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Abstract. Speech is a complex process that requires control and coor-
dination of articulation, breathing, voicing, and prosody. Dysarthria is
a manifestation of an inability to control and coordinate one or more
of these aspects, which results in poorly articulated and hardly intel-
ligible speech. Hence individuals with dysarthria are rarely understood
by human listeners. In this paper, we compare and evaluate how well
dysarthric speech can be recognized by an automatic speech recognition
system (ASR) and näıve adult human listeners. The results show that
despite the encouraging performance of ASR systems, and contrary to
the claims in other studies, on average human listeners perform better in
recognizing single-word dysarthric speech. In particular, the mean word
recognition accuracy of speaker-adapted monophone ASR systems on
stimuli produced by six dysarthric speakers is 68.39% while the mean
percentage correct response of 14 näıve human listeners on the same
speech is 79.78% as evaluated using single-word multiple-choice intelligi-
bility test.
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1 Introduction

Dysarthria is a neurogenic motor speech impairment which is characterized by
slow, weak, imprecise, or uncoordinated movements of the speech musculature
[1] resulting in unintelligible speech. This impairment results from damage to
neural mechanisms that regulate the physical production of speech and is often
accompanied by other physical handicaps that limit interaction with modalities
such as standard keyboards. Automatic speech recognition (ASR) can, therefore,
assist individuals with dysarthria to interact with computers and control their
environments. However, the deviation of dysarthric speech from the assumed
norm in most ASR systems makes the benefits of current speaker-independent
(SI) speech recognition systems unavailable to this population of users.
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Although reduced intelligibility is one of the distinguishing characteristics of
dysarthric speech, it is also characterized by highly consistent articulatory errors
[1]. The consistency of errors in dysarthric speech can, in principle, be exploited
to build an ASR system specifically tailored to a particular dysarthric speaker
since ASR models do not necessarily require intelligible speech as long as con-
sistently articulated speech is available. However, building a speaker-dependent
(SD) model trained of spoken data from an individual dysarthric speaker is
practically infeasible due to the difficulty of collecting large enough amount of
training data from a dysarthric subject. Therefore, a viable alternative is to
adapt an existing SI model to the vocal characteristics of a given dysarthric
individual.

The purpose of this study is to compare näıve human listeners and speaker-
adapted automatic speech recognition (ASR) systems in recognizing dysarthric
speech and to investigate the relationship between intelligibility and ASR perfor-
mance. In earlier studies, it has been shown that ASR systems may outperform
human listeners in recognizing impaired speech [2–4]. However, since intelligibil-
ity is typically a relative rather than an absolute measure [5], these results do not
necessarily generalize. Intelligibility may vary depending on the size and type
of vocabulary used, the familiarity of the listeners with the intended message
or the speakers, the quality of recording (i.e. the signal-to-noise ratio), and the
type of response format used.

Yorkston and Beukelman [6] compared three different types of response for-
mats: transcription, sentence completion, and multiple choice. In transcription,
listeners were asked to transcribe the word or words that have been spoken. In
sentence completion, listeners were asked to complete sentences from which a
single word had been deleted. In the multiple choice format, listeners selected
the spoken word from a list of phonetically similar alternatives. Their results in-
dicated that transcription was associated with lowest intelligibility scores, while
multiple choice tasks were associated with the highest scores. This clearly shows
that listeners’ performance can vary considerably depending on the type of re-
sponse format used. Therefore, when comparing human listeners and an ASR
system, the comparison should be made on a level ground; i.e., both should be
given the same set of alternative words (foils) from which to choose. In other
words, it would be unfair to compare an ASR system and a human listener
without having a common vocabulary, and since the innate vocabulary of our
participants is unknown (but may exceed 17,000 base words [7]), we opt for a
small common vocabulary. Hence, the multiple choice response format is chosen
in this paper.

2 Method

2.1 Speakers

The TORGO database consists of 15 subjects, of which eight are dysarthric
(five males, three females), and seven are non-dysarthric control subjects (four
males, three females) [8]. All dysarthric participants have been diagnosed by a
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speech-language pathologist according to the Frenchay Dysarthria Assessment
[9] to determine the severity of their deficits. According to this assessment, four
speakers (i.e., F01, M01, M02, and M04) are severely dysarthric, one speaker
(M05) is moderately-to-severely dysarthric, and one subject (F03) is moderately
dysarthric. Two subjects (M03 and F04) have very mild dysarthria and are not
considered as dysarthric in this paper as their measured intelligibility is not
substantially different from the non-dysarthric speakers in the database.

2.2 Speech Stimuli

Three hours of speech are recorded from each subject in multiple sessions in
which an average of 415 utterances are recorded from each dysarthric speaker
and 800 from each control subject. The single-word stimuli in the database in-
clude repetitions of English digits, the international radio alphabets, the 20 most
frequent words in the British National Corpus (BNC), and a set of words se-
lected by Kent et al. to demonstrate phonetic contrasts [5]. The sentence stimuli
are derived from the Yorkston-Beukelman assessment of intelligibility [10] and
the TIMIT database [11]. In addition, each participant is asked to describe in
his or her own words the contents of a few photographs that are selected from
standardized tests of linguistic ability so as to include dictation-style speech in
the database.

A total of 1004 single-word utterances were selected from the recordings of the
dysarthric speakers and 808 from control speakers for this study. These consist
of 607 unique words. Each listener is presented with 18% of the data (single-
word utterances) from each dysarthric subject where 5% of randomly selected
utterances are repeated for intra-listener agreement analysis resulting in a total
of 180 utterances from the six dysarthric individuals. In addition, a total of 100
single-word utterances are selected from three male and three female control
subjects comprising about 6% of utterances from each speaker. Altogether, each
participant listens to a total of 280 speech files which are presented in a random
order. Inter-listener agreement is measured by ensuring that each utterance is
presented to at least two listeners.

2.3 Listeners

Fourteen native North American English speakers who had no previous famil-
iarity with dysarthric speech and without hearing or vision impairment were
recruited as listeners. The listening task consisted of a closed-set multiple-choice
selection in which listeners were informed that they would be listening to a list
of single-word utterances spoken by individuals with and without speech disor-
ders in a random order. For every spoken word, a listener was required to select
a word that best matched his/her interpretation from among a list of eight al-
ternatives. Four of the seven foils were automatically selected from phonetically
similar words in the pronunciation lexicon, differing from the true word in one or
two phonemes. The other three foils were generated by an HMM-based speech
recognizer trained on the entire data to produce an N-best list such that the first
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three unique words different from the target word are selected. Listeners were
allowed to replay prompts as many times as they want.

3 Intelligibility Test Results

For each listener, the percentages of correct responses out of the 180 dysarthric
prompts and 100 non-dysarthric prompts were calculated separately. The cor-
rect percentages were then averaged across the 14 listeners to compute the mean
recognition score of näıve human listeners on dysarthric and non-dysarthric
speech. Accordingly, the mean recognition score of human listeners is 79.78%
for stimuli produced by dysarthric speakers and 94.4% for stimuli produced by
control speakers. Figure 1 depicts the recognition score of the 14 näıve listeners
on stimuli produced by dysarthric and control speakers.

Fig. 1. Word recognition score of 14 näıve human listeners

To measure the intelligibility of stimuli produced by a speaker, the responses
of all listeners for the stimuli produced by that speaker are collected together and
the percentage of correct identifications is computed. Accordingly, for severely
dysarthric speakers, the intelligibility score ranged from 69.05% – 81.88% with
the mean score being 75.2%. Speaker M05, who is moderately-to-severely dysarthric,
had 87.88% of his words correctly recognized, and the moderately dysarthric
speaker F03 had 90% of her words recognized correctly. These results are pre-
sented in Figure 2.
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Fig. 2. Intelligibility score of six dysarthric speakers as rated by 14 näıve human lis-
teners

On average, listeners agreed on common utterances between 72.2% and 81.6%
of the time with the mean inter-listener agreement being 77.2%. The probability
of chance agreement here is 12.5% since there are 8 choices per utterance.

Intra-listener reliability is measured as the proportion of times that a listener
identifies the same word across two presentations of the same audio prompt. The
mean intra-listener agreement across all listeners is 88.5%, with the lowest being
79.6% and the highest being 96.3% (listeners 7 and 10).

4 ASR Experiments and Results

4.1 Data Description

The speaker-independent (SI) acoustic models are built using a subset of the
TORGO database consisting of over 8400 utterances recorded from six dysarthric
speakers, two speakers with very mild dysarthria, and seven control subjects. The
SI models are trained and evaluated using the leave-one-out method; i.e., data
from one speaker are held out for evaluation while all the remaining data from the
other speakers are used for training. The held-out data from the test speaker is
divided into an evaluation-set and an adaptation-set. The evaluation-set consists
of all unique single-word stimuli spoken by the test dysarthric speaker (described
in Section 2.2) while the remaining data are later used as adaptation-set to adapt
a SI acoustic model to the vocal characteristics of a particular dysarthric speaker.
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4.2 Acoustic Features

We compare the performance of acoustic models based on Mel-Frequency Cep-
stral Coefficients (MFCCs), Linear Predictive Coding-based Cepstral Coeffi-
cients (LPCCs), and Perceptual Linear Prediction (PLP) coefficients with vari-
ous feature parameters, including the use of Cepstral Mean Subtraction (CMS)
and, the use of the 0th order cepstral coefficient as the energy term instead of the
log of the signal energy. The use of CMS was found to be counterproductive in
all cases. This is because single-word utterances are very short and CMS is only
useful for utterances longer than 2–4 seconds [12]. The recognition performance
of the baseline SI monophone models based on MFCC and PLP coefficients
with the 0th order cepstral coefficient are comparable (39.94% and 39.5%) while
LPCC-based models gave the worst baseline recognition performance of 34.33%.
Further comparison on PLP and MFCC features on speaker-adapted systems
showed that PLP-based acoustic models outperformed MFCC-based systems by
2.5% absolute. As described in [13], PLP features are more suitable in noisy
conditions due to the use of different non-linearity compression; i.e., the cube
root instead of the logarithm on the filter-bank output. The data used in these
experiments consist of considerable background noise and other type of noise
produced by the speakers due to hyper-nasality and breathy voices. These as-
pects may explain why PLP performed better than MFCCs and LPCCs in these
experiments. The rest of the experiments presented in this paper are based on
PLP acoustic features. PLP incorporates the known perceptual properties of hu-
man hearing, namely critical band frequency resolution, pre-emphasis with an
equal loudness curve, and the power law model of hearing.

A feature vector containing 13 cepstral components, including the 0th order
cepstral coefficient and the corresponding delta and delta-delta coefficients com-
prising 39 dimensions, is generated every 15 ms for dysarthric speech and every
10 ms for non-dysarthric speech.

4.3 Speaker-Independent Baseline Models

The baseline SI systems consist of 40 left-to-right, 3-state monophone hidden
Markov models and one single-state short pause (sp) model with 16 Gaussian
mixture components per state. During recognition, the eight words that are used
as alternatives for every spoken test utterance during the listening experiments
are formulated as an eight-word finite-state grammar which is automatically
parsed into the format required by the speech recognizer. The pronunciation
lexicon is based on the CMU pronunciation dictionary1. All ASR experiments
are performed using the Hidden Markov Model Toolkit (HTK) [14].

The mean recognition accuracy of the baseline SI monophone models using
PLP acoustic features on single-word recognition where eight alternatives are
provided for each utterance is 39.5%. The poor performance of the SI models in
recognizing dysarthric speech is not surprising since data from each dysarthric

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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speaker deviates considerably from the training data. Word-internal triphone
models show little improvement over the baseline monophone models for the
dysarthric data in our database. Hence, we use the monophone models as our
baseline in the rest of the experiments.

4.4 Acoustic and Lexical Model Adaptation

To improve recognition accuracy, the SI models are tailored to the vocal char-
acteristics of each dysarthric subject. Here we use a 3-level cascaded adaptation
procedure. First we use maximum likelihood linear regression (MLLR) adapta-
tion followed by maximum a posteriori (MAP) estimation to adapt each SI model
to the vocal characteristics of a particular dysarthric subject. We then analyze
the pronunciation deviations of each dysarthric subject from the canonical form
and build an associated speaker-specific pronunciation lexicon that incorporates
their particular behavior of pronunciation.

Using the adaptation data from a particular speaker, we perform a two-pass
MLLR adaptation. First, a global adaptation is performed, which is then used as
an input transformation to compute more specific transforms using a regression
class tree with 42 terminals. We then carry out 2 to 5 consecutive iterations
of Maximum a Posteriori (MAP) adaptation using the models that have been
transformed by MLLR as the priors and maximizing the posterior probability
using prior knowledge about the model parameter distribution. This process
resulted in 25.81% absolute (43.07% relative) improvement.

Using speaker-dependent (SD) pronunciation lexicons, constructed as de-
scribed in [15], during recognition improved the word recognition rate further by
an average of 3.18% absolute (8.64% relative). The SD pronunciation lexicons
consist of multiple pronunciations for some words that reflect the particular pro-
nunciation pattern of each dysarthric subject. In particular, we listened to 25% of
speech data from each dysarthric subject and carefully analyzed the pronuncia-
tion deviations of each subject from the norm; i.e., the desired phoneme sequence
as determined by the CMU pronunciation dictionary was compared against the
actual phoneme sequences observed, and the deviations were recorded. These de-
viant pronunciations were then encoded into the generic pronunciation lexicon
as alternatives to existing pronunciations [15]. Figure 3 depicts the performance
of the baseline and speaker-adapted (SA) models on dysarthric speech.

In total, the cascaded approach of acoustic and lexical adaptation improved
the recognition accuracy significantly by 28.99% absolute (47.94% relative) over
the baseline yielding a mean word recognition accuracy of 68.39%.

For non-dysarthric speech, the mean word recognition accuracy of the SI
baseline monophone models is 71.13%. After acoustic model adaptation, the
mean word recognition accuracy rises to 88.55%.

5 Discussion of Results

When we compare the performance of the speaker-adapted ASR systems with
the intelligibility rating of the human listeners on dysarthric speech, we observe
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Fig. 3. ASR performance on dysarthric speech

that in most cases human listeners are more effective at recognizing dysarthric
speech. However, an ASR system recognized more stimuli produced by speaker
F01 than the human listeners. Figure 4 summarizes the results.

Fig. 4. Human listeners vs. ASR system recognition scores on dysarthric speech

Humans are typically robust at speech recognition in the presence of even
very low signal-to-noise ratios [16]. This may partially explain their relatively
high performance here. Dysarthric speech contains not only distorted acoustic
information due to imprecise articulation but also undesirable acoustic noise due
to improper breathing that severely degrades ASR performance. Due to the re-
markable ability of human listeners to separate and pay selective attention to
the different sound sources in a noisy environment [17], the acoustic noise due
to improper breathing has less impact on human listeners than in ASR systems.
For instance, the audible noise produced by breathy voices and hyper-nasality is
strong enough to confuse ASR systems while human listeners can easily ignore it.
This suggests that noise resilience is an area that should further be investigated
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to improve ASR performance to dysarthric speech. Furthermore, approaches to
deal with other features of dysarthric speech such as stuttering, prosodic dis-
ruptions, and inappropriate intra-word pauses are areas for further investigation
in order to build an ASR system that possesses comparable performance with
human-listeners in recognizing dysarthric speech.

Although there appears to exist some relationship between intelligibility rat-
ings and ASR performance, the latter is especially affected by the level of back-
ground noise, and the involuntary noise produced by the dysarthric speakers.
The impact of hyper-nasality and breathy voice appears to be more severe in
ASR systems than in the intelligibility rating among human listeners on single-
word utterances. F01, for instance, is severely dysarthric but the ASR performs
better than the human listeners because most of the errors in her speech could
be offset by acoustic and lexical adaptation. M04, on the other hand, who is also
severely dysarthric, was relatively more intelligible but was the least well under-
stood by the corresponding speaker-adapted ASR system since this speaker is
characterized by breathy voice, prosodic disruptions, and stuttering.

6 Concluding remarks

In this paper we compared näıve human listeners and speaker-adapted automatic
speech recognition systems in recognizing dysarthric speech. Since intelligibility
may vary widely depending on the type of stimuli and response format used, our
basis of comparison is designed so that both the human listeners and the ASR
systems are compared on a level ground. Here, we use multiple choice format
from a closed set of eight alternatives, where the same set of alternatives are
provided for every single-word utterance to both the ASR systems and to the
human listeners. Although, there is one case in which a speaker-adapted ASR
system performed better than the aggregate of human listeners, in most cases
the human listeners are more effective in recognizing dysarthric speech than ASR
systems. However, the mean word recognition accuracy of the speaker-adapted
ASR systems (68.39%) relative to the baseline of 39.5% is encouraging. Future
work ought to concentrate on an improved method to deal with breathy voice,
stuttering, prosodic disruptions, and inappropriate pauses in dysarthric speech
to further improve ASR performance.
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