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Abstract—When clustering produces more than one candidate
to partition a finite set of objects O, there are two approaches to
validation (i.e., selection of a “best” partition, and implicitly, a best
value for c, which is the number of clusters in O). First, we may
use an internal index, which evaluates each partition separately.
Second, we may compare pairs of candidates with each other, or
with a reference partition that purports to represent the “true”
cluster structure in the objects. This paper generalizes many of the
classical indices that have been used with outputs of crisp cluster-
ing algorithms so that they are applicable for candidate partitions
of any type (i.e., crisp or soft, with soft comprising the fuzzy, prob-
abilistic, and possibilistic cases). Space prevents inclusion of all of
the possible generalizations that can be realized this way. Here, we
concentrate on the Rand index and its modifications. We compare
our fuzzy-Rand index with those of Campello, Hullermeier and
Rifqi, and Brouwer, and show that our extension of the Rand index
is O(n), while the other three are all O(n2 ). Numerical examples
are given to illustrate various facets of the new indices. In particu-
lar, we show that our indices can be used, even when the partitions
are probabilistic or possibilistic, and that our method of general-
ization is valid for any index that depends only on the entries of the
classical (i.e., four-pair types) contingency table for this problem.

Index Terms—Cluster analysis, cluster validity, external-
validation criteria, generalized Rand index, Rand’s index.

I. INTRODUCTION

L ET O = {o1 , . . . , on} denote n objects (e.g., fish, cigars,
motorcycles, beers, etc.). When each object in O is rep-

resented by a (i.e., column) vector x in �p , the set X =
{x1 , . . . ,xn} ⊂ �p is an object-data representation of O.
These vectors have a variety of names in the literature, the
most common being feature vectors, pattern vectors, or object
vectors. The kth component of the ith feature vector (xki) is the
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value of the kth feature measurement or attribute (e.g., height,
weight, length, color, etc.) of the ith object.

Alternatively, when each pair of objects in O is represented
by a relationship between them, then we have relational data.
There are many names for the relation that begets relational-data
values, for example, measures of proximity, agreement, concor-
dance, distance, etc. Let R = [rij ] be the matrix of relational
values on O × O, rij being the relation between oi and oj .
The most common relational data case is the dissimilarity data,
say D = [Dij ], where Dij is the pairwise dissimilarity (which
is usually a distance) d(oi, oj ) between oi and oj , for 1 ≤ i,
j ≤ n. D can also be a matrix of similarities based on a variety
of measures [1]–[3]. Finally, D may be a relation specified by
a person observing a process involving pairs of objects. Rect-
angular relational data are most commonly of this last type. For
example, the NetFlix database aggregates values of ratings from
viewers of movies; therefore, rij might correspond to the rating
given to movie (i) by reviewer j.

When each object in oi ∈ O (and, when represented by fea-
ture vector, xi ∈ X) has a physical label, O is a set of labeled
data; otherwise, O is a set of unlabeled data. For example,
Anderson’s Iris data, which were collected by Anderson [1], and
subsequently, made famous by Fisher [2] comprises n = 150
feature vectors in four dimensions. Each vector in Iris has one
of the three (i.e., crisp) physical labels corresponding to the
Iris subspecies to which it belongs, i.e., sestosa, versicolor, or
virginica.

In general, there are four class label types: crisp, fuzzy, proba-
bilistic, and possibilistic. Let integer c be the number of classes,
with 1 < c < n, and define three sets of label vectors in �c as
follows:

Npc = {p ∈ �c : pi ∈ [0, 1] ∀ i, pi > 0 ∃ i} (1a)

Nf c =
{
p ∈ Npc :

c∑
i=1

pi = 1
}

(1b)

Nhc = {p ∈ Nf c : pi ∈ {0, 1} ∀i}. (1c)

Here, Nhc is the canonical (i.e., unit vector) basis of �c . The ith
vertex of Nhc , i.e.,

ei =

(
0, 0, . . . , 1︸︷︷︸

ith place

, 0, . . . , 0

)T

where the 1 occupies the ith place, is the crisp label for class
i, 1 ≤ i ≤ c. The set Nf c is a piece of a hyperplane, and is the
convex hull of Nhc . The vector p = (0.1, 0.6, 0.3)T is a label
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vector in Nf 3 ; its entries lie between 0 and 1, and sum equals
1. There are two interpretations for the elements of Nf c . If p
comes from a method, such as maximum-likelihood estimation
in mixture decomposition, then p is a (usually posterior) proba-
bilistic label, and pi is interpreted as the probability that, given
x, it is in, or came from, class or component i of the mixture [3].
On the other hand, if p is a label vector for an object (o) gen-
erated by, say, the fuzzy-c-means clustering model [4], p is a
fuzzy label for (o), and pi is interpreted as the membership of
(o) in class i. An important point for this paper is that Nf c

has the same mathematical structure for probabilistic and fuzzy
labels. Finally, Npc = [0, 1]c − {0} is the unit (hyper)cube in
�c , excluding the origin. Vectors such as z = (0.7, 0.2, 0.7)T

in Np3 are called possibilistic label vectors, and in this case, zi

is interpreted as the possibility that x is in, or came from, class
i. Labels in Npc are produced, e.g., by possibilistic clustering
algorithms [5]. Evidently Nhc ⊂ Nf c ⊂ Npc .

Clustering (i.e., unsupervised learning) in unlabeled data is
the assignment of one of the four types of labels to the objects in
O. There are four types of clustering algorithms corresponding
to the four types of labels. If the labels are hard (crisp), we
hope they identify c natural subgroups in O. The label vectors
in (1) are used as the columns of three types of c-partitions of
O, which are sets of (cn) values {uik} that can be conveniently
arrayed as (c × n) matrices, say U = [uik ]. Let Uk denote the
kth column of U (which is a label vector in �c ). The three sets
are given by

Mpcn =

{
U ∈ �cn : Uk ∈ Npc ∀ k, 0 <

n∑
k=1

uik ∀i

}

(2a)

Mf cn = {U ∈ Mpcn : Uk ∈ Nf c ∀k} (2b)

Mhcn = {U ∈ Mf cn : Uk ∈ Nhc ∀k} . (2c)

Equations (2a)–(2c) define, respectively, the sets of possi-
bilistic, fuzzy, or probabilistic, and crisp c-partitions of O. The
reason that these matrices are called partitions follows from
the interpretation of their entries. If U is crisp or fuzzy, uik is
the membership of ok in the ith partitioning crisp or fuzzy sub-
set (cluster) of X . If U in Mf cn is probabilistic, uik is usually
the (posterior) probability p(i|ok ) that, given ok , it came from
class i, and if U in Mpcn is possibilistic, it has entries between
0 and 1 that do not necessarily sum to 1 over every column. In
this case, uik is interpreted as the possibility that ok belongs to
class i. Observe that Mhcn ⊂ Mf cn ⊂ Mpcn . It is convenient to
have a single name for the set Mpcn − Mhcn . This set excludes
the crisp c-partitions and contains the fuzzy, probabilistic, and
possibilistic c-partitions of O. We call Mpcn − Mhcn as the soft
c-partitions of O.

An alternative characterization of any crisp U in Mhcn is in
terms of the c crisp subsets that are defined by the rows of U .
Specifically, we may write O =

⋃c
j=1 Oj , where Oi ∩ Oj =

∅ , i 	= j. The ith row of U contains a 1 at each column k, where
ok is in class i, and

∑n
k=1 uik = ni = |Oi |. c = 1 is represented

uniquely by the crisp 1-partition, i.e.,

1n =
[
1 1 . . . 1

]︸ ︷︷ ︸
n times

which asserts that all n objects belong to a single cluster. At
the other extreme, c = n is represented uniquely by U = In ,
which is the n × n identity matrix, up to a permutation of
columns. In this case, each object is in its own singleton cluster.
Choosing c = 1 or c = n rejects the hypothesis that X contains
clusters.

When the data are unlabeled, the following three questions
about O collectively define cluster analysis.

Q1: Does O have cluster substructure at any value of c, 1 <
c < n?

Q2: If O has substructure, how can we find the clusters?
Q3: Once clusters are found, how can we validate them?

Q1 is called (i.e., preclustering) assessment of clustering ten-
dency; we do not pursue this problem here; for formal and
informal treatments, see [6] or [7].

Q2 is called cluster analysis. There are many models and
algorithms for clustering based on crisp, fuzzy, probabilistic, and
possibilistic methods [3]–[14]. Our examples will simply use
several well-known clustering algorithms to generate candidate
partitions for validation studies.

Q3 is called (i.e., postclustering) cluster validity; once U
is found, do we believe it is the best explanation of substruc-
ture in O? Is this U useful? Is there a better one we did not
find?, etc. Just as tendency assessment depends on how clusters
are defined, validation depends on what we mean by a good
partition.

Aside: We have specified Q1–Q3 as if they were straightfor-
ward questions; however, they are really pretty vague, because
we cannot say unambiguously what is meant by cluster structure.
Humans intuitively understand that a cluster is a set of similar
objects that are somehow “close.” The measure of similarity
itself may define “closeness”; however, as Rand [15] pointed
out: “every definition of ’closer’ is natural for some situation.”
Therefore, any description of clusters in data necessitates spec-
ification of a (i.e., mathematical) model that encapsulates the
ideas of similarity and closeness. Many different mathematical
properties have been used to define clusters, which invariably
result in rather conflicting ideas about what our computers think
datasets contain.

Clustering algorithms map X ⊂ �p or R ⊂ �nn 
→ Mpcn .
Let CP = {Ui : 1 ≤ i ≤ N} denote N different candidate par-
titions of a fixed dataset O that may arise as a result of clustering
(X or R) with one algorithm at various values of its parameters
or, more generally, with different algorithms, each with its own
parameters. In the sequel, we concentrate on validation of found
partitions. Q2 asks the following: Which U ∈ CP best explains
and represents the (unknown) structure in O?

If clustering is guided by an objective function to the parti-
tions in CP, at first glance, it seems like values of the objective
function should suffice to choose the best one. However, it is
well known that even the global extremum of many objective
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functions (such as J1 for hard c-means) can lead to very unre-
alistic partitions of O; for an example of exactly this behavior,
see [4, p. 97]. Moreover, some of the intuitively desirable prop-
erties that we may want a partition to have cannot be captured
by any functional that is easily optimized. These are arguably
the two most-compelling reasons to add the validation step to
the clustering process.

The handful of partitions that you can feasibly generate from
an unlabeled dataset has as a least-common denominator, i.e.,
the parameter c. Moreover, c is the most-important parameter
of the partitions in CP, in the sense that the number of clusters
sought in the data specifies the solution set being searched: If you
are in the wrong set, it will be impossible to find a satisfactory
explanation of the data (even though every clustering algorithm
will happily supply one!). Thus, any effective validation strategy
must find the best value for c. There is little guidance in the
literature about cmax . A rule of thumb that many investigators
use is cmax ≤ √

n.
There are two general approaches to choose a best U in CP.

First, we may use validity indices, i.e., v(U ), which are com-
puted at each U in CP. The set of values {v(U) : U ∈ CP} are
subsequently used to identify the best U in CP, say U ∗, in one
of the following two ways: 1) U ∗ optimizes v over CP (i.e., min
or max); or 2) U ∗ is the antecedent or successor partition that
essentially optimizes the derivative of v. Many call this second
method the “big-jump” approach, and is usually confined to se-
quences of partitions that are hierarchically nested by algorithms
such as the single-linkage method [4]. Almost all optimization
and big-jump indices are internal criteria, i.e., they use only
internal information that is generated by the clustering process
itself to select U ∗.

The second group of methods use comparison indices, i.e.,
s(U , V ), that compare pairs of partitions. If U and V are both
in CP (and hence, both obtained by algorithmic means), s(U ,
V ) is an internal criterion, and otherwise, we call it an external
criterion. There are various ways to use such indices. Rand [15]
lists the following five applications.

A1 [s(U ,V)]: Here, V is a reference partition that purports to
represent the “true cluster structure” in O. s(U , V ) measures
the extent to which U ’s in CP recover or retrieve the true
clusters in O, and hence, the sizes of U and V are equal.
Retrieval rates are called resubstitution error rates when U
and V are crisp, r = c, and s is a measure that counts matches
between the columns in U and V .

A2 [s(U, U ′)]: Here, U is a partition of O found with clustering
algorithm A. Perturb each xk or rij with zero mean, unit-
variance noise, and obtain U ′, which is a clustering of the
perturbed data. s(U, U ′) measures the sensitivity of A to
perturbations of the data.

A3 [s(U, U ′)]: Here, U is a partition of O found with clustering
algorithm A. Delete some xk ’s or rij ’s from the data and
obtain U ′, which is a clustering of the reduced data. s(U, U ′)
measures the sensitivity of A to missing data.

A4 [s(U, U ′)]: Here, U and U ′ are partitions of O found with
clustering algorithms A and A′. s(U, U ′) measures the agree-
ment between the two algorithms about clusters in O.

A5 [s(U, U ′)]: Here, U and U ′ are partitions of O found
by successive iterations of clustering algorithms. s(U, U ′)
measures the change in similarity due to the next iteration,
and hence, can be used as a stopping criterion for iterative
methods.

To this list, Hubert and Arabie [16] add the following
application.

A6 [s(U , V )]: This is the prediction of V given U , or U given V
(regression).

We never have an external reference partition in a real-
clustering situation, which, by definition, involves unlabeled
data. Therefore, why have case A1? Well, the only way you can
evaluate any clustering algorithm before using it in a real-world
situation is to see how well it recovers “true but unknown” ref-
erence partitions. If nothing else, good recovery rates on data
with “known” cluster structure at least provide some psycholog-
ical reassurance that the clustering algorithm can recover “good
clusters” (sometimes!). As an additional caveat, “true” refer-
ence partitions fuel our expectation that the best algorithmic
partitions will recover the same number of clusters. However,
labels that are physically correct do not necessarily reflect the
geometric situation in the numerical data, because the numeri-
cal features chosen may not provide the separation that a model
needs to recover the physical classes. Thus, the Iris data have
three subsets of vectors with different physical labels but only
two clusters that are clearly (mathematically) separable in four
spaces using most standard clustering algorithms.

Aside: There are other ways besides (i.e., internal and ex-
ternal) to classify validation methods. For example, v(U )’s are
divided into (i.e., direct and indirect) validity indices in [5], de-
pending on whether U is crisp or soft, respectively. This is a mi-
nor confusion; however, we must be aware of this “conflicting-
jargon” problem.

There are far too many indices to be surveyed by us, or by
any other authors. Hubert and Arabie [16] stated that a com-
prehensive review of s(U , V ) comparison methods alone was
impossible in any journal paper since it would require “the
length of a monograph”—in 1985! Beyond the discussions of
many schemes involving v(U ) and/or s(U , V ) that can be found
in texts [4]–[13], there are many number of surveys that limit
themselves to one of the validation strategies; for references be-
yond those available via Google (which can supply you with an
effectively infinite supply of links toward papers on this topic),
see [17]–[21].

Here is the plan for the rest of this paper. Section II develops
the background, which we need to describe many of the mea-
sures of the s(U , V ) type that have been used to compare pairs
of crisp partitions. Section III discusses previous approaches to
generalize several of the well-known measures to fuzzy parti-
tions, and then introduces our approach to apply these measures
to any pair of partitions in Mpcn × Mpcn . Our method pro-
duces well-defined generalizations of many measures for all
four partition types. Section IV contains some numerical exam-
ples that illustrate various facets of the new measures. Section V
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Fig. 1. Four types for a pair of objects from O × O relative to clusters in U
and V. (i) Paired in U and V. (ii) Neither paired in U nor in V. (iii) Paired in V
but not in U . (iv) Paired in U but not in V .

TABLE I
CONTINGENCY TABLE AND FORMULAS USED TO COMPARE

CRISP PARTITIONS U AND V

contains our conclusions and a discussion about conjectures and
extensions of the new measures.

II. COMPARISON INDICES AND THE CONTINGENCY

TABLE FOR (U , V )

Let U ∈ Mhrn and V ∈ Mhcn be two crisp partitions of n
objects. Note that U and V need not possess the same number of
clusters, i.e., r 	= c. The classical approach to compare U and V
begins by considering the four possible combinations for pairs
of objects from the set O in clusters of U and V , as shown in
Fig. 1. We have numbered the four types, i.e., (i)–(iv), following
Hubert and Arabie [16, p. 194]. The comparison of U with V
with a similarity measure s begins with the r × c contingency
table, as shown in Table I, that contains counts of the number
of occurrences of each of the four types over the n(n − 1)/2
distinct, unordered pairs in O × O.

Entry nij from N = UVT is the number of objects com-
mon to classes Ui and Vj . For example, let us consider the

following:

U =

[
1 1 1 0 0

0 0 0 1 1

]
, V =




1 1 0 0 0

0 0 1 0 0

0 0 0 1 1




N = UV T =

[
2 1 0

0 0 2

]
3

2

2 1 2 5.

Clusters U1 and V1 have two objects in common, i.e., {o1 , o2},
U1 and V2 have 1 object in common, i.e., {o3}, and U1 and V3
have 0 objects in common. Additionally, there are two paired in
U and V , i.e., type (i), i.e., {{o1 , o2}, {o4 , o5}}, six in type (ii),
i.e., {{o1 , o4}, {o1 , o5}, {o2 , o4}, {o2 , o5}, {o3 , o4}, {o3 , o5}},
zero paired in type (iii), and two paired in type (iv), i.e.,
{{o1 , o3}, {o2 , o3}}. Equations (3a)–(3d), which are functions
of the entries in Table I, are the building blocks of many similar-
ity measures for s(U , V ). These four equations simply count the
number of occurrences among the n(n − 1)/2 pairs of each of
the four types of unordered pairs shown in Fig. 1. Thus, a in (3a)
is the number of pairs that are paired in some cluster of U and
some cluster of V ; b is the number of pairs neither paired in U
nor in V , etc. It is easy to verify that the calculation of the matrix
N in Table I as N = UV T is correct; however, to our knowl-
edge, it has never been exhibited quite this way. This simple
observation will enable us to easily define soft generalizations
of many of the comparison indices that are to be discussed next.
Many well-known crisp comparison indices are functions of the
values in Table I. Some of these indices have “canonical stories”
attached to them that depend on interpretations of the next four
functions. Here

a =
1
2

r∑
i=1

c∑
j=1

nij (nij − 1) (3a)

is the number paired in U and V

d =
1
2


n2 +

r∑
i=1

c∑
j=1

n2
ij −


 r∑

i=1

n2
i• +

c∑
j=1

n2
•j




 (3b)

is the number paired in neither U nor V

b =
1
2


 c∑

j=1

n2
•j −

r∑
i=1

c∑
j=1

n2
ij


 (3c)

is the number paired in V , but not in U , and

c =
1
2


 r∑

i=1

n2
i• −

r∑
i=1

c∑
j=1

n2
ij


 (3d)

is the number paired in U , but not in V .
The sums (a + d) and (b + c) are usually interpreted, respec-

tively, as (the total number of) agreements and disagreements
between U and V . Table II contains a [nonexhaustive] list of
coefficients that have been proposed for s(U , V ) based on func-
tions of a, b, c, and d.
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TABLE II
COMPARISON MEASURES AND SOME GENERALIZATIONS BETWEEN PARTITIONS U AND V

There are other comparison indices based on the entries of
the contingency matrix N = UV T in Table II that are not easily
expressible in terms of the quantities a, b, c, and d in (3a)–(3d).
The last two rows in Table II exhibit functions that fall into
this category; for several other measures of this type, see [16].
Table II has the look of an extensive collection of comparison
indices; however, it barely scratches the surface of this mono-
lithic topic. You can find many more indices like these in the
literature—[14] is a good starting point for such an expedition.

A. Resubstitution Error Rate

Let us consider the use of s(U , V ) to compare soft partitions
U to a crisp reference partition V in the special case when
r = c, i.e., when U and V have the same number of clusters.
When U is crisp, we are sometimes able to interpret the value of
s(U , V ) in terms of a canonical story. For example, we know
that the Rand index is the ratio of pair agreements to the number
of pairs. However, when U is soft, we are unable to provide a

canonical situation that describes what the index (physically)
represents, even though we may find utility in computing the
extended value.

The traditional approach to this dilemma is to first harden any
soft partition U . Then, the hardened version of U , say H(U ), can
be compared with V , and the number of label matches counted.
This amounts to a comparison method that is similar to the
retrieval problem A1, which circumvents the difficulty posed by
U being soft in a different way. In order to do this, soft labels
in Npc must be transformed into crisp labels. Usually, noncrisp
labels (p) are converted to crisp ones (ei) using the conversion
function H : Npc 
→ Nhc , which is defined as

H(p) = ei ⇔ ‖p − ei‖2 ≤ ‖p − ej‖2 ⇔ pi ≥ pj , j 	= i
(5)

where ties are broken arbitrarily.
Geometrically, H finds the crisp label vector ei in Nhc closest

to p in the Euclidean norm ‖p − ei‖2 and uses it versus p to la-
bel the associated object unequivocally as belonging to cluster i.
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Now, let U be any soft partition of O. Let us apply H to each
column Uk of U , which results in the crisp label vector [H(U)]k .
The matrix[H[U ]] obtained by applying this transformation to
each of the n columns of U is regarded as the best approxima-
tion to U by a crisp partition of O in the sense of maximum:
memberships when U is fuzzy, posterior probabilities when U is
probabilistic, or typicalities when U is possibilistic. We note that
hardening U does not guarantee that H(U ) is a crisp c-partition
of O; however, if hardening happens to produce a zero row in
H(U ), this does not alter the number of matching columns be-
tween V and H(U ). We compute the number of label matches
in the columns of H(U ) to the reference partition V as

e(H(U), V ) =

∑n
k=1

∥∥[H(U)]k − V k
∥∥

1

2n
. (6)

The 1-norm is used in (6), and e(H(U ),V ) is called the re-
substitution error rate for the soft clusters in U . This measure
takes the value 1 when no columns match, and is 0 when all n
columns match. To make (6) comparable with the Rand index
sr (H(U), V ), we compute

se(H(U), V ) = 1 − e(H(U), V )

= 1 −
∑n

k=1

∥∥[H(U)]k − V k
∥∥

1

2n
. (7)

Let us consider the following example:

U =

[
0.1 0.7 0.4 1 0.9

0.9 0.3 0.6 0 0.1

]
→→→︸ ︷︷ ︸

hardening

H(U)

=

[
0 1 0 1 1

1 0 1 0 0

]
, V =

[
1 1 0 0 0

0 0 1 1 1

]

se(H(U), V ) = 1 −
∑n

k=1 ‖[H(U)]k − V k‖/2n = 0.4, and
here, sr (H(U), V ) = 0.4 as well. While this suggests that the
Rand index coincides with se(H(U), V ) in this special case, a
counterexample is easy to find, which is given by

U =

[
1 1 1 1 0 1 1 0 0 0 0 1

0 0 0 0 1 0 0 1 1 1 1 0

]

V =

[
1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1

]

for which se(H(U), V ) = 1 −
∑n

k=1 ‖[H(U)]k − V k‖/2n =
0.75, while sr (U, V ) = 0.5909.

The general situation in this special case (recall that r = c
here) is shown in Fig. 2. The lower part of this figure shows
that we can use any comparison index in Table II to compute
s(H(U ), V ) once U is hardened by H , and we can also compute
se(H(U), V ). On the other hand, once s(U , V ) is generalized to
cover the case of soft partitions, we can calculate any comparison
index in Table II directly on the pair (U , V ), as shown in the
upper part of Fig. 2. In summary, when, and only when, r =
c—and after we have solved the correspondence problem for
H(U ) below—we will have two approaches to generalize the
comparison of a soft U to a crisp reference partition V .

Fig. 2. Comparison indices versus resubstitution error when r = c with ref-
erence partition V.

Fig. 3. Correspondence problem in clustering.

B. Correspondence Problem

Before using se(H(U), V ), we must account for the corre-
spondence (or registration) problem. The problem is easiest to
understand when se(H(U), V ) is used to compare a reference
partition V to candidate partitions H(U ) and r = c—i.e., when
se(H(U), V ) assesses the retrieval success of H(U ) in recov-
ering the known labels in V . However, the problem exists, even
when r 	= c so that U and V represent different numbers of
clusters in O. Fig. 3 depicts the problem for two partitions U
and V of a set of five objects, say O = {o1 , o2 , o3 , o4 , o5}.

There are a variety of approaches for relabeling H(U ) so
that its clusters are “aligned” with the reference clusters in V .
When the data are vectorial, there are a number of relabeling
algorithms based on the available cluster prototypes [5]. In the
case of relational data, one may use an accuracy metric that relies
on permuting the cluster labels to register H(U ) to V [39]–[41].
Toward this end, let Igt be the vector of ground truth labels in
V for n objects. Let us assume without loss that Igt is arranged
lexicographically—i.e., the objects are arranged so that Igt has
the form

Igt = (11 . . . 1︸ ︷︷ ︸
n1

, 22 . . . 2︸ ︷︷ ︸
n2

, . . . , cc . . . c︸ ︷︷ ︸
nc

)

where ni is the number of objects bearing label i, 1 ≤ i ≤ c,
and

∑c
i=1 ni = n. Let IA denote the vector of labels in H(U )

obtained by clustering the n objects with clustering algorithm
A, IA ∈ {1, 2, . . . , c}n . It is possible that A finds the ground-
truth clusters in V exactly; however, H(U ) does not present the
labels in ground-truth order—this is exactly the case for U and
V on the left side of Fig. 3. There, we see that if we alter U
to U ′ by switching the rows of U , then V and U ′ are in 100%
agreement, and se(U, V ) = 1.
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Let π be the permutation functions on n slots, with π ∈ Π, π :
{1, 2, . . . , n} 
→ {1, 2, . . . , n}, and let us define

AC (Igt , IA ) = max︸︷︷︸
π∈Π

{∑n
i=1 δ([Igt ]i , [π(IA )]i)

n

}
(8)

where

δ(x, y) =

{
1, x = y

0, x 	= y

}
.

The global solution of optimization problem (8) identifies the
permutation of IA that is the best match to Igt . The solution
to (8) grows with factorial complexity but can be solved by
dynamic programming with, for example, the Kuhn–Munkres
algorithm [42].

A last observation about this topic—but an important one—is
that all of the indices in Table II depend on double sums, row
sums, or column sums of the entries of the matrix N = UV T .
Consequently, crisp comparison indices, such as Rand’s index,
are essentially independent of the correspondence problem that
plagues evaluation of retrieval success for soft clustering algo-
rithms by the “harden and count” method represented in (6) or
(7). This is an important advantage for the crisp-comparison-
index method, which remains true, even when r 	= c, and the
resubstitution error rate cannot even be computed!

III. GENERALIZING s(U , V ) WHEN U AND/OR V
ARE SOFT PARTITIONS

This section contains our proposal to generalize all of the
indices in Table II, as well as any others that depend only on
the entries of N = UV T , to the cases where U and/or V are
any partitions in Mpcn × Mpcn . We begin with Rand’s index
(see (4a); see Table II). This index apparently first appeared in
1958 [29], where it was called a simple matching coefficient.
Rand reintroduced this function in 1971 [15], and the literature
has consistently referred to it as “Rand’s index” since then.
Hubert and Arabie [16] give a nonexhaustive set of 11 other
citations that track the history of the Rand index. Because it
has a simple, natural interpretation, the Rand index continues to
be one of the most-popular comparison indices, which recently
appeared in many papers concerned with clustering microarrays
and gene-expression data [30]–[34].

The adjusted Rand index was first discussed by Morey and
Agresti, who suggested that the Rand index be normalized by
accounting for the possibility that U and V are random partitions
of O. Hubert and Arabie [16] use an adjustment for chance,
which is based on the formula

s∗(U, V ) =
s(U, V ) − E[s(U, V )]

max{s(U, V )} − E[s(U, V )]
. (9)

The quantity E[s(U, V )] in [16] is the expected value of
the index under the hypergeometric assumption. Hubert and
Arabie note that Morey and Agresti’s adjustment is incor-
rect, and then derive the adjusted Rand-index formula (4g) in
Table II. We think that (4g) is usually accepted as the correct

adjustment of the Rand index; however, note that Hubert and
Arabie listed at least three alternate forms of this index under
different assumptions about the term max{s(U , V )} in (5).

The recent use of Rand’s original index [30]–[34] has renewed
interest to generalize it, along with some of the other compari-
son indices shown in Table II, to various noncrisp cases. Specifi-
cally, we mention the papers of Campello [35], Hullermeier and
Rifqi [36], and Brouwer [37], all of which generalize the Rand
index to the case of U and/or V being fuzzy partitions of the n
objects. Two of these authors also present generalizations of the
adjusted Rand index; however, as you can see in Table II, neither
Campello’s [see (4h)], nor Brouwer’s [see (4i)] adjusted Rand
index agrees with the adjustment derived by Hubert and Arabie
[see (4g)]. In fact, there seem to be many other “adjusted Rand
indices” in the literature; for two other adjusted Rand indices,
see [32]. We will use (4g) as our basis for a soft generalization
of the adjusted Rand index.

Campello [35] presents a method to fuzzify the original Rand
index in (4a), as well as counterparts of the other five related in-
dices given in the fourth column of Table II. Campello presents
a special version of the adjusted Rand index, as shown in (4h)
of Table II. Campello asserts that his generalization of these six
indices is valid for any soft degenerate (one or more empty clus-
ters) or nondegenerate partition U . Campello consider neither
the case where V might be fuzzy nor the applications A2–A6
for s(U , V ) listed above. His scheme is based on presenting
(3a)–(3d) in an equivalent form using (cardinalities of) inter-
sections of the crisp subsets of O × O corresponding to each
of the four totals, and then replacing the crisp sets with fuzzy
sets to arrive at a partial generalization, which we denote below
as sFRC(U, V ). For later comparison, we record Campello’s
generalization of (3a)

a =
1
2

r∑
i=1

c∑
j=1

nij (nij − 1) 
→︸︷︷︸
Campello

a =
i−1∑
j=1

n∑
i=2

((
r
∨

k=1
(Uki ∧ Ukj )

)
∧
(

c
∨

k=1
(Vki ∧ Vkj )

))
. (10)

Rand [15] pointed out that sr (U, V ) = (a + d)/(a + b + c +
d) in (4a) satisfied the following properties: 1) sR (U, V ) =
0 ⇔ U = 1n and V = In (or the reverse); 2) sR (U, V ) = 1 ⇔
U = V ; and 3) dR (U, V ) = 1 − sR (U, V ) is a metric on the set
Y =

⋃n
k=1 Mhkn . Campello’s generalization of Rand’s index

[i.e., fuzzy Rand of Campello (FRC)], sFRC(U, V ), is valued
in [0, 1]; however, condition 2) on U = V is only necessary in
the fuzzy case and not necessary and sufficient for the index
to take the value 1. Curiously, Campello states that “the fuzzy-
Rand index cannot be seen as a general measure for comparing
two fuzzy partitions,” even though his index is well defined
for this case. Instead, he advocates using it only as a measure
to compare a fuzzy partition against a hard partition (possibly
with a different number of categories). Consequently, this is the
only numerical case illustrated in [35], and this is done only
with a “toy” example—no real data are clustered, nor are any
computed partitions evaluated, in this paper.
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Hullermeier and Rifqi [36] take issue with Campello’s defi-
nition of the fuzzy-Rand index. They assert, and subsequently,
demonstrate that the function dFRC(U, V ) = 1 − sFRC(U, V )
is not a true distance measure on Mf rn × Mf cn . They do not
formulate their index in terms of (3a)–(3d). Instead, their gener-
alization is guided by the fact that Rand’s index counts the num-
ber of paired agreements, i.e., (a + d), divided by the total num-
ber of possible pairs, i.e., (a + b + c + d), and this leads them
directly to the fuzzy Rand of Hullermeier and Rifqi (FRHR)
index given by

sFRHR(U, V )

= 1 −
[

n∑
j=i+1

n−1∑
i=1

|‖Vi − Vj‖ − ‖Ui − Uj‖|
/(

n
2

)]
.

(11)

In (11) and the sequel, Ai and Aj denote the vectors corre-
sponding to the ith row and jth column of any matrix A, and〈
Ai ,Aj

〉
is the dot product of these two vectors.This index is a

direct generalization of the original Rand index in (4a) to the case
where U and V are both fuzzy partitions of O. Hullermeier and
Rifqi show that the function dRHR(U, V ) = 1 − sRHR(U, V ) is
a pseudometric on Mf rn × Mf cn , and a full metric on a very
sparse subset of Mf rn × Mf cn , which is called the “normal”
partitions of O—these are partitions that have at least one 1 in
each row of the partition. This paper contains no examples of
the use of this index to compare fuzzy partitions; therefore, it is
difficult to say much more about it until we report on its values
in our numerical experiments.

Brouwer [37] discusses a different generalization to the three
indices given in Table II: the Rand, namely, the Rand, a third
variant of the adjusted Rand, and Jaccard’s index. Brouwer’s
generalization of (3a) is given by

a =
1
2

r∑
i=1

c∑
j=1

nij (nij − 1) 
→︸︷︷︸
Brouwer

a =

∑n
i=1

∑n
j=1

(
〈UT

i ,U j 〉
‖UT

i ‖‖U j ‖
〈VT

i ,V j 〉
‖VT

i ‖‖V j ‖

)
2

− n

2

=

(∑n
i=1

∑n
j=1

(
cos(uj

i ) cos(vj
i )
))

− n

2
. (12)

In (12), cos(uj
i ) is the angle between the vectors UT

i and Uj ,
and cos(vj

i ) is the angle between VT
i and Vj . We see from

(12) that the maximum occurs when both cosines are 1. Then,
a = n(n − 1)/2, which will occur if and only if d = 0 in Rand’s
formula, from which we conclude that U = V .

Our method begins by observing that the contingency Table I
for U and V is N = UV T . If the only case of interest concerned
softening these indices for use with fuzzy or probabilistic parti-
tions, this matrix would serve as a basis for our approach. How-
ever, we want to include the situation wherein U and/or V are
possibilistic. Let us consider a problem that naturally exhibits∑r

i=1 uik > 1 and/or
∑c

j=1 vjk > 1, or coincidental clusters,
via an algorithm such as the possibilistic c-means [43]. In the

possibilistic case, a measure, such as Rand’s index, can yield
both positive and negative values outside of [0,1]. To see how
this is possible, let us consider the value of d in (3b), the number
paired in neither U nor V , and

∑r
i=1 ni• > n, or

∑c
j=1 n•j > n,

respectively. One or both of the terms
∑r

i=1 n2
i• and

∑c
j=1 n2

•j
can make d in (3b) relatively large and negative. Depending on
the values of b in (3c) and c in (3d), a measure, such as the (soft)
Rand index, can result in sr (U, V ) < 0. While this value is still
of use in terms of optimization (max or min) or identification
of a “big jump,” indices valued in [0,1] are intuitively easier to
interpret, and facilitate comparison to other indices. Instead of
calculating N = UV T , we scale it with φ = n/

∑r
i=1 ni•. Al-

ternatively, we could scale N with ϕ = n/
∑c

j=1 n•j because∑r
i=1 ni• =

∑c
j=1 n•j , and hence, ϕ = φ. Consequently, we

define

N ∗ = φUV T =

[
n

/ r∑
i=1

ni•

]
UV T . (13)

An advantage of using this scaling factor is that in the cases
of crisp, fuzzy, or probabilistic partitions, φ = 1, and thus,
N ∗ = N = UV T . This shows that using the entries of (13)
with ANY of the indices in Table II will reduce to the original
indices when U and V are both crisp partitions of the n objects,
and otherwise, they will constitute valid soft generalizations of
all of those indices. Moreover, in the case of possibilistic par-
titions, the normalization in (13) also produces index values in
the range [0,1]. Let us consider the following example, which
illustrates this when V is a crisp reference partition for eight
objects, and U is an extreme possibilistic partition of the eight
objects:

U =




0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0




V =
[

0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0

]
.

Using the entries of N = UV T and (3a)–(3d), we find
a = 33, b = 75, c = 0, and d = (−)85. Substituting these into
(4a), the possibilistic Rand index is sr (U, V ) = (−)2.2609.
Using instead the entries of N ∗ = ϕUV T , we find a = 4.29,
b = 14.81, c = 0, d = 8.88, and a possibilistic Rand index,
sr (U, V ) = 0.4709.

For comparison, our generalization of (3a), for N = UV T , is

a =
1
2

r∑
i=1

c∑
j=1

nij (nij − 1) 
→︸︷︷︸
Anderson et al.

a =
1
2

r∑
i=1

c∑
j=1

〈Ui , (VT )j 〉(〈Ui , (VT )j 〉 − 1) (14)
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and using N ∗ in (13) instead of N , we have

a =
1
2

r∑
i=1

c∑
j=1

nij (nij − 1) 
→︸︷︷︸
Anderson et al.

a =
1
2

r∑
i=1

c∑
j=1

(
n
〈
Ui , (VT )j

〉∑r
k=1

∑c
p=1 〈Uk , (VT )p〉

)

×
((

n
〈
Ui , (VT )j

〉∑r
k=1

∑c
p=1 〈Uk , (VT )p〉

)
− 1

)
. (15)

Comparison of (15) with the fuzzy Rand indices of Campello
(10), Hullermeier and Rifqi (11), and Brouwer (12) shows that
the four indices are different from each other. The big ad-
vantage of our method of forming the contingency table as
N ∗ = φUV T = [n/

∑r
i=1 ni•]UV T is that this formulation di-

rectly generalizes all 15 indices in Table II (and any other indices
that are functions only of the entries in the contingency table) to
every combination of (U, V ). There are 16 possible pair types
accordingly as each of U and V are crisp, fuzzy, probabilistic, or
possibilistic; therefore, we have, for example, 16 Rand indices,
16 Jaccard indices, etc. Each formula there is recovered when
U and V are crisp, i.e., these are true generalizations to every
case—by definition.

Our generalization is a similarity measure and not a metric.
The job of s(U , V ) is to compare pairs of partitions. The values
calculated in this study are of use in terms of optimization (max
or min) or identification of a “big jump.” This is consistent
with the work of Campello [35] and Hullermeier and Rifqi [36],
where the latter is a pseudometric valid for only a subclass of
fuzzy partitions. Again, the job of s(U , V ) is to compare pairs of
partitions. One way to do this is to measure the distance between
them, and any norm on matrices will do this. However, this only
works when U and V are of the same size, and moreover, this is
not necessarily the optimal way to compare clusters represented
by those matrices.

Finally, we currently compute nij = 〈Ui , (VT )j 〉 =∑n
k=1 uikvjk (not including the scaling factor). Using theprod-

uct and sum for the inner and outer operations in matrix mul-
tiplication is but one instance of the more general form based
on S and T norms. In general, nij = S(T (uik , vjk ), which then
reduces to the form that we use here for the choices T = product
and S = sum. Another common choice would be T = min and
S = max. We leave the possibility that such a change would
result in better results than the ones reported here for a future
study.

IV. NUMERICAL EXAMPLES ON CLUSTER VALIDITY

A. Example 1

The Rand index given by (4a) is used with the entries of N ∗

in (13), where partition V is the reference matrix and partitions
U are obtained using HCM, FCM, and PCM.The FCM parti-
tions are obtained using the fcm function from the MATLAB
Fuzzy Logic Toolbox with c = 4, m = 2, maximum number of
iterations MAXIT = 100, objective function error EPS = 1e–5,
and random-partition initialization.The HCM partitions are ob-

Fig. 4. Gaussians datasets used in Example 1. (a) Dataset 1. (b) Dataset 2.

Fig. 5. Terminal partitions U acquired by (a) HCM, (b) FCM, and (c) PCM
for c = 4 on dataset 2.

Fig. 6. Original Rand for HCM and our soft generalizations, fuzzy and
possibilistic Rand for FCM and PCM, respectively, for (a) dataset 1 and
(b) dataset 2.

tained using the MATLAB Statistics Toolbox function k-means,
with random initialization and MAXIT = 100. The PCM parti-
tions are generated using our MATLAB implementation of the
algorithm from [43] with c = 4, m = 3, MAXIT = 100, EPS =
0.001, and a fuzzy-c-mean-based initialization.

We use two datasets: dataset 1 [see Fig. 4(a)] and dataset 2 [see
Fig. 4(b)]. The two datasets are made up of four Gaussian clouds
each with 100 samples per cloud. The means of the Gaussians
are [100 400]T , [100 100]T , [400 100]T , and [400 400]T . All
clouds in dataset 1 have a standard deviation of 10, while in
dataset 2, they have a standard deviation of 30. The reference
partition V for both datasets is the 4 × 400 matrix with four
“diagonal” blocks of one hundred 1’s in each row.

Fig. 5 displays the terminal partition matrices obtained for
dataset 1 by the three clustering algorithms.

The partitions in Fig. 5(a) (i.e., HCM) and in Fig. 5(b) (i.e.,
FCM) exemplify the correspondence problem mentioned above.
The points with index [1 100]T are in cluster 1 in UHCM , while
they are in cluster 2 in UFCM and likewise for clusters 3 and
4. Therefore, before assessing the validity of a crisp version of
FCM partition (5b) using (7) along the lower path in Fig. 2, we
would need to swap clusters (1,2) and (3,4) using an algorithm
such as (8) on H(U ).

Fig. 6 shows the Rand index obtained by varying the number
of clusters in the HCM, FCM, and PCM runs from 2 to 10
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Fig. 7. Comparison of the four fuzzy-Rand indices on FCM partitions of
dataset 3, which has c = 5 clusters.

with each of the two datasets shown in Fig. 4. All three Rand
indices (original Rand for HCM, and fuzzy and possibilistic
Rand for FCM and PCM, respectively) achieve a maximum
at c = 4 in Fig. 6(a), thereby indicating that among the nine
partitions for each case, the best match for V is U4 . This implies
that our generalizations of the Rand index behave as expected
when the data form compact, well-separated clusters like the
ones shown in Fig. 4(a). The graphs in Fig. 6(b) show that our
Rand and fuzzy-Rand indices for HCM and FCM behave in
a similarly desirable fashion, but the possibilistic Rand index
fails to reach a maximum at c = 4. We believe that this is due
to the characteristics of dataset 2, which favor HCM and FCM
solutions. PCM is designed to account for inliers and outliers
that do not seem to belong strongly to any cluster; however,
looking back at Fig. 4(b), there are no points of these types in
the data.

B. Example 2

In this example, we compare our fuzzy-Rand index with
the indices of Campello [35], Hullermeier and Rifqi [36], and
Brouwer [37]. We use FCM, same parameters as in Example 1,
to generate fuzzy c-partitions of dataset 3, which consists of five
Gaussians clouds in two dimensions with 100 samples each,
means [1 1]T , [1 40]T , [20 20]T , [40 1]T , and [40 40]T , and a
standard deviation of 1.5. These clusters are fairly compact and
well separated. The reference partition V for this example is
the 5 × 500 matrix with five “diagonal” blocks of one hundred
1’s in each row. Fig. 7 shows graphs of the four fuzzy-Rand
indices for terminal FCM partitions of dataset 3 as c varies from
2 to 10; therefore, there are nine candidate partitions in CP.
This graph shows two things: First, the four indices are indeed
different; and second, they have very similar values on this well-
behaved dataset. All four indices have clear maxima at c = 5,
which points to the most-preferable partition in CP. Fig. 7 might
tempt you to conjecture that the index of Hullermeier and Rifqi
is bounded above by the other three indices, but we have not
attempted a proof of this. The other three indices all cross each
other in Fig. 7; therefore, this is the only conjecture suggested
by these graphs.

Fig. 8. Comparison of the four fuzzy-Rand indices on EM partitions of dataset
3, which has c = 5 clusters.

C. Example 3

This example uses the same dataset 3 and reference parti-
tion V as Example 2, but candidate partitions are generated
by the expectation–maximization (EM) algorithm for Gaussian-
mixture decomposition [4, 8]. The EM partitions are gener-
ated using our MATLAB implementation, where MAXIT =
100, EPS = 1e–5, means are initialized using HCM (MATLAB
k-means function), initial random but normalized mixing coef-
ficients, and identity covariance matrices. Thus, the elements of
CP are probabilistic c-partitions of dataset 3. We compare the
same four fuzzy-Rand indices, as in Example 2, but as proba-
bilistic comparison indices. Fig. 8 graphs values of these four
indices. Comparison of Figs. 7 and 8 shows that the c-partitions
found by EM on dataset 3 are quite similar to those produced by
FCM, a result that could be anticipated in view of the structure
of dataset 3. The trends and shapes of the four graphs are quite
similar, again supporting our conjecture about the relationship
of the Hullermeier and Rifqi index to the other three. The main
point of this example is to show that fuzzy generalizations of
comparison indices may be quite effective when used to com-
pare candidate partitions from probabilistic clustering.

D. Example 4

In this last example, we show that all 15 formulas for compar-
ison indices in Table II can be used with our soft-generalization
scheme. Nine candidate partitions are again generated with
FCM, using the same parameters, as in Example 1. Dataset
4 consists of three Gaussians clouds with 100 samples each,
means [1 1]T , [1 40]T , and [20 10]T , and standard deviation
of 1.5. The reference partition V for this example is the 3 × 300
matrix with three “diagonal” blocks of one hundred 1’s in each
row. Table III lists the values of each index on the nine terminal
partitions for c = 2–10. Scanning this table, with the shaded
cells indicating the choice of each index, shows that each of
the 14 indices points to c = 3, which is the preferred solution
for this well-separated set of three clusters. Equations (4b) and
(4j) correctly have minima at c = 3, while all other equations
correctly have maxima at c = 3. This example verifies that we
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TABLE III
RESULTS FOR THE 15 FORMULAS PROVIDED IN TABLE II, DATASET 4, THE FCM, AND N ∗

TABLE IV
COMPUTATIONAL COMPLEXITY FOR THE FIVE FUZZY-RAND INDICES

have valid fuzzy generalizations of all 15 formulas in Table II.
Moreover, as noted above, there are (many) other comparison
indices that depend only on the entries of the contingency matrix
N = UV T ; hence, our method is indeed quite general.

Lastly, we make a remark about computational complexity.
Assuming similar cost for different operations, the cost of eval-
uation of (3a) for all but the index of Hullermeier and Rifqi (who
form the fuzzy-Rand index directly) are reported in Table IV.

The example in the last column of Table IV shows that in
terms of computational costs, the Anderson et al. method is
(at least 3 and at best 5) orders of magnitude less than the
other generalizations of Rand’s index. Computation of the Rand
index in (4a) involves calculation of all four equations, i.e.,
(3a)–(3d). Combining the factors, as in (4a), uses only addition
and subtraction and will cost all methods equally. Hence, we can
extend the results of Table IV from just (3a) to (4a) without loss.

V. DISCUSSION AND CONCLUSION

We have developed a method to generalize comparison in-
dices s(U , V ) to all possible cases for U and V : crisp, fuzzy,
probabilistic, and possibilistic. Our method is applicable to ev-
ery index whose value is a function of a certain r × c contin-
gency table whose row sums and column sums count numbers
of each of the four pair types (i.e., together in both, together in

neither, and together in either but not both). We compared our
generalization of the classical Rand index with three other fuzzy
generalizations of it both computationally, as well as in terms
of computational complexity. We showed that our extension of
the Rand index is O(n), while the other three are all O(n2). Our
numerical examples included the use of our soft comparison
indices to validate both probabilistic and possibilistic partitions
of the data.

The use of comparison indices for validation of clustering
algorithms has the significant advantage of being independent
of the correspondence problem to compare clustering solutions
with known reference partitions. Rand’s index has enjoyed a
real resurgence of interest and usage in the recent bioinformat-
ics community [30]– [34]; therefore, the present work, which
provides a method to generalize this index for use with soft
clustering algorithms, is both timely and important. In this pa-
per, we have exemplified the use of our indices in only one (viz.,
A1) of the six problems (i.e., A1–A6) listed in Section I. Future
studies will concentrate on the use of soft comparison indices
for one or more of the remaining problems. Specifically, we be-
lieve that we can use soft comparison indices as internal criteria
to compare candidate partitions and will focus our next efforts
on this problem.

To conclude, we offer this observation. Validity indices
have surprising and, very often, unpredictable dependency on
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elements of the solution that seem, at first glance, to be rather
unrelated to their job—which indicates whether or not to be-
lieve the outputs. However, clustering is used extensively in real
applications, such as data mining; therefore, it is important to
continue studying ways in which to validate candidate solutions.

Even if the objects being clustered are well separated into c
recognizable subsets, there are many reasons why we may not
discover this structure through clustering. For example, the nu-
merical representation of the objects may not possess adequate
information to discriminate between clusters of objects. Further,
even if the data possess the desired substructure, the algorithm
used may not extract it from the data. (For example, an algo-
rithm, which looks for hyperspherical clusters, will not extract
shell-type clusters.) Finally, the objects may have structure, the
data may represent it, and the algorithm may be capable of find-
ing it, but the appropriate parameters of the algorithm that yield
a successful interpretation of X are never used. Even if all of
these obstacles are met, validity indices may fail to indicate that
the great clusters are indeed great!
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