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Abstract. Structural equation modeling (SEM) provides a dependable framework for testing differences among groups on latent
variables (constructs, factors). The purpose of this article is to illustrate SEM-based testing for group mean differences on latent
variables. Related procedures of confirmatory factor analysis and testing for measurement invariance across compared groups
are also presented in the context of rehabilitation research.
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1. Introduction

The complexity of relationships between variables
in rehabilitation settings can be efficiently investigated
by the use of multivariate methods of statistical anal-
ysis. Testing for group mean differences on a set of
observed variables, in particular, typically requires the
use of multivariate analysis of variance (MANOVA)
or structural equation modeling (SEM). MANOVA is
more appropriate when groups are compared on a con-
struct which “emerges” as a linear composite of the
observed variables, that is, the observed variables rep-
resent causal agents of the construct. An example
of such emergent variable system is when groups of
people categorized by disability type are separated by
“stress” – a construct caused by observed dependent
variables such as demands of the workplace and rela-
tionship with family members. Methodological princi-
ples of using MANOVA in the context of rehabilitation
research were recently described and illustrated in the
“Speaking of research . . .” section of this journal [8].

SEM is more appropriate with a latent variable sys-
tem in which the construct (latent variable) has a causal
influence on the observed variables. For example,

“self-esteem” is a construct that may underlie the re-
sponses of injured workers on specific questionnaire
items during a rehabilitation process. An important
feature of the SEM methods is that, unlike MANOVA,
they provide error-free measures of the latent variables
(constructs, factors, subscales) by eliminating the ran-
dom error of measurement for the observed variables
(e.g., questionnaire items) associated with the latent
variable(s) [1].

A frequently occurring scenario in rehabilitation re-
search in which SEM can be efficiently employed with
a latent variable system is when groups of people are
compared on subscales of an instrument (e.g., ques-
tionnaire, survey). For example, in a study on preven-
tion of abuse in a workgroup context [15], male and
female workers were compared on three subscales of a
survey on stressful factors in the workplace: Hostility
(e.g., “been embarrassed or insulted in front of others”),
Harassment (e.g., “experienced unwanted sexual ad-
vances”), and Negativity (e.g., not been praised for your
work”). In another study [22], groups of sewing ma-
chine operators (e.g., English as a native language ver-
sus English as a second language) were compared on
three subscales of the Demand-Control Questionnaire
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(DCQ [13]): Demand (e.g., “my job requires work-
ing very fast”), Control (e.g., “My job requires that I
learn new things”), and Social support (e.g., “People I
work with are friendly”). In these, and numerous other,
examples of rehabilitation research, the questionnaire
subscales represent latent variables (factors,constructs)
that underlie the persons’ responses on questionnaire
items. Hereafter, the terms latent variable, construct,
factor, and subscale will be used interchangeably.

Although SEM provides an excellent framework for
the comparison of group means on latent variables, tra-
ditional statistical methods such as t-tests, analysis of
variance, and analysis of covariance are still predom-
inantly employed in rehabilitation research. In an at-
tempt to help rehabilitation researchers in this direc-
tion, this article illustrates SEM methods of comparing
groups on latent variables with real data for a popu-
lation of people with multiple sclerosis. The testing
for assumptions required with these methods is also
discussed and illustrated.

2. Subjects and latent variables

The data were taken from an existing data pool pro-
duced with the Employment Preparation Survey Project
funded by the National Multiple Sclerosis Society [18].
Two groups of people with multiple sclerosis were
formed based on their typical course of illness: (a) re-
lapsing – relapsing-remitting or chronic relapsing, and
(b) progressive – secondary progressive or primary pro-
gressive. These two groups, referred to hereafter as re-
lapsing illness group (n = 669) and progressive illness
group (n = 359), respectively, were compared on two
constructs – Psychosocial Distress and Successful Cop-
ing. The hypothesized model for these two constructs
is provided in Table 1 and graphically represented in
Fig. 1 [the meaning of the numeric coefficients will be
discussed in the next section]. As can be seen, Psy-
chosocial Distress is related to six items and Successful
Coping, to five items of the Employment Preparation
Survey. With the sample data, the Cronbach’s alpha co-
efficient of internal consistency reliability for the items
associated with Psychosocial Distress and Successful
Coping was 0.88 and 0.81, respectively.

A central question to be addressed before comparing
the two groups of people with multiple sclerosis on the
constructs of psychosocial distress and successful cop-
ing is whether these constructs have the same meaning
for each group. First, the data fit of the hypothesized
model for the constructs has to be tested with the sam-

Table 1
Baseline Model of Two Hypothesized Constructs (Psychosocial Dis-
tress and Successful Coping) for People With Multiple Sclerosis

Construct Items

In the last month, how often have you . . .
Psychosocial Distress:
Item 1 been upset because of something that happened

unexpectedly?
Item 2 felt that you were unable to control the important

things in life?
Item 3 felt nervous and distressed?
Item 4 been angered because of things that happened out-

side of your control?
Item 5 found that you cannot cope with all the things you

had to do
Item 6 felt difficulties were piling up so high that you could

not overcome them?
Successful Coping:
Item 7 felt that things were going your way?
Item 8 dealt successfully with irritating life hassles?
Item 9 felt confident about your ability to handle your per-

sonal problems?
Item 10 been able to control irritations in your life?
Item 11 felt that you were effectively coping with important

changes that were occurring in you life?

ple data for each group. This is referred to as testing for
“form invariance” of the model across groups [14]. If
form invariance is observed, the next step is testing for
“measurement invariance” to make sure that the scores
on any construct have the same meaning for each of
the compared groups. In measurement parlance, the
lack of measurement invariance indicates the presence
of “differential item functioning” (e.g. [10]). Form in-
variance and measurement invariance across groups are
necessary conditions for meaningful and accurate com-
parison of groups on construct(s) of interest (e.g. [5,6,
10]). With these two conditions in place, the testing
for group mean differences on the construct(s) can be
efficiently performed in the framework of SEM (e.g. [3,
9,19]).

3. Testing for form invariance across groups

The validity of the hypothesized model in Table 1
was tested separately for each of the two groups of
people with multiple sclerosis – relapsing illness group
and progressive illness group. A confirmatory factor
analysis (CFA) in the framework of structural equation
modeling (SEM) was employed using the computer
program for statistical analysis with latent variables
Mplus [17]. The CFA results for the two groups are
provided jointly in Fig. 1. A number associated with an
arrow from a construct to an item is the SEM estimate
of the regression slope in the linear regression of the
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Fig. 1. Baseline model for the constructs of psychosocial distress and successful coping across two groups of people with multiple sclerosis –
relapsing illness group and progressive illness group (the regression slopes for this group are given in parentheses). Note. All regression slopes
and the correlation between the two constructs (for both groups) are statistically significant at the 0.01 level.

item scores on the (error-free) construct scores (the
regression slopes for the progressive illness group are
given in parentheses); [the regression slopes are also
referred to as factor loadings or structural coefficients].
In Fig. 1, the regression error terms are denoted E i;
(i = 1, 2, . . ., 11).

The following four goodness-of-fit indices were used
with the CFA in this example – chi-square fit statistic,
χ2, comparative fit index, CFI, standardized root mean
square residual, SRMR, and root mean square error of
approximation, RMSEA, with its 90 percent confidence
interval. A relatively good fit is indicated with CFI
> 0.90, SRMR < 0.08, and RMSEA < 0.06 (e.g. [4,
11]). Given the sensitivity of the chi-square statistic
to sample size, its role in CFA testing for model data

fit is more descriptive than inferential. However, this
statistic is very useful in a method of comparing the
goodness-of-fit for nested models [12]. This method is
used in testing for measurement invariance described
in the next section. With these clarifications, the values
the goodness-of-fit indices reported with Fig. 1 indicate
that the hypothesized model fits the data satisfactory
well for each of the two groups of people with multiple
sclerosis. Therefore, the assumption of form variance
across the two groups is met.

Some additional clarifications are necessary to better
understand the meaning of form invariance in general.
The most parsimonious, yet substantively most mean-
ingful and best fitting model to the data for a group is
referred to as baseline model for this group (e.g. [6,14]).
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In our example, the two groups of people with multiple
sclerosis have the same baseline model – the model in
Fig. 1, with correlational relationship (two-way arrow)
between the two constructs [correlation of −0.47 for
the relapsing illness group and −0.45, for the progres-
sive illness group]. In general, the baseline models are
not necessarily identical across groups. It may happen,
for example, that some constructs are correlated with
the baseline model for one group, but not with the base-
line model for another group [6]. As shown in previous
research [20], only the comparable parameters within
the same construct need to be equated across the com-
pared groups before testing for group mean differences
on the construct.

4. Testing for measurement invariance across
groups

Since it was found that form invariance is in place,
we can proceed with testing for “measurement invari-
ance” to determine whether the scores on each construct
have the same meaning for each group. As alluded to
earlier, a lack of measurement invariance would indi-
cate the presence of differential item functioning thus
threatening the validity of results related to group mean
differences on the construct (e.g. [6,14,16]). In general,
the testing for measurement invariance includes testing
for invariance of (a) regression slopes – in Fig. 1, the
estimates of regression slopes are associated with the
one-way arrows from the constructs to the observed
variables, Xi, (b) regression intercepts (not depicted in
Fig. 1), and (c) error variances – in Fig. 1, the vari-
ances of regression error terms, Ei, (i = 1, . . . 11). For
the purpose of group mean comparison, it is practically
sufficient to test only for invariance of the regression
slopes and intercepts [21]. As noted in previous re-
search, testing for the invariance of the error variances
provides an overly restrictive test of the data [2].

Given the purpose of this article, only the invari-
ance of regression slopes and intercepts across the two
groups is tested for the model in Fig. 1. This is done
by using the chi-square square test for the difference
between two nested models: a model with “invariance
assumed” (χ2

INVAR) and model with “no invariance as-
sumed” (χ2

NO INVAR). The invariance of parameters
being tested is confirmed when the chi-square differ-
ence, χ2

DIFF = χ2
INVAR − χ2

NO INVAR, is not statisti-
cally significant (e.g. [17]). Specifically, the following
three-step testing procedure is applied:

Table 2
Tests for the Invariance of Regression Slopes and Intercepts Across
Two Groups of People with Multiple Sclerosis (Relapsing Illness and
Progressive Illness)

Model χ2 df Δχ2 Δdf

Model 0 321.26 86
Model 1 327.63 95 6.63 9
Model 2 347.43 104 19.80∗ 9

Model 2P 338.39 103 10.76 8

Note. Model 0: Non invariant slopes and intercepts;
Model 1: Invariant slopes, non invariant intercepts
Model 2: Invariant slopes and invariant intercepts;
Model 2P: Invariant slopes and invariant intercepts,
with a “free” intercept for Item 2 (partial invariance).
∗p < 0.05.

– Model 0: The model in Fig. 1 is fit in the two
groups together allowing all parameters, including
regression slopes and intercepts, to be free – that is,
no invariance of parameters across the two groups
is assumed.

– Model 1: The model in Fig. 1 is fit in the two
groups together, with the regression slopes held
equal across the groups. Since Model 1 is nested
within Model 0, the chi-square difference for the
two models is used to test for invariance of the
regression slopes.

– Model 2: The model in Fig. 1 is fit in the two
groups together, with both regression slopes and
intercepts held equal across the groups. Since
Model 2 is nested within Model 1, the chi-square
difference for the two models is used to test for
invariance of the regression intercepts.

Table 2 provides the testing results for measure-
ment invariance obtained with the computer program
Mplus [17]. The Mplus syntax code (input) for the
testing models is given in Fig. 2. As the results in Ta-
ble 2 show, the chi-square difference for Model 0 ver-
sus Model 1 (Δχ2 = 6.63, df = 9) is not statistically
significant thus providing evidence for the invariance
of the regression slopes across the two groups. Further,
the chi-square difference for Model 1 versus Model 2
(Δχ2 = 19.80, df = 9) is statistically significant at
the 0.05 level (but not at the 0.01 level). So, there is
no perfect invariance of the intercepts across the two
groups, but neither is there evidence of complete in-
equality. This situation is termed partial measurement
invariance [6,14]. As previous studies show, given the
stringent nature of the hypotheses for invariance, the
invariance is a matter of degree estimated by the pro-
portion of parameters that are invariant (e.g. [3,6,14,
16]).

To determine the degree of partial measurement in-
variance in our case, Model 2 has to be modified by
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Fig. 2. Mplus input for testing measurement invariance with the mean structures method of comparing group means on two constructs – 
DISTRESS (psychosocial distress) and COPING (successful coping), for two groups of people with multiple sclerosis – "relapse" (relapsing 
illness group) and "progress" (progressing illness group).  
 
setting some intercepts "free" (non invariant) across the 
 two groups. Which intercepts to start freeing depends 
on the values of their modification indices reported 
with Mplus for Model 2. In general, the MI value for a 
parameter gives the expected drop in the model chi-

square value if this parameter is freely estimated [7,12, 
17]. The MI is statistically significant if it exceeds 3.84 
(the chi-square value with df = 1). With the Mplus 
results for Model 2, the MIs for the intercepts of three 
items were statistically significant: Item 1 (MI

MODEL 0: 
TITLE:  Model 0 [without measurement invariance] 

DATA:  FILE IS myfile.dat;  

VARIABLE:  NAMES ARE   group  X1-X11; 

GROUPING  IS  group  (0 = relapse, 1 = progress); 

USEVARIABLES ARE  X1-X11; 
ANALYSIS:  TYPE IS GENERAL; 
OUTPUT:  STANDARDIZED; 

 
MODEL: DISTRESS BY X1-X6; 

                  COPING BY X7-X11; 
                  DISTRESS WITH COPING; 

MODEL progress:  DISTRESS BY X2-X6; 
                         COPING BY X8-X11; 
                                  DISTRESS WITH COPING; 
           -------------------------------------------------------------- 

MODEL 1:  
TITLE:  Model 1 [invariant slopes, free intercepts] 

DATA:  FILE IS myfile.dat;  

 VARIABLE:  NAMES ARE   group  X1-X11; 

GROUPING  IS  group  (0 = relapse, 1 = progress); 

USEVARIABLES ARE   X1-X11; 
ANALYSIS:  TYPE IS GENERAL; 
OUTPUT:  STANDARDIZED MODINDICES (3.84);  

 
MODEL:  DISTRESS BY X1-X6; 

                   COPING BY X7-X11; 
                   DISTRESS WITH COPING; 
            ------------------------------------------------------------------------------ 

MODEL 2: Same as MODEL 1, with two  changes: 
 
TITLE: Model 2 [invariant slopes and intercepts]; 

                ANALYSIS:  TYPE = MEANSTRUCTURE; 
           --------------------------------------------------------------- 

MODEL 2P: Same as MODEL 2, but add the following  
statement in the model part to “free” the intercept for X2: 
 
MODEL progress: [X2]; 
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= 6.18), Item 2 (MI = 9.02), and Item 3 (MI = 4.99).
The intercept for the item with the largest MI (Item
2) was set “free” in Model 2 thus obtaining Model 2P.
With this, the chi-square value for Model 2 (347.43)
dropped to 338.39 for Model 2P. As shown in Table 2,
the chi-square difference for Model 1 versus Model 2P
(Δχ2 = 10.76, df = 8) is not statistically significant.
Therefore, there is no need to free additional intercepts.
In general, there is no hard rule as to what degree of
partial invariance is acceptable; it is up to researchers
to decide, as long as the observed degree of invariance
is reported with the results (e.g. [6,14]). In our case,
with 10 (out of 11) invariant intercepts, the degree of
partial measurement invariance across the two groups
seems sufficiently high to proceed with testing their
mean difference on the two constructs, psychosocial
distress and successful coping.

5. Comparing group means on latent variables

With the assumption of measurement invariance
across groups met, the door is open for comparison of
the group means on latent variables of interest. There
are two major approaches to addressing this task in
the context of SEM – structured means analysis and
group code analysis (e.g. [1,2,9,17]). These two meth-
ods are briefly discussed and illustrated here in the con-
text of comparing the two groups of people with mul-
tiple sclerosis (relapsing illness/progressive illness) on
psychosocial distress and successful coping.

5.1. Structured means analysis

Structured means analysis is applied with models
that contain intercepts for the purpose of estimating
group means on a construct. Under the analytic model
of structured means, the mean of each group on an
observed variable, Xk, is obtained from its linear re-
gression on the construct mean for this group: Mean
(Xk) = τk + λk[Mean(ξ)], where ξ is the construct,
λk is the regression slope, and τk is the regression in-
tercept. To estimate the difference between two group
means on the construct, one of the groups is chosen to
serve as a reference group and its mean on the construct
is fixed to zero. With this, the construct mean of the
other group represents the difference between the con-
struct means of the two groups. This is derived from the
analytic model of structured means under the assump-
tion that λk and τk do not change in value across the
two groups (e.g. [3,9]). The testing for this assumption

(invariance of the regression slopes and intercepts) was
conducted in the previous sections.

For the two groups of people with multiple sclerosis,
the structured means analysis was performed using the
Mplus input for Model 2P (see Fig. 2). The relaps-
ing illness group was chosen as a reference group –
in the Mplus input this is reflected with the coding (0
= relapse, 1 = progress) in the grouping syntax line.
By doing so, the difference between the two group
means on each construct equals the mean of the non-
reference group (progressive illness) on the construct.
Specifically, the mean of the progressive illness group
was −0.01 (not statistically significant) on psychoso-
cial distress and−0.12 (statistically significant) on suc-
cessful coping. Therefore, the conclusion is that the
two groups do not differ on psychosocial distress, but
they differ on successful coping, with the higher mean
score for the reference group since the group difference
is negative in sign (−0.12). In addition, since the inter-
cept for Item 2 was “freed” across the two groups with
the model used for this mean structure analysis (Model
2P), the two groups may differ on this particular item.
More information on this is provided with the illustra-
tion of the other SEM method (group code analysis) for
group mean differences on a construct.

5.2. Group code analysis

While the structured means approach to group mean
differences keeps the data from the two groups separate
(like a t-test), the group code analysis uses the data
from both groups in a single SEM model (like dummy
coding in a linear regression model). Also, while the
invariance of slopes and intercepts is a prerequisite
for testing group mean differences with the structured
means method, the group coding method requires that
the (single) measurement model holds in both groups
thus including invariance of the slopes, construct vari-
ance, and error variances/covariances. However, if the
invariance with the structured means analysis holds for
all parameters in the measurement models for the two
groups, the structured means analysis and the group
code analysis yield identical outcomes with regard to
group mean differences (e.g. [1,17]). A combination of
the two methods can be particularly useful with more
complex models of group mean differences – this is the
case, for example, when the group means are adjusted
for pretest differences on the construct(s) of interest
(e.g. [1]).

The group code analog to the mean structure anal-
ysis conducted with Model 2P is represented with the
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Fig. 3. Group code model for testing the mean difference between two groups of people with multiple sclerosis on constructs of psychosocial
distress and successful coping. Note. All regression slopes and the correlation between the two constructs are statistically significant at the 0.01
level. ∗p < 0.05.

SEM model in Fig. 3. The one-way arrow for “direct
effect” of the grouping variable (GROUP) to the ob-
served variable X2 is the group code analog to “free-
ing” the intercept for Item 2 with the mean structured
approach. Without going into testing for invariance be-
yond the equality of regression slopes, which was pre-
viously confirmed, let us examine the results obtained
with the model in Fig. 3 using Mplus.

First, the values of the goodness-of-fit indices CFI,
SRMR, and RMSEA indicate an acceptable data fit for
the group code model (see, Fig. 3). Note also that the
regression slopes associated with the one-way arrows
from the two constructs to the observed variables are
almost identical to their counterparts (for each group

separately) in Fig. 1. The same holds for the correla-
tion between the two constructs. Further, the results
for group mean differences on each construct are iden-
tical to those obtained earlier with the mean structures
method. Indeed, the structural coefficient associated
with the one-way arrow from GROUP to Psychoso-
cial Distress, representing the group mean difference
on this construct, equals −0.01 (not statistically sig-
nificant). Also, the structural coefficient with the one-
way arrow from GROUP to Successful Coping is sta-
tistically significant and equals −0.12. Clearly, the
group code method and mean structures method yield
identical outcomes with regard to the group mean dif-
ferences on psychosocial distress and successful cop-
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ing. In Fig. 3, the one-way arrow for direct effect from
GROUP to the observed variable X2 is the group code
analog to freeing the intercept for Item 2 across the two
groups with the mean structures method (Model 2P).
Since the estimate of this direct effect (0.16) is positive
and statistically significant, given the coding of the two
groups (0 = relapsing, 1 = progressive), we conclude
that the progressive illness group performed better than
expected on the observed variable X2 (see, Item 2 in
Table 1).

6. Conclusion

Structural equation modeling (SEM) provides a ver-
satile analytic framework for testing group mean differ-
ences on latent variables (constructs). A frequently oc-
curring situation is rehabilitation research when SEM-
based testing of group mean differences is suitable (yet,
still not sufficiently utilized) is when groups are com-
pared on the subscales of an instrument (e.g., question-
naire or survey). The hope is that the SEM methods
(and testing for their assumptions) described and illus-
trated in this article will provide Work readers with im-
portant methodological principles and “Know-how” in
comparing groups on complex constructs in the context
of rehabilitation research and/or assessment.
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