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Abstract

Most pessimistic mechanisms for implementing atomicity i cistributec systems fail into thres broad
caegories: two-phase iocking schames, tmesiamping schemes. and hybrid schemes employing both
locking and timestamps. This paper proposes 2 new criterion for evaluating these mechanisms: the
constraints they impose on the availability of replicated data.

A replicated data item is a typed object that provides a set of operations to its clients. A quorum for
an operaticn is any set of sites whose co-operation suftices o execute that operation, and a guorum
assignment associates a set of quorums with each operation. Constraints on querum assignment
determine the range of availability pronerties realizable by a replication method.

This paper compares the conatraints o GUOrUM assignment necessary to maximize concurrency
under generalized locking, timestamping, and hybrid concurrancy control mechanisms.  This
comparison shows that hybrid schames impos2 weiker constraings cn availability than timestamping
schemes. and iocking schemes impose constrainis incomparablz to those of the others. Because
hybrid schemes permit more concurrency than jocking schemes, thase results suggest that hybrid
schemes are preferable to the otherss for ensuring atomicity in highly available and highly concurrent
distributed systems.
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1. Introduction

Most pessimistic mechanisms for implementing atomicity in distributed systems fall into three broad
categories: two-phase locking schemes (e.g.[10, 17, 26]}. timestamping schemes (e.g. [25, 24, 23]),
and hybrid schemes employing both locking and timestamps (e.g. [7, 8, 2, 3]). This paper proposes a
new criterion for evaluating these mechanisms: the constraints they impose on the availability of
replicated data. Our results suggest that hybrid schemes provide better support for highly available

and highly concurrent distributed systems than either locking ar timestamping mechanisms.

Cur analysis uses a guorum consensus replication method proposed by the author [14.15]. This
method systematically exploits type-specific properties of the data to support better availability and
.concurrenc.y than comparabie methods in which operations are classified only as reads or writes.
Assoéiated with each operation of the data type is a set of quorums, which are collections of sites
whose cooperation suffices to execute the operation. A gquorum assignment associates a set of
queorums with each operation. An analysis of the atomic data type's specification (which includes the
level of concurrency supported) yields a set of constraints on quorum assignment necessary and
sufficient to ensure the correctness of the replicated implementation. The constraints on quorum

assignment determine the range of availability properties realizable by quorum consensus replication.

The three-part ciassification of atomicity mechanisms is formalized using a model developad by Weihl
[28]. Each category is identified with a local property of objects that sulfices to ensure the atomicity
of a systern encompassing multiple objects. Static atomicity encompasses the timestamping
mechanisms cited above, strong dynamic atomicity encompasses the locking mechanisms, and
hybrid atomicity encompasses the hybrid mechanisms. These properties are type-specific;
constraints on concurrency are expressed in terms of the abstract operations provided by the data
type, not in terms of primitive read and write operations. Hybrid and static atomicity support
incomparable levels of concurrency, hybrid atomicity permits more concurrency than strong dynamic
atomicity, and static and strong dynamic atomicity support inccmparable teveis of concurrency.

These relations are shown in Figure 1-1.

Elsewhere [14, 18], we have shown that quorum consensus replication cannot simultaneously
minimize the constraints on both concurrency and availability. At one extreme in the
availability/concurrency trade-off, ail three propsariies support the same minimal set of constraints on
quorum choice, each at suboptimal levels of concurrency. This paper considers the other extreme,
comparing the constraints on quorum assignment necessary (o realize the optimal level of
concurrency permitted by each property. A direct comparison of replicaled objects that lie between

these extremes is difticult, since any valid set of constraints on quo:um assignment typically yields



incomparabie constraints on concurrency.

This paper presents the following results:

e Any quorum assignment that supports full static atomicity also suppors full hybrid
atomicity, but not necessarily vice-versa. Thus, maximizing concurrency under hybrid
atomicity permits a wider range of availability trade-ofts than under static atomicity.

s A qucrum assignment that supports full strong dynamic atomicity does not necessarily
support full hybrid atomicity, and vice-versa. Thus, maximizing concurrency under
strong dynamic atomicity yields constraints on availability incomparable to those of
hybrid atomicity

e A quorum assignment that supports full strong dynamic atomicity does not necessarily
support full static atomicity, and vice-versa. Thus, maximizing concurrency under strong
dynamic atomicity yields constraints on availability incomparable to those of static
atomicity

¢ Static atomicity is ensured by a unique weakest set of constraints on quorum assignment,
as is strong dynamic atomicity, but the weakest set of constraints sufficient to ensure
hybrid atomicity is not necessarily unique.

These relations are illustrated schematically in Figure 1-2. Hybrid atomicity is the only property that is
undominated for both availability and concurrency, suggesting that hybrid schemes may be
preferable to the others for implementing atomicity in distributed systéms supporting high ievels of

availability and concurrency.

2. Other Related Work

in the available copies replication method [12], failed sites are dynamically detected and configured
out of the system, and recovered sites are detected and configured back in. Clients may read from
any available copy, and must write to ail available copies. Systems based on variants of this method
include SDD-1[13] and ISIS[5]. Unlike guorum consensus methods, the available copies method
oUsNU rve sorighizability in the presence of communication link failures such as partitions.

In the true-copy token scheme [21]. a replicated file is represented by a coliection of copies. Copies
thai reflect the file’s current state are called true copies, and are marked by true-copy tokens. The set
of true copies can be reconfigured to permit activities to operate on local copies of files. This method
preserves serializability in the presence of crashes and partitions, but the availability of a replicated

file is limited by the availability of the sites containing its true copies.

A formal model for concurrency control in replicated databases proposed by Bernstein and Goodman

can be used tc show the correctness of several replication methods [4]. This model is based on two
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assumptions that do not apply to the replication methods used in this paper: that a re'piicated object
is represented by multiple copies, and that all information about operations is captured by a simple

read/write classification. These assumptions unnecessarily restrict availability and concurrency.

Several recent proposals for replication methods treat concurrency control and replication
independently (11, 9, 1]. The replication method used here takes a different approach by integrating
replicaticn and concurrency coentrol in a single mechanism. A!though independent methods are

simpler, integrated methods support better concurrency,

The earliest use of guorum consensus is a file replication method due to Gifford [11]. A gquorum-
consensus replication method for directories has been proposed by Bioch, Danigls, and Spector [6].
These methads can be viewed as specially optimized instances of the method used in this paper.
Extensions 10 gquorum consensus that further enhance availability in the presence of partitions have

been proposed for files by Eager and Sevcik [9] and for arbitrary data types by the author [14, 16].



3. Assumptions and Terminology”™

This section summarizes our model of computation. A more detailed exposition appearsin {14, 15].

We admit two kinds of faults: sites may crash and communication links may be interrupted. When a
site crashes, it becomes temporarily or permanently inaccessible. Communication link failures result
in lost messages; garbled and out-of-order messages can be detected {with high probability) and
discarded. Transient communication failures may be hidden by lower level protocols, but longer-lived
failures can cause partitions, in which functioning sites are unable to communicate. A failure is
detected when a site that has sent a message fails to receive a response after a certain duration. The
absence of a response may indicate that the original message was lost. that the reply was lost, that

the recipient has crashed, or simply that the recipient is slow to respond.

The basic units of computation are sequential processes called actions, or transactions. Actions are
atomic, that is, serializable and recoverable. Serializability means that actions appear to execute ina
serial order [22], and recoverability means that an action either succeeds completely, or has no
effect. An action that completes all its changes successfully commits; otherwise it aborts, and any

changes it has made are undone. An action that has neither committed nor aborted is active.

The basic containers for data are cailed objecis. Each object has a type, which defines a set of
possible states and a set of primitive operations that provide the {only) means of creating and
manipulating objects of that type. For example, an object of type Queue has two operations: Enqg
places an item in the queue, and Deg removes the least recently enqueued item, raising an exception

[19] if the queue is empty.

3.1. Atomicity
An asvent is pair consisting of an operation invocation and a response. in the absence of failures and
concurrency, an cbject’s state is given by a sequence of events called a serial history. For exampls,
the following is a serial history for a Queue:

Eng(x);Ok{)

Ena{y);Ok()

Deq();Ok(x)
Deg{):Empty()

Serial histories are denoted by lower-case letters (&.g. 't. g). A serial specification for an object isa
set of possible serial histories for that object. For example, the serial specification {or Queue includes
all and only the histories in which items are dequeued in first-in-first-out order. A legai history is one
that is included in the object’s serial specification. Serial specifications are assumed to be prefix-

closed: any prefix of a legal serial history is legal.



In the presence of failure and concurrency, an object's state is given by a behavicral history, which is
a sequence of Begin events. operation executions, Commit events, and Abort events. To keep track
of interleaving, each event is associated with an action. For example, the following is a behavioral

history for a Queve:
Begin A
Eng{x);Ok() A
Begin B
Eng(y):Ok() B
Commit A
Deq();Ok{x) B
Commit B

The ordering of operation executions in a behavioral history reflects the order in which the the obiect
rzturned the responses, not necessarily the order in which it received the invocations. Behavioral

histories are denoted by upper-case letters {e.g. H, G).

A behavioral specification for én object is a set of possible behaviora! histories for that object. Just as
for serial histories, a /ega/ behavioral history is one that is included in the object’s behavioral
specification. All behavioral specifications are assumed to be prefix-closed and on-line: the result of

appending a Commit entry for an active action to a iegal behavioral history is legal.

The serial and behavioral specifications for the objects considered in this paper are related by the
notion of atomicity. Let >» denote a total order on committed and active actions, and let H be a
behavioral history. The serialization of H in the order 3> is the seria! history h constructed by
reordering the events in H so that if B » A then the subsequence of events associated with A
precedes the subsequence of events associated with B. H is serializable in the order 3> if h is legal. H
is serializable if it is serializable in some order. H is atomic it the subhistory associated with
commilted aclions is serializable. An object is atomic if every history in its behavioral specification is

atomic.

A system encompassing multiple objects is atomic if all component objects are atomic and
serializable in a common order. A property Pis a focal atomicity property [28] if a system is atomic
provided that each individual object satisfies . If a system-wide local atomicity property is agreed
upon in advance, then objects can be implemented independently subject only to the constraint that
each implementation satisfies the system’'s local atomicity property. This paper compares and

evaiuates aiternative local atomicity properties.



3.2. Replication

A replicated object is an object whose state is stored redundantly at muttiple sites. Replicated objects
are implemented by two kinds of modules: repositories and front-ends. Repositories provide long-
term storage for the object’s state, while front-ends carry out operations for clients. Front-ends
correspond roughly to transaction managers and repositories carrespond roughly to data managers
[3].

R1 R2 R3

0:00 Begin A 0:00 Begin A

0:01 Begin B 0.01 Begin B
0:02 Enq(x);Ok() A 0:02 Eng(x);Ok() A

0:03 Eng(y);Ok(} B 0:03 Eng(y);Ok() B
0:04 Begin C 0:04 Begin C
0:05 Eng(2);0k() C .05 Enqg(z):Ok() C
0:08 Commit A 0:06 CommitA

0:07 Abort B 0:07 AbortB

Figure 3-1: A Replicated Queue"

A replicated object's state is represented as a fog, which is a sequence of entries, each consisting of
a timestamp, an event, and an action identifier.- Timestamps are generated by a systeirn ol Lamport
clocks [18]. The log entries are partially replicated among the repositories. Figure 3-1 shows a

schematic representation of a queue replicated among three repositories.

A client executes an operation by sending the invocation to a front-end. The front-end merges the
logs from an initial quorum for the invocation to construct a view. If the view indicates that no
synchronization confiicts exist. the front-end chooses a response legal for the view, appends a
timestamped entry to the view, and sends the updated view to a final quorum of repositaries for that

event.

Two conditions are necessary to execute an operation: the client must locate an available front-end
for the object, and the tront-end must locate a quorum of availabie repositories. Because front-ends
can be replicated to an arbitrary extent, perhaps placing one at each client's site, the availability of a
replicated object is dominated by the availability of its repositories. Consequently, each operation’s
availability is determined by its quorums, and constraints on quorum assignment determine the range

of availability properties realizable by guorum consensus replication.

As discussed below, constraints on quorum assignment are expressed as requirements that certain

initial and fina! quorums intersect. if each initial guarum for an invocaticn is required to intersect



each final quorum for an event. then their levels of availability are inversely reiated, because if the
quorums for one are made smaller (increasing availability) then the quorums for the other must be
made correspondingly larger (decreasing availability). The weaker the constraints on gquorum

intersection, the wider the range of realizable availability properties.

We close this section with a precise definition of the constraints governing quorum assignment. Let
> be a relation between invocations and events. Informally, a subhistory is closed under > if
whenever it contains an event fe A] it also cdntains every earlier event fe' A"} such that e.inv > e', and
neither A nor 4" have aborted. More precisely, tet H(i) denote the i-th event of H, and let e.inv denote

the invocation part of the event e,

Definition 1: G is a closed subbhistory of H under > if there exists an injective order-
-preserving map s such that G(i} = H(s(i)} for all i in the domain of G, and if e.inv > e', H(j)
= [e Al HG') = [e"A],j> [, s(i) = j, and neither A nor A’ has aborted, then there exists
such that s(i’) = j. :

Informaily, > is an atomic dependency relation if a response to an invocation is tegal for a complete
history whenever it is legal for a closed subhistory that includes the events on which the invocation

depends. More_ precisely, let "+ " denote concatenation:

Definition 2: A relation > between invocations and events is an alomic dependency
relation for a behaviorai specification if for all invocations inv, all responseas res, all legal
histories /. and all closed subhistories G containing the events e of H such that inv > e,
Helinv:res A] is legal whenever G+finv;res Al is legal.

A replicated object satisfies its behavioral specification if and only if its quorum intersection relation is
an atomic dependency relation [15]. An atomic dependency relation is minima/ if no smaller relation
is an atomic dependency relation. A minimal dependency reiation corresponds to the weakest set of
constraints sufficient to satisfy that behavioral specification. In the remainder of this paper, we
compare minimal atomic dependency relations for several classes of behavioral specifications.

4. Static vs. Hybrid Atomicity

A system of Lamport Clocks [18] can be used to impose an unambiguous ordering on Begin and

Commit events.

Definition 3: A behavioral history is static atomic if committed actions are serializable in
the order of their Begin events, and it is hybrid atomic if they are serializabie in the order of
their Commit events [28).

A behavioral specification is static (hybrid) atomic it alf its histories are static (hykrid) atomic. Static

and hybrid atomicity are local atomigity properties.

Let Sratic(T) denote the largest prefix-closed nn-line static atomic behavioral specification for the



serial specification 7, and let Hybrid(T) be defined similarly for hybrid atomicity. For brevity, an atomic
dependency relation for Static(T} is called a static dependency relation for T, and similarly for
Hybrid(T). In this section we show that every hybrid dependency relation for T is also a static
dependency relation, but not vice-versa. Moreover, a data type's minimal static dependency relation

is unique. but its minimal hybrid dependency relation need not be.

We use the following terminology. A static serialization of a behavioral history H is a serial history
constructed by committing some set of active actions in 4 and serializing them in the order of their
Begin events. H is on-line static atomic if and only if all its static serializations are legal. A hybrid
serialization of H is constructed similarly, except that actions are serialized.in the order of their

Commit events.

Theorem 4: Every static dependency relation for a data type is also a hybrid dependency
relation.

Proof: We show the contrapasitive: any relation that is not a hybrid dependency relation
cannot be a static dependency relation. If > is not a hybrid dependency relation, then
there exist behavioral histories H, G, and G*[e A] in Hybrid(T) such that G is a closed
subhistory of 4 containing all events e' such that e.inv > e’ but H*fe A] is not in Hybrid(T).
We show that > is not a static dependency refation by constructing behavioral histories
H'. G', and G’+[e A] in Static(T} such that G' is a closed subhistory of H' containing all
events e' such thate.inv > &', but H'+[e A] is not in Static(T).

Because H+fe AJ is not in Hybrid(T), it has an illegal hybrid serialization in which committed
and active actions are serialized in an order 3. Let H' and G’ be the histories constructed
from H and G by moving their Begin events to the start of each history, and reordering
them in the order 3>. H'is in Static(T) because any static serialization of aprefixof H'is a
hybrid serialization of the corresponding prefix of H, and is therefore legal. G' and G'*[e A}
are in Static(T) by anaiogous arguments. H'¢/e A], however, is not in Static(T} because it
has an illegal static serialization in which committed and active actions are serialized in the
order 3.

The following exampie will be used to show that the converse of Theorem 4 is false. A PROM is a
coniainer for an item. Whnen a PROM is created, it is initiaiized with a defauit vaiue, and its contenis
can be overwritten, but not read. Once the PROM has been sealed, its contents can be read but not
written. There are three pperations:

Write = Operation(item) Signals (Disabled)

stores a new item in the PROM if it has not been sealed, otierwise an exception is signaled.
Read = Operation() Returns(item) Signals (Disabled)

returns the item in the PRCM if it has been sealed, otherwise an exception is signaled.
Seal = Dperation()

anables reads and disables writes. It has no effect if the PROM has already been sealed.



We claim that the following is a hybrid dependency relation for PROM.

Seal() = Write(x);0k{)
Seal{) = Read();Disabled()
Read() >, Seal();Ok()
Write(x) >, Seal(};Ok()

For brevity. we restrict our attention to the Read invocation. Let H and G be-in Hybr:d(PROM), where
G is a closed subhistory containing all events e such that Read >, e. If G*[Read().Disabled() A] is in
Hybrid{PROM), then G contains no Seal events, either committed or active. [f there are no Seal events
in G. there are none in H, because Read > Seal(J;Ok{). It H contains no Seal events, then
H*[Read():Disabled() A] is in Hybrid(PROM), because an exceptional Read is atways legal before the
PROM is sealed.

if Ge[Read();Qk(x} Al is in Hybrid(PROM), then every hybrid serialization must satisfy the following

conditions:

1. The Read is serialized after a Seal.

2. x is the last value written before the PROM is sealed,

It G satisties the first condition, so does H, because Read() >, Seal();Ok(). A normal eventis one that
terminates with Ck. All normal Write events must precede the first unaborted Seal event in H because
normal Write events must be serialized befare the first Seal event. G thersfore includes all normal
Write events of H, because Read() >, Seal();Ok(), Seal() >, Write(x);Ok(}, and G is closed. Thus, if
G satisfies the second condition, so does H.
Theorem S: A hybric dependency relation need not be a static dependency relation.
Proof: We show that the relation >, is not a static dependency relation for PROM. Let H
be the foliowing history: .
Begin A '
Begin B
Begin C
Begin D
Write{x};Ck{) A
Commit A
Seal(h;0k() C
Commit C
Read();Ok(x) D
and let G include all events of H except the last. H, G, and G*[Write(y);Ok() 8] are in
Static(PROM)}, but Hs[Write(y);Ok(}) B] is not, because the value read by O will be
invalidated if 8 commits. Thus, >y is not a static dependency relation.
Theorem 6: T has a unigue minimal static dependency relation >-S. defined as follows:

inv >~o e if there exists a response res, and serial histories h,, h, and hy such that
h,*h,*h,is legal, and either.

1. h,sfinvires]*h,*h, and h *h_*e~h, are legal, but h elinv;res]*h,ce+h, is illegal.
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2.h resh,*h, and h,°h2'[inv,~res]-h3 are legal, but hr°e'h2-[r’nv;res]-h3 is illegal.

Proof: We first show that every static dependency relation > contains g Otherwise,
suppose > tails to satisfy the first condition. (An analogous argument shows that > is not
a static dependency relation if it fails to satisfy the second condition.) If A is a serial
history, we use the notation /h A} to denote the behavioral history in which action A
executes each event in h in turn. Let H be the following static atomic behavioral history:

Begin A

Begin B

Begin C

Begin D

BeginE

h, A

Commlt A

h, C

Commit C

h, E

Commit E

eB
and let G include all but the last event. G is a closed subhistory of H containing all events
e' such that inv > e'. H, G. and Ge[invires D] are in Static(T), but H*{inv;res D] is not,
because it has the illegal static serialization b *finv;resj*h *e*hg. it follows that > isnot a
static dependency reiation.

We now show that >_ is itself a static dependency refation. Ctherwise, there exist
behavioral histories 4, G, and G+/e A] in Static(T} such that G is a closed subhistory of H
under > containing all events e’ such that e.jnv > €', but Hefe Aj is not in Static(T), We
derive a contradlctlon from these hypotheses.

The proof is by induction on the number of events of H missing from G. The result is
immediate when H = G, so it suffices to assume that G is missing a singie event e.
Assume the illegal static serialization of H*[e A} has the form h ce® h,*finv; res]*h,. (A
snmnlar contradiction can be derived by assuming the illegal senal:zatlon has the form
h,sfinv;res]*h,ce*h, ) The serial history h *h,*h, is legal as a static serialization of G,
h ,mechyth, is lega! ‘as a static serialization of H, and h shytlinv: res]*h, is legal as a static
sena.:zatlon of Ge[inv;res A]. These observations n’npiy that inv g contrad:ct:on

When applied to the PROM data type, Theorem € shows that static atomicity impceses two constraints

that are not needed for hybrid atomicity:

Read() >g Write{x);Ck()
Write(x} >—s Read();0k(y)

These additional constraints have consequences for availahility. Consider a PROM replicated among
n identical sites to maximize the availability of the Read operation. Hybrid atomicity permits Read,
Seal and Write guorums respectively consisting of any one, n, and one sites, while static atomicity
~would require Read, Seal and Write quorums to consist of any one, n, and n sites. In this example,

static atomicity significantly reduces the availability of ine Write cperation.
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Although an object's minimal static dependency can be characterized directly in terms of its serial
specification, hybrid dependency has a more complex structure because an object's minimal hybrid
dependency relation is not necessarily unique. Quorum assignments under static atomicity have one
degree of freedom: a quorum choice is valid if and only if its intersection relation satisfies the unique
minimal static dependency relation for that data type. Quorum assignments under hybrid atomicity
have an additional degree of freedom: a quorum choice is valid if and only if it satisfies some hybrid
dependency relation for that data type. It is an immediate consequence of Theorem 4 t_hat a data
type’s unique minimal static dependency relation must encompass the union of its minimal hybrid

dependency relations,

We close this section with an example of an object having tweo distinct minimal hybrid dependency
relations. A FlagSet is an object whose state is modeled by the fallowing components: ogened and
closed are boolean flags, and fiags is a four-element boolean array. ATI components are initially False.
If the object has not already been opened, the Open operation enables the Shift operation and sets

flags{1] to True. Otherwise, an exception is signalled and the ihvocation has no effect.
Open = Operation() Signals (disabled)
if self.opened
then signal (disabled)

else self.opaned := truse
self.flags[1] := true
end
end Open

If the object has been opened but not closed, the Shift operation assigns flags{n] to flags(n + 1].
Otherwise, an exception is signalled and the invocation has no effect. This operation is defined only if

0<n<4,

Shift = QOperation(n: int) Signals (disabled).
if self.opened and not sel1f.closed
then self.flags{n+1] := selif.flags{n]
else signal (disabied)
end
end Shift

The Close operation returns the value of flagf4]. If the object has been opened, Close disables the

Shift operation, otherwise it has no effect.
Close = Cperation() returns (bool)

seif.closed := self.opened
return (self.flags[4])
end Close

A series of examples can be used to show that the-following dependencies must be included in any
hybrid dependency relation for FlagSet:
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Open() > Shift{n);Disabled().

Open() > Open();Ok()

Close() > Shift{n):Ok()

Close() > Open();Ok{)

Shift(n) > Open();Ck{) forn = 1,2,3
Shift(n) > Close();Ok(x) forn = 1,2,3
Shift(3) > Shift{2};0k(} :

This relation can be extended to a hybrid dependency relation by the inclusion of either of the

following dependencies:

Shift(3) > Shift(1):0k{)
Shift(2) > Shift(1);0k()

For brevity, we restrict our attenticn to the most interesting case: the Shift(3) invocation. Let H, G,
and G*[Shift(3):0k{) A] be behavioral histories in Hybrid(FlagSet) such that G is a closed subhistory of
H that includas all events e such that Shift(3) > e. H*[Shift(3);0k() Al is in Hybrid{FlagSet) if and only
if the following conditions hold for every hybrid serialization:

1. The Shift is serialized after a normal Open, and there is no Close serialized between the
Opern and the Shift.

2. If the Shitt sets flags{4] to True, then the Shift is not serialized before a [Close();Ok(False)]
event.

if G satisfies the first condition, so does H, because Shift invocations depend on normal Open and
Close events. Tne second condition is trivially satisfied if # includes no Close events executed by
uncommitied actions distinct from A. Otherwise, H*[Shift(3);0k() A] is legal only if the normal Open
was executed by A itself, and if the Shift does not set Flags{4] to True. Each alternative dependency
relation ensures that if A has executed a Shift(7) followed by a Shift(2}, then these events will appear
in G. The alternatives arise because Shift{1) events affect the legality of later Shift(3) events anly if
there has been an intermediate Shift(2) event. Consequently, Shift(1) entries can appear in the view
~onstructed for a Shift(3) invocation either because the final and initial quorums of Shift(1) and

Shift(3) intersact directly, or because they intersect indirectly through Shift{2).

5. Strong Dynamic Atomicity

Although quorum consensus replication does not permit the constraints on availability and
concurrency to be minimized simultaneously, these constraints do not have a simple inverse relation.
Strengthening constraints on concurrency does not necessarily weaken constraints on availability. In
this section we consider strong dynamic atomicity (28], a generalization of two-phase locking
protoco's. Strong dynamic atomicity is a special case of hybrid atomicity: if a behavioral history is
strong dynamic atomic, then it is hybrid atomic, but not vice-versa. Nevertheless, strong dynamic

atomicily and hybrid atomicity have incomparable minimal atomic dependency reiations: each
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permits quorum assignments not permitted by the other. Static atomicity and strong dynamic

atomicity are incomparable with respect to both concurrency and availability.

A behavioral history induces a partial precedes order on actions as follows: A precedes B if B
executes an operation after A commits. Two serial histories h and h' are equivalent (denoted h ~ h’)
if they cannot be distinguished by any future computations: hes is legal it and only if h'*s is tegal for

all sequences of events s.

- Definition 7: A behavioral history is'srrong dynamic atornic if it is serializable in every
order consistent with the partial precedes order, and if all such serializations are
equivalent.

_Since the precedes order is clearly compatible with the Commit event order, any strong dynamic
atomic behavioral history is hybrid atomic, but not vice-versa. A dynamic serialization of a behavioral
history H 1s constructed by committing some set of active actions in M and serializing them in an order
consistent with the precedes order. Let Dynamic(T) denote the Iérgest on-line, prefix-closed strong
dynamic atomic behavioral specification for T. An atomic dependency relation for Dynamic(T) is

called a dynamic dependency relation for T.

Definition 8: Two events e and e' commute if for all serial histories A, whenever h+e and
fi*e’ are both legal, then hee*e’ and h+e’*e are equivalent legal histories.

The following lemma is needed to characterize the unique minimal dynamic dependency relation for

Dynamic(T).

Lemma 8: If # and H*{e A] are behavioral histories in Dynamic(T), and k' and h are
dynamic serializations of H*/e A] and H respectively, then h' ~ hee.

Proof: Because A is active, H*[e A] has a dynamic serialization h"'*e in which A is ordered
last, where 7" is a dynamic serialization of H. Because M'is in Dynamic(T), 1" ~ h, thus h’
~ hre.

Theorem 10: T has the following unique minimal dynamic dependency relation >—D.
defined as foliows: inv > e if there exists a response res, such that finv;res] and e do not
commute.

Proof: We first show that every dvhamic dependency relation > must contain 5 ife
and &' do not commute, there exists a history h such that ke and h*e’ are both legal, but
either f1*e*e’ and hre'*e are not equivalent or neither is legal. Let H be the following
behavioral history:

hA

Commit A

e'B
and let G include all but the last event. H, G, ad S*fe C} are in Dynamic(T), but Hefe C} is
not.

We now show that >p s itself a dynamic dependency refation. Otherwise, there exist
behavioral histories H, G, and G*fe A] in Dynamic(T) such that G is a closed subhistory of
H under > containing ali events e’ sucn that e.inv ~n €, but He[e A] is not in
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Dynamic{T). We derive a contradiction from these hypotheses.

The proof is by induction on the number of events missing from G. If G = H, then the
result is immediate. so it suffices to show the result when G is missing a single event (e’ B]
of H. If Heje A] is not in Dynamic(T), then there exist serialization orders >» and »’
compatible with the precedes order that do not produce equivalent legal serializations of
Hefe A]. Let h and h' be their respective serializations of H, g and g’ their serializations of
G.

We claim that h ~ g+e'. The proof is by induction on the number of events that follow fe’
B] in 4. The result is immediate if [e’ 8] is the last event in H, so it suffices to show the
result when there is exactly one such event. The resuit is immediate if that event is a
Begin, Commit. or Abori. because No new dynamic serializations are introduced.
Otherwise, H = GO-[e' Bj*fe" Cland G = Go-ie"C]. The events e’ and e’ must commute,
otherwise G would not be closed. Let g, be the dynamic serialization of G, induced by 2.
The serial history go-e” is legal, since it is equivalent to g (Lemma 9}, and go-e' is legal as
a dynamic serialization of Go-[e' B]. Because e' and e” commute, h = go'e“e_‘” o
go°e"-e'=:g'e'. -

Because G*je A] and H are in Dynamic(T), g*e and g+e' are both legal. Because e and e’
commute, gee'*e = h+*e is iegal. An analogous argument shows that g'se’*e == h'ee is
legal. But because H is in Dynamic(T), "= h", hence h'*e = h*e, contradicting the
assumption that H*fe A] is not in Dynamic(T).

Theorem 11: A static dependency relation is not necessarily a dynamic dependency
relation.

Proof: We use the Queue example from Section 3. By Theorem 6, the following is the
unique minimal static dependency relation for Queue: '

Eng(x) > g Deq();Ok(y)
Eng(x) > Deq(;Empty()
Deq() > Ena{x):0k{)
Deq() =g Deq:Ok(x)
By Theorem 10, however, strong dynamic atomicity introduces an additional constraint:

Eng(x) > Enq(y);Ok()

The following example illustrates the relation between dynamic and hybrid degendency. An object of
type DoubleBulier consists of a producer buffer and a consumer buffer, each capable of holding a
single item. The object is initialized with a default item in each buffer. The DoubleBuffer type

provides three operations:
Froduce = Operation{item)

copies an item into the producer buffer,
Transter = Operation()

copies the item currently in the producer bufler to the consumer buffer, and
Consume = Operation() Returns (item)

returns a copy of the item currently in the consumer buftfer.



15

Theorem 12: A dynamic dependency relation is not necessarily a hybrid dependency
relation.

Proot: By Theorem 10, the following is the minimal dynamic dependency relation for the
DoubleBuffer type:

Produce(x) > o Produce(y);Ok()
Produce(x) > Transfer();Ok()
Transfer() 5 Produce{x);0k{)
Consume() > Transfer();Ok()
Transfer() >0 Consume();Ok(x)

The foliowing exampie shows that > I8 not a hybrid dependency - relation for
DoubleButfer. Let H be the following behavioral history:

Produce(x):0Ok() A
Transfer();Ok() A
Commit A
Transter();Ok() C
Produce(y);Ck() B

and let G be the history containing all but the last event. H, G and G+/Consume();Ok{x) 0]
are in Hybrid(DoubleBufter), and G is a closed subhistory of H containing all events e such
that Consume > e, but H*{Consume();Ok(x) D] is not in Hybrid(DoubleButfer), because an
illegal serialization results if the active actions commit in the order 8, C, and then O.

Thedrems 4, 6, and 10 imply that dynamic dependency i3 incomparable to static dependency and
nybrid dependency. )

6. Conclusions |

Atomicity in a decentralized distributed system is ensured by choosing a local atomicity property that
every atomic object must satisfy. For exampie, the Swallow distributed data storage system is based
on statc atomicity [24], and Argus [20] and TABS [27] are based on strong dynamic atomicity. The
choice of a system’s underlying local atomicity property is an important design decision. ' The
property must be agreed upon in advance, and once made, it is difficult to change.

This paper has proposed a new criterion for evaluating atomicity properties: support for quorum
consensus replication. A comparison of the constraints on quorum assignment needed to maximize
concurrency under static, hybrid, and strong dynamic atomicity yields different results than a
comparison based on concurrency. Although static and hybrid atomicity place incomparable
constraints on concurrency, hybrid atomicity places fewer constraints on quorum assignment,
Aithough hybrid atomicity places fewer constraints on concurrency ihan strong dynamic atomicity,
they place incomparable constraints on quorum assignment.  Availability thus complements

concurrency as a criterion for evaluating atomicity mechanisms.



16

Availability and concurrency are not independent properties. One necessarily affects the other, and
an inappropriate iocal atomicity property may place unnecessary restrictions on the avaitability and
concurrency realizable within a distributed system. The results presented in this paper suggest that
hybrid atomicity is preferable to the others because it places fewer constraints on availability then

static atomicity, and fewer constraints on concurrency than strong dynamic atomicity.
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