Remark 1: The system has been tested using DGPS in place 
of RTK-DGPS receivers, without degradation of performance. 
This kind of receiver removes the dependence on a local station 
to transmit the differential corrections, so that the system can 
work over hundreds of kilometers. Trials with low-cost com-
mercial GPS receivers showed that they are as yet inappropriate 
for this kind of application. 

B. Real Results 

Several trials were conducted at the CAR's private driving cir-
cuit using the experimental vehicles. This circuit represents an 
inner-city area, with a combination of straight-road segments, 
bends, and different road slopes. During these trials, a tuning 
refinement was applied to the controllers because of the com-
plexity of the translation from simulation to the real world. 

To compare the two controllers in conditions as equal as pos-
sible, a predefined route was recorded. This route was first trav-
eled over with the manually driven vehicle, and all the relevant 
variables to perform the control—position, speed and accelera-
tion—were stored. In this way, the human influence in two con-
secutive trials was removed. In a parallel line, a PI controller 
previously developed to perform this application [5] was used 
to compare the novel controllers with previous results. 

Fig. 9. shows the results for each of the controllers—PI, i-PI, 
and fuzzy—during this experiment. The distance between vehi-
cles at the beginning of the test was set at 6 metres. Once this dis-
tance was achieved with 1-cm accuracy using the RTK-DGPS 
positioning system, the test was initiated. The top plot depicts 
the trailing vehicle's speed with respect to the leading one. The 
second from the top shows the desired inter-distance and the 
values obtained using the designed controllers. The third shows 
the desired relative velocity and the values obtained by the con-
trollers. The fourth and fifth show the acceleration and the jerk, 
respectively, for the three controllers. The bottom plot shows the 
action on the accelerator and brake pedals, with the values being 
normalized to the range [—1,1], where 1 indicates an action on 
the accelerator pedal and —1 on the brake. 

At the beginning, the leading car is stopped at the prede-
fined safety distance—6 m. During the first minute, the fuzzy 



TABLE VI 
EXPERIMENTATION PERFORMANCE CRITERIA 
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Fig. 9. (a) Leading and trailing vehicle speeds, (b) Distance between vehicles. 
(c) Relative velocity, (d) Acceleration, (e) Jerk, (f) Normalized control action. 

controller is very close to the reference inter-distance and the 
i-PI controller is slightly under the desired value. One can ap-
preciate how the PI controller presents the poorest behavior 
with greater values than the reference inter-distance. This be-
havior is reflected in the desired relative velocity. The greatest 
inter-distance error occurs at around second 64, because the au-
tonomous vehicle is driving around a curved stretch. Then, at 
around second 85, the leading car's speed is significantly slowed 
to close to zero at the end of a straight stretch. When the leading 
vehicle starts again, a minimal delay appears in the fuzzy con-
troller that is resolved with hard action on the throttle to recover 

IAE 

ep 

ev 

Us 

J 

PI 

0.587 
0.283 
0.0112 
0.8812 

i-PI 

0.351 
0.3294 
0.0079 
0.6883 

Fuzzy 

0.315 
0.277 
0.0137 
0.6057 

the desired inter-distance. Later, the fuzzy controller follows 
the reference with better precision than the i-PI up to second 
130 when the leading car is stopped. Then, the i-PI controller 
reaches the predefined safety distance faster than the fuzzy con-
troller. Variations in the PI controller are greater than the other 
two controllers throughout the test. 

Concerning the acceleration and jerk, all three controllers sat-
isfied the initial prerequisites—7max = 2 ms"2 , Jm a x = 5 
ms"3 . With respect to the control action, the smoothest is at-
tained by the i-PI controller. The fuzzy controller presents the 
greatest oscillations in control actions, but they can be neglected 
from a perspective of the comfort of the car's occupants. 

To quantify these results, the control quality indicators intro-
duced in Section III-C1 are compared in Table VI. One observes 
that the tracking error is better in the fuzzy than in the i-PI con-
troller, but that the control action is harsher in the fuzzy con-
troller. 

In brief therefore, the fuzzy controller presents as its main 
advantage that it can be intuitively retuned and behaves slightly 
better in tracking, the i-PI controller has smoother control ac-
tion, and the PI controller presents the poorest behavior of the 
three. 

Remark 2: There are numerous effects that appear in real ex-
periments that are extremely difficult to quantify (weather con-
ditions, the pavement of the road, pressure on the wheel, etc.). 
Thus, although the i-PI controller worked better in our simula-
tions, the fuzzy controller parameters were less sensitive than 
those of the i-PI when translated to the real world. 

V CONCLUSION 

Stop-and-go manoeuvres constitute one of the most important 
and as yet unsolved topics in the automotive sector. This paper 
has presented two control techniques—fuzzy logic and i-PI con-
trollers—with which to solve this problem. First, a car model 
was used to validate the proposed controllers. Then, two real 
cars were used to check the behaviour of the control algorithm in 
real circumstances. The following lessons can be learned from 
this work. 

• The fuzzy controller developed can be easily adapted from 
simulations to the real word since it is based on human 
behavior and is a model-free control technique. 

• The i-PI controller, that it is only based on a rough model 
of the system, provides smoother action on the throttle and 
brake pedals, thus increasing the vehicle occupants' com-
fort. 

• The behavior of both these new controllers is significantly 
better than a controller developed previously [5] to perform 
this manoeuvre. 

• The proposed control techniques can significantly reduce 
traffic jams, making driving easier by relieving the human 
driver of some tedious tasks. 



The promising results obtained with the two controllers in the 
work described in this paper will be pursued analytically and 
experimentally with more vehicles and in other advanced driver 
assistance systems. 
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