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From a computational point of view, sensitivity analysis, cal-

ibration of a model, or variational data assimilation may be

tackled after the differentiation of the numerical code repre-

senting the model into an adjoint code.

This paper presents and compares methodologies to gen-

erate discrete adjoint codes. These methods can be imple-

mented when hand writing adjoint codes, or within Auto-

matic Differentiation (AD) tools. AD has been successfully

applied to industrial codes that were large and general enough

to fully validate this new technology. We compare these

methodologies in terms of execution time and memory re-

quirement on a one dimensional thermal-hydraulic module

for two-phase flow modeling. With regard to this experiment,

some development axes for AD tools are extracted as well as

methods for AD tool users to get efficient adjoint codes semi-

automatically. The next objective is to generate automatically

adjoint codes as efficient as hand written ones.

1. Introduction

During the last three decades the interest for optimal

control [15] techniques grows up in various research

communities. From a meteorological point of view,

sensitivity analysis, calibration of a model, or varia-

tional data assimilation [13,14] are for example per-

formed after the differentiation of the numerical code

representing the model. Optimal shape design prob-

lems [17] can also be solved by such methods. There

is a considerable body of literature on the subject, and

the reader is referred to [3] for getting examples and

references.

1This work was supported by the INRIA cooperative research

action for Operative Inverse Mode (MIO).

Inverse problems require adjoints. The two methods
for getting adjoint codes are: writing the code from the

derivatives of the continuous mathematical equations,

or differentiating the code that discretizes the continu-

ous mathematical equations. Note that depending on
the equations and their discretization, the derivatives

may differ from one another and a theoretical anal-

ysis [18,19] is necessary to choose between the two

methods. If one wishes to obtain a discrete adjoint from
an existing computational code, one may choose either

to write it by hand or to generate it using automatic

differentiation (AD), or to mix both techniques. In

the communities where adjoint codes are well known,
for example in meteorology [20], methodologies have

been developed to help the hand coder write his discrete

adjoint. Nevertheless the testing and debugging of the

resulting codes are tedious tasks.
Automatic differentiation [1,8,11] is a set of tech-

niques for computing derivatives at arbitrary points.

AD is mainly based on the following observation: a

program execution can be seen as a composition of

functions, thus it can be differentiated using the chain
rule. Derivatives of elementary statements are com-

puted using standard rules for differentiating expres-

sions such as: “the derivative of a sum is the sum of the

derivatives” . . . Two modes of AD have been studied
and implemented by various authors: the direct (or for-

ward) mode that propagates directional derivatives and

the reverse (or backward) mode that propagates adjoint

values. The reverse mode is particularly efficient for
computing gradients because its cost is independent of

the number of input variables [4,16]. One notices that

an adjoint code requires particular statements that store

values for its evaluation. Two classes of AD tools exist:
those that work by code generation and those that work

by operator overloading. Odyssée [7], TAMC [9], and

the version 3.0 of Adifor [2] belong to the first one,

whereas Adolc [10] belongs to the second class. A
theoretical presentation of the strategies used to gen-

erate adjoint codes (by hand or automatically) can be

found in [6]. In that respect, adjoining strategies are

applied at three different levels: local strategies at the
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statement level, loop strategies at the loop level and

global strategies at the sub-program level. This paper

concentrates on a brief presentation of the global strate-

gies, as well as their comparison on a sample thermal-

hydraulic code.

The layout of the paper is as follows. Section 2 pro-

poses definitions and explains how to write the adjoint

code of a statement whereas Section 3 describes dif-

ferent strategies for generating the adjoint of a whole

code. These strategies are used in Section 4 to gen-

erate adjoints codes of a trial program. These codes

are compared in terms of execution time and memory

requirement. Section 5 discusses advantage and draw-

backs of the use of AD tools and gives some research

axes for AD.

2. Basics of automatic differentiation

An adjoint code computes the product J T d where J

is the Jacobian matrix of a function f encoded within

a code P, and d is an adjoint direction (initial values of

the adjoint variables). Such a code is generated from

the original code P by differentiating each statement as

an elementary function in order to propagate the adjoint

direction backward as explained in Section 2.1 and Sec-

tion 2.2. The code generated using the reverse mode of

AD by source transformation is in this sense equivalent

to a hand written discrete adjoint. Differences between

both codes essentially come from global strategies (see

Section 3).

2.1. Chain rule application

When a statement S is differentiated with respect

to a variable X, the corresponding piece of code S’

computes an output direction dXo as the product of its

local transposed Jacobian matrix by an adjoint input

direction dXi.

For example, assignment A shown in Fig. 1(a) may

be viewed as an elementary mathematical function f

which input and output domains are R
2 and R, that

computes f(x, y) = z. To build up the composition of

the elementary functions corresponding to a sequence

of statements, the input and output domains of each

elementary function are extended. On this example the

extension leads to consider f as a function F from input

domain R
3 to output domain R

3 such that F(x, y, z) =
(x, y, f(x, y)). The vector do =(dX,dY,dZ)To is the

product of the transposed Jacobian matrix of F denoted

by JT
A (see Fig. 1(b) by the adjoint input vector d i.

The adjoint code of A denoted by A’ Fig. 1(c) directly

derives from the mathematical computation do = JT
A ∗

di. In order to optimise the code in terms of number of

intermediate variables, both dXi and dXo are denoted

bydX in the actual piece of codeA’. From this example,

one observes that the adjoint code of one statement is

a sequence of statements which length is the number

of adjoint variables of the original assignment. The

adjoint code B’ (Fig. 2(c)) is derived from statement B

(Fig. 2(a)) using the same methods.

In order to get the adjoint code of sequence [A;B],

one combines pieces of code A,A’,B,B’ using the

chain rule. The transposed Jacobian matrix (JA ∗JB)T

of [A;B] is the product JB
T ∗ JA

T of the elementary

Jacobian matrices. One deduces that if the original

statement A is executed before B, its adjoint derivative

statements A’ are computed after B’. The adjoint of

the sequence [A;B] is then [B’;A’] where A’ and

B’ must be evaluated on correct values of X, Y and Z.

The remaining problem is to get the correct value of

Y since variable Y is used and overwritten. The diffi-

culty of adjoint generation appears: original values of

required intermediate variables must be restored before

the evaluation of the corresponding Jacobian matrix.

The organisation of the final adjoint code of [A;B] is

described in Section 3. The fundamental constraints on

this adjoint are: A must be executed before B’ and B’

must be executed before A’.

Getting the adjoint code of a sequence of assign-

ments is quite easy. But general codes contain com-

plex statements as branches, loops and calls to sub-

programs that define control structures. This structure

is only determined at runtime and must be reproduced:

for example the values of tests or the number of steps

of a loop need to be stored or recomputed. We name

trajectory the list of values required for evaluating the

Jacobian matrices or for reverting the computation. As

described in Section3.1, the size of the trajectory de-

pends on the storage-recomputation trade-off chosen

for the adjoint generation. This problem arises when

using AD tools as well as when hand writing adjoint

codes.

2.2. Activity propagation

We use a description of a program P named call tree

which is known at compile time. In the call tree, each

node represents a sub-program of the source code and

each arrow links a sub-program with a sub-program

it may call. If a sub-program appears twice in the

source code of P the corresponding node is duplicated
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Fig. 1. Adjoint code of A in the “adjoint” direction (dX,dY,dZ)T .

Fig. 2. Adjoint code of B in the “adjoint” direction (dX,dY,dZ)T .

in the call tree representation of P. When executing the

program, the call tree is walked through from the top to
the bottom and from the left to the right. We define the
depth of a sub-program to be 0 for the root of the tree,

and to be depth (q) = 1+depth(p) for node q if node p

calls node q. The depth of a call tree is the maximum
depth of all the leaves of the tree. As an example, Fig. 3

shows the call tree of a program P of depth 3 made of
four sub-programs p0, · · · , p3. Program P is executed
from p0 that calls p1 then p2, and p2 calls p3.

We denote by P’ the derivative program of P with
respect to some active inputs chosen at the root level
of the program. In addition, a sub-set of active outputs

can be specified: the generated code computes these
outputs only. Differentiating P as a whole function
requires the knowledge of all the active variables at each

point of the original code. More precisely variables
are active when they both depend on at least one active
input and impact at least one active output.

The activity propagation is a key point to obtain a
minimal adjoint code. If no activity propagation is
performed, any variable is associated to a derivative and

each line of the code is differentiated. On the contrary,
if the active/passive variables are known at each point
of the program, derivatives are only associated to active

ones and lines of code are only differentiated if they
involve active computations. The activity propagation
is performed through the call tree: from the root to

all nodes. This tedious task is the second problem
when coding an adjoint. It can be left to AD tools that
automatically follow active variables all along the code.

From the call tree and the activity information at each
node, an adjoint code can be generated using one (or
a mixture) of the adjoining strategies described in the

next section.

Fig. 3. Call tree of P.

3. Adjoining strategies

The generation of an adjoint code is based on the

reversal of the original computation. As described in

the previous section, this requires to store or recompute

some intermediate values. In this section, two levels

of storage/recomputation strategy are described: local

level in Section 3.1 and global level in Section 3.2.

3.1. Local strategies

As shown in the previous section, the context of

evaluation of the local (transposed) Jacobian matrices

must be reproduced. Sequence [A;B] is chosen as an

example again. The adjoint code of [A;B] runs the

sequence [B’;A’], where B’ and A’ are displayed

in Figs 1 and 2. The problem is to get the correct value

of variable Y since variable Y is used and overwritten.

We call Y0 the initial value of Y and Y1 its value after

execution of B. In order to compute correct derivatives,

Y must be set to Y0 before computing the partials of

A’. The same method applies for variable Z.
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The local strategy generally used (via AD or hand

writing) consists in memorising the values of all the

original variables before modification. These values

are restored at the right time to be used within the

computation of the partials. The piece of code that

computes the original function and stores values of

modified variables is named direct part. The piece of

code that restores values and computes adjoint variables

is named reverse part. The direct part is necessarily

run before the reverse part.

Figure 4 shows the adjoint code of [A;B]. The two

values Z0 and Y0 are respectively stored in V0,V1 in

the direct part (see Fig. 4(a)). In the reverse part (see

Fig. 4(b)), the value of the variable Y is restored to Y0

by [Y = V1] before the computation of B’ and the

value of Z is restored to Z0 by [Z = V0] before A’.

The number of values to be stored is at most one value

per statement. This is the reason why this method is

the standard one used by adjoint developers as well as

within AD tools.

Two other strategies can be applied at the local level.

The first leads to the recomputation of all the modified

variables from some initial ones. This strategy yields

to a quadratic growth of the execution time in terms

of number of statements actually executed. A second

strategy consists in computing and memorising partial

derivatives [12] along the direct part,and restoring them

along the reverse part. This strategy leads to a growth

of required memory: for each statement the number

of values to be stored is exactly equal to the number

of active variables involved in the local computation.

Even though these non-standard strategies are not in

general the best choice, they can be applied on specific

pieces of code.

3.2. Global strategies

Strategies that are applicable at the call tree level to

built up the derivative program are named global strate-

gies. Two methods are used to generate adjoint codes:

the No recomputation strategy is used when hand cod-

ing adjoints, and the Sub-program recomputation strat-

egy which is implemented in AD tools. We denote by

ps
i (where s stands for “store”) the direct part of the sub-

program pi and by p′r
i (where r stands for “restore”) its

reverse part. Parts ps
i and p′ri share the trajectory local

to pi. As explained before, ps
i computes and stores

the trajectory whereas p′r
i restores this trajectory and

propagates adjoint values.

The two global strategies under consideration com-

bine these direct and reverse parts in a different way.

Let consider the program P whose call tree is shown

in Fig. 3 as an example. Figure 5 shows the call tree

of the two adjoint codes of P’ generated using the two

global strategies described in this section.

No recomputation – This strategy is used for hand

coding adjoints: it consists in storing intermediate

calculations recursively on the call tree.

The resulting adjoint code P’NR is shown in

Fig. 5(a). Each original sub-program p i is asso-

ciated to the two sub-programs ps
i and p′ri . Since

the two parts may be executed far from one an-

other (it depends on the call tree), the trajectory

is stored within global variables. The trajectory

then consists of the union of the trajectories of all

the sub-programs walked through during the exe-

cution of the program. It can be enormous. The

adjoint variables are computed from these values

taken in reverse order.

The effectiveness of such a strategy depends on

the ability of the hand-coder to control the storage.

Each sub-program called inP’NR is either a direct

part ps
i or a reverse part p′r

i . If pi calls pj in P, then

ps
i calls ps

j and p′i
r

calls p′j
r
. Each original sub-

program is executed once to store the trajectory

and is never called again: no recomputation of the

original sub-programs is necessary in this strategy.

Sub-program recomputation – The problem can be

taken the other way round: the minimum quantity

of intermediate values is stored. This is possible

when recomputing sub-trees of the original call

tree: we name it the “Sub-program recomputation

strategy”.

The call tree of the corresponding adjoint code

P’SR is shown in Fig. 5(b). Each original sub-

program pi is associated to one sub-program

p′i = {ps
i ; p

′r
i }. Since the two parts ps

i and p′ri
are executed consecutively, the trajectory can be

stored within local variables.

Using this strategy, the trajectory consists of the

union of the trajectories of all the sub-programs

walked through within one branch of the call tree.

Each sub-program called inP’SR is either an orig-

inal sub-program pi from P or a generated one

{ps
i ; p

′r
i }. If pi calls pj in P, then ps

i calls pj and

p′ri calls {ps
j ; p

′r
j }. As a result, recomputations of

the original functions are necessary: each original

sub-program is executed a number of times equal

to its depth in the call tree. The total supplemen-

tary execution time is in the worst case equal to

δ times the original execution time where δ is the
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Fig. 4. Adjoint code of [A;B] in direction (dX,dY,dZ)T : standard strategy.

Fig. 5. Call trees of P’.

depth of the program. Moreover, any sub-program
p′j must be run with the same input values as for

pj . As a consequence, if sub-program p i calls n

sub-programs {pj , j = 1, n}, the direct part ps
i

(respectively p′r
i ) of p′i must store (respectively re-

store) the context of call of all the sub-programs

{pj, j = 1, n}.

3.3. From one strategy to the other

An adjoint generated using the Sub-program recom-

putation strategy may be transformed into a new adjoint
code that implements the No recomputation strategy

and vice versa. This section discusses such transforma-
tions. The adjoint code of any program P created us-

ing the Sub-program recomputation strategy P’SR (see

Fig. 5(a)) is rewritten as a second code P’NR imple-
menting the No recomputation strategy (see Fig. 5(b)).

To generate the sub-programs necessary for P’NR

from P’SR, each sub-program {ps; p′r} is split into

two sub-programs ps and p′
r
. This transformation is

performed in three steps:

1. {ps; p′
r
} is split into two sub-programs: ps and

p′r,

2. each call to an original sub-program q in ps is

replaced by a call to qs,
3. each call to {ps; p′

r
} in p′

r
is replaced by a call

to q′
r
.

Figure 6 shows the (one level) transformation of sub-

program {qs
0; q

′r
0} into ps

0 and p′
r
0. The result of each

step of the transformation is illustrated by one sub-
figure.

It is clear that if the transformation applied to

{ps
0; p

′r
0} is applied to {ps

1; p
′r
1}, {ps

2; p
′r
2}, {ps

3; p
′r
3},

the programP’SR in Fig. 5(b) is changed to P’NR (see

Fig. 5(a)).

Tamc and Odyssée implement the Sub-program

recomputation strategy whereas Adolc implements
the No recomputation strategy.

4. Comparison of the global strategies

This section mainly describes the application of

the global strategies to the thermo-hydraulic code
Thyc-1D (developed at Électricité de France/Direction

des Etudes et Recherches). The local strategy chosen is

the standard one: the value of each modified variable is
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Fig. 6. Transformation of {ps

0
; p′

r

0} (given in Fig. 5(b)) into p
s

0
and p

′s

0.

stored. Thyc-1D is chosen because it is large enough

to allow for general observations and small enough to

be modified by hand. This trial code was not written in

prevision of any adjoint construction and can thus be

taken as a true example.

In order to compare the influence of the trajectory

management on the efficiency of the resulting adjoints,

we implement and apply the common trajectory man-

agement methods. Execution time and static memory

requirement of the original code Thyc-1D are used as

references.

4.1. Target code

Thyc-1D is a one dimensional thermal-hydraulic

module for two-phase flow modeling that simulates the

evolution of some parameters in heat exchangers. It

consists of five partial differential equations: three con-

servation equations for the two-phase mixture (mass,

momentum and energy), one conservation equation for

the vapour mass and one conservation equation for the

relative liquid-vapour velocity between the two phases.

To compare the different strategies, we choose to eval-

uate the sensitivity of the relative velocity between

phases with respect to four parameters. The latter are,

in particular, the relaxation time in boiling modeling

and the thermal power generated in the bundle.

Thyc-1D consists of two different kinds of sub-

programs: 13 Fortran-77 sub-programs and 12 sub-

programs from EDF’s compiled libraries that are differ-

entiated using a first order finite difference scheme. It is

clear that the use of finite differences certainly impacts

the execution time of the adjoint code with respect to

a true adjoint. This influence is the same for all global

strategy and allows for fair comparisons.

4.2. Generation of the different adjoint codes

Using Odyssée, we have automatically generated

a first adjoint code of Thyc-1D named Recomp- that

uses the Sub-program recomputation strategy. Then,

the Recomp- code is modified in order to obtain the

Table 1

Adjoint code generation

Name Generation

Standard Optimised

Method Time Method Time

Recomp- Auto 1 hour Semi 2 months

NoRecomp- Semi + 1 day Semi + 1 day

NoRecomp- code using the method described in Sec-

tion 3.3.

The version of Odyssée used here applies no op-

timisation to diminish the storage: it stores the value

of all variables before modification. It does not check

for example if the value is used afterwards in the orig-

inal code, or if it is used linearly or not in the deriva-

tive computation. Such optimisations have been ap-

plied semi-automatically on Meso-NH [5] to turn the

adjoint Recomp- code to an adjoint NoRecomp-

code. The same trajectory improvements are applied to

Thyc-1D to obtain optimised versions of Recomp-

and NoRecomp-.

Table 1 summarises the way the four codes are gen-

erated: the generation method and the generation time.

We consider generation time to be: generation, com-

pilation, run and debug of the adjoint runtimes. As all

the codes are derived from Recomp-, the first column

of Table 1 indicates the additional time with respect

to this basic generation time using the symbol +. All

the optimised code are generated from the optimised

version of Recomp-, itself generated in two months

from the code of Recomp-. The second column indi-

cates (using +) the generation time of all the versions

of the code with respect to the optimised version of

Recomp-. Columns labelled Method indicate the gen-

eration method: Auto means fully automatically gener-

ated using Odyssée and Semi means hand modified

from another code.

The functionalities of a library dedicated to the man-

agement of the trajectory are: store and restore, scalar

values as well as arrays, various types (integer, logical,

real, double . . .). We develop three implementations

of the trajectory management library: the first one la-

belled Stat is implemented in Fortran and uses global
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static arrays, the second one labelled Dyn implemented

in C uses a dynamic list of buffers, the third one labelled

File implemented in Fortran uses direct access files.

The trajectory management libraries are independent

from the adjoint code.

Linking the three trajectory management libraries

with one adjoint code, one gets three different adjoint

versions: for example Recomp-Stat, Recomp-Dyn,

Recomp-File are obtained from Recomp-. From the

four adjoint codes, we obtain twelve versions.

4.3. Adjoint runtimes comparisons

In this section, the twelve adjoint versions described

above are compared in terms of execution time and

memory requirement. We have verified the correctness

of the values of the computed gradients: they all agree

to the finite difference results.

Table 2 (respectively Table 3) presents the execution

time and trajectory characteristics of the standard (resp.

optimised) adjoint codes. These values are obtained on

a SPARC Station (SunOS 5.6) with512 MegaBytes

memory and 1 GigaByte swap.

Execution time is measured in seconds and averaged

on 10 executions. The Total execution time is divided

into two components: the Trajectory management time

and the Base execution time which is equal to Total

minus Traj.. The Ratio of the Total execution time with

respect to the execution time of Thyc-1D is presented.

The Total execution time is directly measured from the

adjoint codes. The Trajectory management execution

time is difficult to measure from the adjoint codes be-

cause each move costs less than the measurable mini-

mum execution time. To get credible measures, a code

that reproduces the trajectory characteristics is used.

The trajectory management libraries compute the

Trajectory characteristics: the Size of the trajectory (in

KiloByte) and the number of trajectory Moves (di-

vided by 103). We show two components of the To-

tal number of moves: the number of Scalar or Block

moves of length 100 (this length is averaged on all the

blocks moves). A block move of length n is function-

ally equivalent to n scalar moves and is used for ex-

ample to move arrays in one shot. The trajectory char-

acteristics only depend on the global strategy chosen.

Using the No recomputation strategy, each component

of the trajectory memory contains the same value all

along the execution. On the contrary, the Sub-program

recomputation strategy implies several moves of the

same value.

At a first glance to Table 2 and Table 3, one deserves

that the static trajectory management -Stat technique is

a lot faster than the dynamic technique -Dyn using both

global strategies. The external trajectory management

labelled -File is a bad choice in comparison to static

-Stat and dynamic -Dyn management of the trajectory.

Therefor, in the rest of the paper, we only consider the

-Stat and -Dyn executions.

We first investigate the influence of the global strat-

egy on the execution time and memory requirement of

the adjoint codes (see Table 2).

As expected from the theory, one observes that the

No recomputation strategy is minimal in terms of ex-

ecution time whereas the Sub-program recomputation

strategy is minimal in terms of trajectory size. The

trajectory size of NoRecomp- is 13 times the trajec-

tory size of Recomp- and the execution time is 0.87
times the Recomp- execution time. The theoretical

Ratio between the adjoint execution time and the orig-

inal execution time is in the worst case 5 for a straight

line program. The practical ratio of 6 (or 7) obtained

on the standard adjoint can then be considered really

good as Thyc-1D is far from a straight-line code. The

large benefit in trajectory size of Sub-program recom-

putation is obtained to the detriment of the execution

time since each part of the initial code is run at least

a number of time equal to its depth in the original call

tree. From the theory, we know that the total extra

recomputation is in the worst case D ∗ T where D

and T are respectively the depth of the call tree and

the execution time of the original program. The depth

of Thyc-1D is D = 6 and and its execution time is

T = 7 seconds. Therefor, the extra recomputation of

the original function could be 42 seconds, but is only 9
seconds (the difference between the Base components

of Recomp- and NoRecomp-). It is 1.3 ∗ T which

is a little more than one execution of the original pro-

gram Thyc-1D. From these results, we conclude that

the standard adjoints obtained semi-automatically are

really efficient.

The choice between the two global strategy depends

on the user key resource: execution time for real time

computations or memory requirement. On some exam-

ples a ratio of 13 in trajectory size could lead to a dead

lock, whereas on some others a gain of 16% in terms

of execution time can be of prime necessity.

In the later, the influence of the optimisation of the

trajectory is studied by comparing Tables 2, 3. The

optimisations performed on the standard codes to get

the optimised versions are eliminations of unnecessary

trajectory components. This implies a gain in trajectory
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Table 2

Execution time and trajectory characteristics of the standard adjoint versions

Code name Execution time Trajectory characteristics

Total Traj. Base Ratio Size Moves

Total Scalar Block

Recomp-Stat 51 5 46 7 25380 9905 9584 321

Recomp-Dyn 60 13 47 8 25380 9905 9584 321

Recomp-File 2760 2711 49 378 25380 9905 9584 321

NoRecomp-Stat 44 6 38 6 345883 10051 9708 343

NoRecomp-Dyn 53 14 38 7 345883 10051 9708 343

NoRecomp-File 2998 2959 39 410 345883 10051 9708 343

Table 3

Execution time and trajectory characteristics of the optimised adjoint versions

Code name Execution time Trajectory characteristics

Total Traj. Base Ratio Size Moves

Total Scalar Block

Recomp-Stat 42 2 40 6 21 8063.5 8063 0.5

Recomp-Dyn 48 7 41 7 21 8063.5 8063 0.5

Recomp-File 557 517 40 76 21 8063.5 8063 0.5

NoRecomp-Stat 39 2 37 5 59128 8089 8089 0

NoRecomp-Dyn 45 7 38 6 59128 8089 8089 0
NoRecomp-File 576 538 38 79 59128 8089 8089 0

size and a reduction of the number of trajectory moves.

On this example, the manual optimisation of the trajec-

tory reduces (a) the number of trajectory moves by a

factor of 1.3 for both strategies and (b) the size of the

trajectory by a factor of 1200 using the Sub-program

recomputation strategy and 6 using the No recomputa-

tion strategy. At the same time, the total execution time

is only reduced by an averaged factor of 1.2. From

these practical results, on deduces that the execution

time depends more on the number of trajectory moves

than on the trajectory size. This is not specific to the

adjoints of Thyc-1D but is a general rule. This result

is confirmed by the observation of the trajectory man-

agement time for NoRecomp and Recomp. Compar-

ing the standard and the optimized adjoints, the num-

ber of trajectory moves appear to be nearly the same

as well as the trajectory management time, whereas the

trajectory size is absolutely different.

On our example, all the adjoint codes could be run

whatever strategy is used. But as we said before, re-

ducing the trajectory size may be the only way to run

the adjoint. We conclude that (a) it is important to di-

minish the trajectory size to be able to run adjoint codes

that could not be run otherwise and (b) it is important

to diminish the number of trajectory moves to reduce

the execution time. One can reduce the trajectory size

by changing the global strategy, or by suppressing for

example the components of the trajectory that appear

linearly as we did on Thyc-1D. A first strategy to be

applied on adjoint codes to diminish the number of tra-

jectory moves is to group scalar or block moves into

block moves of greater length. Moreover the execu-

tion time of n scalar moves costs a lot more than the

execution time of one block move of length n. The

combination of both effects leads to a really powerful

optimisation.

5. Conclusion

Computational methods using derivatives are classi-

cal for a large number of applications involving optimal

control theory such as shape optimisation or data as-

similation in geophysics. The main advantage of using

adjoint codes relies on the fact that the execution time

does not depend on the number of input variables. For

all applications where the code computes a few output

variables for a large number of inputs, adjoint code is

the only practical way to get derivatives.

Until now, adjoint codes used for industrial purposes

such as operational weather forecasts were hand coded,

but it is now possible to generate them automatically.

Hand coded adjoint codes are fast, but their generation

generally takes a long time (1 or 2 years). On the con-

trary, developing an adjoint using an AD tool is fast, but

the resulting code has to be improved. What is almost

certainly obtained with an AD tool is a correct code:

consistent because the propagation of active variables
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is automatically performed, and locally correct because

the derivative of each statement is correct.

In this paper, we discuss two methods for the differ-

entiation of sub-program: Recomp- andNoRecomp-

strategies. We briefly describe trajectory management

techniques. Some of these methodologies are natural

when hand coding adjoints (NoRecomp-), whereas

the others are standard when automatically generat-

ing adjoints (Recomp-). They are applied on a trial

code large enough to allow for generalisations but small

enough to be handled by hand. We show that the

NoRecomp- strategy gives the most efficient code in

terms of execution time, whereas the Recomp- strat-

egy is the most efficient in terms of memory require-

ment. In further versions of AD Tools (source-to-

source), the user should be given the choice of the

global strategy (Recomp- orNoRecomp-). However,

Recomp- codes easily translate into NoRecomp-

codes and vice versa.

When generating adjoint codes, the fundamental

challenge is the knowledge of the trajectory for the

evaluation of the local Jacobian matrices. Amongst

the optimisations applied by hand to limit the size of

the trajectory some can be automated. Detecting lin-

ear computations as well as replacing storage by re-

computation is possible using static analysis. Static

analysis of Scalar values is efficient and can bit hand

coding. As far as array component analysis is con-

cerned, inter-procedural array region analysis is to be

performed. Such analyses are conservative and there-

fore allow for further manual optimisations. On the

contrary, the mathematical knowledge is difficult to ex-

tract from a source code. A lot of manual optimisations

induced by this knowledge cannot be automated. Even

if the gain in execution time is not proportional to the

gain in trajectory size, optimising the trajectory is fun-

damental. The first reason is that the execution time of

an elementary operation diminishes a lot quicker than

the memory or disk time accesses. The second reason

is that the practical efficiency of an adjoint code is pro-

portional to the ratio between the number of elementary

operations and the number of memory or disk accesses.

As a conclusion, we recommend the use of AD tools

to adjoint developers,even if the resulting code has to be

modified. After this automatic phase, the restructuring

of the storage (if necessary) is easy to perform by hand.

At least it is easier than testing the derivative statements

one by one in an hand coded adjoint. The user can also

optimise the storage by adding a semi-automatic post-

processing step. This has been done for generating the

adjoint code of Meso-NH [5] with trajectory storage in

a file. As for AD tool developers, the aim will be to

generate adjoint codes as efficient as hand coded ones.

We are working on this within Odyssée and the first

results we got are very impressive.
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