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Abstract We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios

(XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as

megacities and power plants. XCO2 enhancements estimated from observations were compared to model

simulations implemented at the spatial resolution of the satellite observation footprint (0.1° × 0.1°). We found

that the simulated XCO2 enhancements agree with the observed over several continental regions across the

globe, for example, for North America with an observation to simulation ratio of 1.05 ± 0.38 (p< 0.1), but with

a larger ratio over East Asia (1.22 ± 0.32; p< 0.05). The obtained observation-model discrepancy (22%) for

East Asia is comparable to the uncertainties in Chinese emission inventories (~15%) suggested by recent

reports. Our results suggest that by increasing the number of observations around emission sources, satellite

instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

1. Introduction

Monitoring CO2 emissions from human activities is essential for verifying the efficiency of emission reduction

efforts. The present estimates of the emissions of anthropogenic greenhouse gases are primarily based on

bottom-up inventories based on statistical data [Reuter et al., 2014]. Inconsistencies between underlying

country-level statistics of energy use and inaccuracies in the use of these data cause poorly quantified errors

in bottom-up emission inventories [Guan et al., 2012; Andres et al., 2012]. To quantify their errors, emission

inventories need verification against independent atmospheric composition data [National Research

Council, 2010; Nisbet and Weiss, 2010]. While ground-based observation networks are often too sparse for

monitoring these emissions, satellite observations can alleviate this limitation [Duren and Miller, 2012].

Recent studies on estimating XCO2 abundance caused by fossil fuel CO2 emissions from large point sources

such as power plants [Bovensmann et al., 2010] and localized areas of high emissions such as large cities

[Kort et al., 2012] are steps toward this goal. A recent study by Kort et al. [2012] has shown the capacity of

Greenhouse gases Observing SATellite (GOSAT) observations [Kuze et al., 2009; Yokota et al., 2009; Yoshida

et al., 2013] to detect anthropogenic CO2 emission signatures for megacities such as Los Angeles and

Mumbai. They suggest that XCO2 enhancements due to megacity fossil fuel emissions can be as high as

3 ppm over cities like Los Angeles, large enough to be detected by satellite. However, those studies were con-

fined to few locations due to the limited number of suitable observations. Here we analyze large volumes of

GOSAT XCO2 data for concentration enhancements due to anthropogenic emissions from large sources

around the globe and relate them to XCO2 enhancements simulated by a high-resolution transport model.

2. Data

2.1. GOSAT XCO2 Observations

In this study we used the National Institute for Environmental Studies GOSAT short wavelength infrared XCO2
Level 2 product (version 02.11, downloaded from https://data.gosat.nies.go.jp/) over the period from June

2009 to December 2012. To increase the chances of observing fossil fuel CO2 emission signatures from large
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point sources, we placed GOSAT target mode observation requests to the GOSAT Project Office, requesting

1500 target mode observations per month. The GOSAT data used here were subjected to a standard filtering

and screening applied for general distribution. Further details on retrieval and quality assurance can be

referred to in Yoshida et al. [2013].

2.2. Emission From Fossil Fuel

The fossil fuel CO2 emission data used are the Open-source Data Inventory for Atmospheric Carbon dioxide

(ODIAC) [Oda and Maksyutov, 2011]. This inventory of anthropogenic CO2 emission is a global 1 × 1 km fossil

fuel CO2 emission inventory based on country-level fuel consumption, a global power plant database and

satellite observations of night lights, remapped to 0.1° spatial grids as fossil fuel CO2 emission fields in this

study. National annual total CO2 emissions were estimated using British Petroleum (BP’s) fuel consumption

statistics for coal, oil, and natural gas. The spatial distribution of point emissions was determined using power

plant locations included in the CARbon Monitoring for Action (CARMA) power plant database (available at

http://www.carma.org/), and nightlight distributions were used as proxy for emissions from sources other

than power plants. It should be noted here that recently reported revisions in Chinese fossil fuel usage (for

example, Liu et al. [2015] and China Energy Statistical Yearbooks) have not been accounted for in the emis-

sion inventory. Further details can be found in Oda and Maksyutov [2011].

2.3. Emission From Large-Scale Biomass Burning

To correct for the contribution to CO2 emission from biomass burning in the GOSAT XCO2 (ΔXCO2,fire), we

performed Lagrangian retroplume simulation with fire emissions prescribed by the Global Fire Assimilation

System (GFAS version 1.1, [Kaiser et al., 2012]). In this product, the fire radiative power from Moderate

Resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites is assimilated and biomass

burning CO2 emissions are calculated using conversion factors for fire radiative power to biomass burning

rate for different vegetation types. Observation gaps due to clouds are corrected for, and false observations

corresponding to volcanic and industrial activities are eliminated. The daily emissions of CO2 are prepared at

a global spatial resolution of 0.1° × 0.1°.

2.4. Biospheric Fluxes

The influence of terrestrial biospheric CO2 fluxes on XCO2 (ΔXCO2,bio) is estimated in a similar way using the

Vegetation Integrative Simulator of Trace gases (VISIT) [Ito, 2010; Saito et al., 2014]. Global vegetation types

are classified into 15 biomes in this model based on MODIS land cover data [Friedl et al., 2002]. The meteorolo-

gical reanalysis data used to drive VISIT were taken from the Japanese 25 year reanalysis (JRA-25)/Japan

Meteorological Agency (JMA) Climate Data Assimilation System (JCDAS, Onogi et al. [2007]).

3. Methods

We use a Lagrangian particle dispersion model, FLEXible PARTicle dispersion model (FLEXPART) [Stohl et al.,

1998, 2005] with a high-resolution (0.1° × 0.1°) emission inventory (ODIAC) to simulate XCO2 abundance

(ΔXCO2,sim) caused by local emissions from fossil fuel combustion at all satellite observation locations.

Based on these model estimates, we select satellite observations influenced substantially by fossil fuel

emissions (ΔXCO2,sim> 0.1 ppm). The threshold of 0.1 ppm for defining observations influenced by fossil fuel

emissions was selected by examining the average simulated fossil fuel abundance (ΔXCO2,sim) over major

desert areas (where anthropogenic activity is low) across the world, which was found to be below 0.1 ppm

(see Text S2 and Table S1 in the supporting information). Observed enhancements (ΔXCO2,obs) were com-

puted as deviations from the background defined as a mean of all “clean” (clean—observations that are

not influenced by emission from fossil fuel) measurements in the area around the observation point (average

of observations with low contribution from fossil fuel sources in 10° × 10° boxes). A 2° × 2° averaged ΔXCO2,obs

and ΔXCO2,sim is given in Figures 1a and 1b, respectively.

Since XCO2 comprises contributions from fossil fuel combustion, biomass burning, and terrestrial biospheric

fluxes, model-based estimates for contributions by biospheric fluxes and biomass burning emissions, typically

small compared to ΔXCO2,obs values, are subtracted from the observations. These observed enhancements may

contain contributions from other sources such as emissions from biofuel use [Wang et al., 2013]. To reduce the

stochastic errors of the order of 2 ppm [Yoshida et al., 2013] associatedwith each individual satellite observation,
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we aggregate the observed (ΔXCO2,obs) and simulated (ΔXCO2,sim) anomalies into 0.2 ppm bins based on

simulated enhancements. To relate the fossil fuel CO2 emission inventory to the observed enhancements, we

perform linear regression [Brown, 2014] (weighted by standard error in mean ΔXCO2,obs) of observed against

simulated enhancements. The regression is carried out for the enhancement range 0.2–1ppm since the weak

signals (<0.2 ppm) are more strongly affected by fluxes from sources other than fossil fuel emissions. The

upper limit is selected based on the standard error in the bin average (see discussion on error estimate in

the supporting information), which increases with decreasing number of observations (see Figures S2b and

S3). We exclude enhancement bins where we have less than around 50 observations, considering the growing

error in the mean value (Figure S2a). Most of the observations (approximately 99%) influenced by fossil fuel

emissions fall below this upper limit. In ideal condition, the slope of the weighted linear regression (Sr)

corresponds to a correction factor by which the inventory-based emissions would need to be scaled in order

to bring observed and simulated values in agreement.

3.1. Lagrangian Simulation of CO2 Transport

We have calculated CO2 transport for all GOSAT scans for a period from June 2009 to December 2012. Ten

thousand virtual particles were released from each receptor position (the geographic locations of GOSAT

observations) and transported 2 days backward in time with the three-dimensional wind field and using

parameterizations for turbulence and convection. We used the Japan Meteorological Agency (JMA)

Climate Data Assimilation System (JCDAS) [Onogi et al., 2007] reanalysis at 1.25° spatial and 6-hourly temporal

resolution. The time integral of particle density below the mixing height in an emission grid cell gives the

sensitivity of the trace gas mixing ratio at the receptor to the emission in that cell [Ganshin et al., 2012].

Figure 1. Observed and simulated total column CO2 with significant fossil fuel signature averaged over 2° × 2° grid.

(a) GOSAT-deduced fossil fuel enhancements in XCO2 (ΔXCO2,obs; color shading; ppm) averaged over 2° × 2° grid where

atleast 10 observations exist for 2009–2012. The macro regions—East Asia (10–60°N, 60–150°E), Eurasia (10–60°N, 0–150°E),

North America (10–50°N, 130–60°W), and the Northern Hemisphere (10–70°N, 130°W–150°E)—used for regional regression

betweenmodeled and observed ΔXCO2 are shown by colored rectangles. Overlapping boundaries are drawn with 1° offset

for visual clarity. (b) Simulated fossil fuel enhancements in XCO2 (ΔXCO2,sim; color shading; ppm).
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The CO2 mixing ratio at the observation location is then obtained as the area integral of the emission sensi-

tivity multiplied by the CO2 flux [Lin et al., 2003; Seibert and Frank, 2004; Ganshin et al., 2012]. Spatial resolution

of the surface fluxes of 0.1° was chosen to match the GOSAT observation footprint of approximately 10 km

(see Figure S4).

3.2. ΔXCO2 From GOSAT

GOSAT XCO2 observations (in parts per million) are used for estimating the XCO2 enhancements due to fossil fuel

emissions (denoted as ΔXCO2,obs) relative to surrounding cleaner areas. For this, we consider the observations

where model-simulated enhancements due to fossil fuel emissions (denoted as ΔXCO2,sim) exceed 0.1 ppm to

have fossil CO2 signature (see Text S2), and the rest of the observations as clean background. To extract the fos-

sil component of XCO2, we subtract the model-simulated contributions by the biospheric and biomass burning

fluxes (ΔXCO2,bio and ΔXCO2,fire) from the observed XCO2 values:

XCO2;cor ¼ XCO2;obs � ΔXCO2;bio � ΔXCO2;fire (1)

We assume that the influence of terrestrial biospheric and biomass burning fluxes is largely removed by this

procedure, and any residual influences from ΔXCO2,bio and ΔXCO2,fire and model errors are not correlated with

the enhancements due to the fossil fuel emission of interest. We then estimate the XCO2 enhancement rela-

tive to the clean surrounding observations as the difference between observed value and a clean background

value XCO2,bg.

ΔXCO2;obs ¼ XCO2;cor � XCO2;bg (2)

In order to estimate the background mixing ratios, XCO2,bg, we defined rectangular regions of 10° × 10°

globally and took the monthly means of corrected observations (XCO2,cor) for locations corresponding to

simulated ΔXCO2,sim<0.1 ppm (where there are more than 16 clean observations) which are considered clean

pixels in each region. To relate the observed enhancements (ΔXCO2,obs) to the simulated enhancements

(ΔXCO2,sim), we sorted all paired values into 0.2 ppm bins based on simulated values of ΔXCO2,sim.

Subsequently, we averaged both the model-simulated and observation-deduced enhancements for each

0.2 ppm bin. This procedure was done to reduce the stochastic error associated with each individual observa-

tion. Resulting data are used in regression analysis as shown in Figure 2.

4. Results

In our analysis it is required that we have a large number of individual observations of both emission-

influenced and clean background XCO2, as it is difficult to distinguish between signal and noise for smaller

regions containing few observations around strong CO2 sources. Due to this, we have selected large regions

and a long time period to include a sufficient number of observations in the analysis. Therefore, we first

analyze the data globally and over the Northern Hemisphere and, for analysis on continental scale, over three

large regions with significant CO2 emissions from fossil fuel burning but with different economic develop-

ment: East Asia, Eurasia, and North America (colored rectangles in Figure 1a). We did not isolate Europe from

Eurasia because the number of observations for Europe alone is relatively low. When we apply regression of

the aggregated observed enhancements against the simulated enhancements, we found a good linear

relationship globally and for the Northern Hemisphere (Figure 2).

For the global case, observed and simulated enhancements showed good agreement with a slope Sr of

1.21 ± 0.21 (p< 0.05) (Figure 2a). The error in the slope accounts for both the uncertainty in the enhance-

ments (combined effect of noisy observational data, errors in background estimate, and dispersion model)

and deviation of enhancements from regression line. In the Northern Hemisphere case, the Sr value

is 1.12 ± 0.22 (p< 0.05) (Figure 2b), and for Eurasia we found an Sr value of 1.24 ± 0.27 (p< 0.05)

(Figure 2c). In the case of these three large domains, though the Sr values differ from unity (within the

uncertainty range), the observed and simulated enhancements are very close to the “identity line” (line where

ΔXCO2,obs and ΔXCO2,sim are equal; grey dashed lines in Figure 2) suggesting that the emissions from strong

point sources are well captured in themodel. Figure S1 depicts the ratio betweenΔXCO2,obs andΔXCO2,simwhich

also suggests that the observed and simulated enhancements agree well in these regions. However, when we

perform our analysis for East Asia, the Sr value is similar (1.22± 0.32, (p< 0.05); Figure 2d), but the regression line
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has a large offset from the identity line (identity line outside observation uncertainty range)—indicating

sizable differences between the mean simulated (ΔXCO2,sim) and observed enhancements (ΔXCO2,obs).

Figure S1 shows that the ratio between the observed and simulated enhancements (ΔXCO2,obs/ΔXCO2,sim)

is consistently greater than unity for East Asia for the analysis window 0.2–1 ppm. For North America, we

find an Sr value of 1.05 ± 0.38 (p< 0.1), showing good match between model and observations though

the uncertainty is largest among the five regions due to the smaller number of observations (Figure 2e).

Sensitivity tests have shown that the model-based corrections for influences from biospheric and biomass

burning do not affect the Sr value significantly (see Table S2).

The aforementioned differences over East Asia suggested by regression analysis imply that inventory emissions

are lower than needed tomatch the observations. This region is known for large differences between fossil fuel

CO2 emission inventories [Guan et al., 2012; Liu et al., 2015]. For example, a recent study [Guan et al., 2012] esti-

mated Chinese provincial total CO2 emissions of 9.08Gt yr�1 for 2010, which is 1.4Gt yr�1 more than the

national report. Liu et al. [2015] have reported that the Chinese energy consumption was 10% higher in their

revised estimate than the Chinese national statistics. Though they have revised the emission factors for coal

burned in China and estimated lower net emissions than other established CO2 emission inventories, these

Figure 2. Mean observed (ΔXCO2,obs) versus simulated (ΔXCO2,sim) enhancements in 0.2 ppm bins for (a) Globe,

(b) Northern Hemisphere, (c) Eurasia (d) East Asia, and (e) North America. Vertical thin lines show the standard error of

themean observed enhancements. Standard errors in the binning of simulated values are smaller than the symbol size. The

grey dashed line is the identity line. The error-weighted regression between the modeled and observed XCO2 enhance-

ments is shown as the green dashed line. The regression equation is shown at the top left of each panel (G, GOSAT; M,

Model). The grey bars give the number of observations in thousands (right vertical axis, logarithmic scale; read nobs as

nobs × 10
3
) in each enhancement bin.
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aspects have been questioned by some recent studies [e.g.,Olivier et al., 2015]. Another study [Zhao et al., 2012]

recompiling the Chinese CO2 emissions using provincial level energy statistics revealed that CO2 emission from

fossil fuel and cement production showed notable differences with generally accepted estimates (e.g., 5–10%

higher than CDIAC [Boden et al., 2013] during 2005–2009). These uncertainties in the national total CO2 emis-

sions are propagated to derived global emission data sets and our model simulations. Figure 3 shows that

the observations corresponding to simulated enhancements in the range of 0.2 to 1ppm in East Asia are largely

clustered over eastern China and India where fossil fuel emissions and the uncertainties in them are high

(details in Figure 3). The discrepancy between simulated and observed XCO2 abundance (22%) and its uncer-

tainty (32%) over East Asia are comparable to the uncertainties (~15%) associated with fossil fuel CO2 emission

over this region [e.g., Zhao et al., 2012].

To reveal the localized areas with strong emissions that are accompanied by statistically significant observed

enhancements in XCO2, we repeated similar analysis to observations where simulated enhancements are

higher than 1 ppm and selected 1° × 1° regions with at least five such observations inside. We found several

such locations over the globe (Table 1). The observation and model values for those locations are statistically

consistent, i.e., difference between the mean observed and simulated enhancements lie within the magni-

tude of the estimated observation error. Despite possible model errors and contamination of the GOSAT

retrievals by aerosols of urban and industrial origin, root-mean-square of the model-observation difference

Figure 3. Simulated enhancements for East Asian domain and comparison between ODIAC and Emission Database for Global

Atmospheric Research (EDGAR). Observation locations (colored dots) corresponding to 0.2–1 ppm XCO2 abundance (ΔXCO2,sim)

over East Asian domain. The color shading over the map shows the difference between ODIAC and EDGAR inventories for the

years 2008–2010 (yellow ODIAC higher, green ODIAC lower).

Table 1. Average Fossil Fuel Enhancements in XCO2 Averaged Over Selected 1° × 1° Grid Cells for Model (ΔXCO2,sim) and

Observation (ΔXCO2,obs)
a

City (Country) Location ΔXCO2,obs ΔXCO2,sim σobs nobs SE

Bilaspur and Corba (India) 82.5°E, 22.5°N 0.98 1.23 2.66 17 0.65

Bhubaneshwar (India) 85.5°E, 20.5°N 1.04 1.66 2.91 17 0.70

Sonhat (India) 82.5°E, 23.5°N 0.60 1.48 2.23 12 0.64

New Delhi (India) 77.5°E, 28.5°N 2.44 1.72 4.27 7 1.61

Xi’an (China) 108.5°E, 34.5°N 3.25 1.91 4.53 6 1.85

Yancheng (China) 119.5°E, 33.5°N 1.96 1.44 2.57 5 1.15

Shanghai (China) 120.5°E, 31.5°N 1.55 1.81 3.45 5 1.54

Beijing and Tianjin (China) 116.5°E, 39.5°N 1.85 2.07 2.62 10 0.83

Shanxi (China) 112.5°E, 37.5°N 2.34 1.48 3.19 7 1.21

Tianjin (China) 117.5°E, 39.5°N 2.09 1.54 2.29 7 0.86

Los Angeles (USA) 118.5°W, 33.5°N 2.75 1.60 2.86 8 1.01

Yangpyeong (Korea) 127.5°E, 37.5°N 1.79 2.14 2.30 6 0.94

a
The central longitude and latitude of selected 1° × 1° grids are given as Location. σobs and nobs are the standard

deviation and number of observations available in the grid cell, respectively, and SE is the standard error. Grid boxes
are selected with SE less than 2 and nobs greater than 4.
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divided by the observation error is less than one (0.72), which indicates agreement between model and

observations is statistically valid. Locations listed in Table 1 do not necessarily represent the highest

emissions around the globe but are typically places where high emissions are accompanied by stagnant

meteorological conditions, which favor local accumulation of CO2 and thus elevated XCO2, which is more

easily observed. Furthermore, there are more observations over locations with long periods of clear-sky

weather, favoring successful observation by GOSAT. Most of the locations are in India and China, with one

each in the USA and Korea.

In India, we observed large enhancements at locations over the eastern part of the Gangetic Plain where the

population and fossil fuel CO2 emissions are large, which conform to the geographical locations of observa-

tions of XCO2 [Reuter et al., 2014] enhancements (or other pollutants, e.g., NOx [Richter et al., 2005]) reported

elsewhere. With the exception of Shanghai and Beijing, the observed enhancements for all Chinese locations

were larger than the simulated ones. This is in agreement with previous studies [Wang et al., 2013] (overes-

timation of emission over large urban areas) and the results obtained from the regression analysis for East

Asia as a whole (Figure 2d). The mean observed enhancement for Los Angeles (2.75 ± 1.01 ppm) is compar-

able with the results from another GOSAT-based study by Kort et al. [2012] (3.2 ± 1.5 ppm) covering the early

part of this study period.

5. Conclusion

Several recent studies have shown the capability of observing the XCO2 abundance in the atmosphere due to

large sources such as power plants and large cities. Our study is an attempt to analyze satellite observations

of atmospheric CO2 at global or subcontinental scales to attribute to emission from large sources. We found

that the emission inventory-based XCO2 abundance and satellite observed abundance agree well over large

regions where we have sufficient number of observations of polluted sites. The large observation-model mis-

matches over East Asia imply that the fossil fuel emission estimates by inventory from these regions likely to

be below what is suggested by GOSAT-observed abundance over this region. This result is important, parti-

cularly in the context of the recent reports about the unaccounted fuel use in China by many researchers.

We found that with the precision and number of GOSAT observations, it is possible to monitor emissions from

strong CO2 sources such as power plants and megacities for regions with elevated CO2 column abundance in

the range of 0.2 to 1 ppm. Improving the accuracy and extending the spatial coverage of this analysis should

be possible with a larger number of satellite observations, preferably with a smaller observation footprint

(spectrometer’s instantaneous field of view) around intense sources. Our results indicate that observations

from GOSAT and other satellite such as Orbiting Carbon Observatory 2 [Crisp et al., 2004] can be used to

detect fossil fuel signatures over large and consistently emitting regions globally and that satellite observa-

tions combined with our analysis method provide a promising tool to monitor CO2 emissions from fossil fuel

use and thus to verify bottom-up inventories of these emissions.
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