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Internal waves occur at a variety of temporal and spatial scales and are mechanisms by which 

momentum, energy, nutrients and biota are transported in lakes, estuaries and coastal oceans.  In 

stratified systems, accurate prediction of water quality effects requires modeling internal wave 

evolution and propagation.  Lake, estuary, and coastal ocean models typically apply the 

hydrostatic approximation to the Navier-Stokes equations, which limits the accuracy of internal 

wave predictions.   

The hydrostatic approximation exploits the small aspect ratio (vertical:horizontal length scale) 

of natural systems, which makes the vertical acceleration and dynamic pressure negligible 

relative to the horizontal acceleration and hydrostatic pressure (Marshall et al, 1997).  The 

hydrostatic approximation also eliminates the need to solve a three-dimensional Poisson problem 

for dynamic pressure, thereby dramatically decreasing computational requirements.  The 

hydrostatic approximation is adequate for large-scale ocean processes, but breaks down for scales 

less than ten kilometers (Kantha and Clayson, 2000).  At the mesoscale (10-100 km in horizontal 

extent, depths of order 1000 m, and horizontal velocities of 0.1 – 1 m s-1), the aspect ratio may no 

longer be considered small, therefore dynamic pressure and vertical acceleration are not 

negligible and the hydrostatic approximation will not effectively model system dynamics.  The 

exclusion of dynamic pressure in a model may distort the balance between internal wave 

steepening and dispersion such that the small error of neglecting dynamic pressure accumulates 

into a large error in the long-term prediction of wave propagation.  Thus, inclusion of vertical 

acceleration and nonhydrostatic pressure is necessary to properly model the evolution of internal 

waves (Long, 1972).   

As a simple, monochromatic wave in a nonlinear system evolves, the system’s nonlinearities 

cause the internal wave to slowly steepen.  If there is no force balancing the steepening, the wave 

will propagate unabated, shorten, and eventually overtop itself causing a mixing event to occur.  

The full Reynolds-averaged Navier-Stokes (RANS) momentum equation contains both vertical 

acceleration (the advective term) and dynamic pressure, Eq. (1):    
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where i, j, k = three component space, α = horizontal two component space, Ui = slowly varying 

mean velocity, Pd = dynamic pressure, ρo = reference density, ρ’ = density fluctuation, η = slowly 

varying mean free surface height, z’ = elevation, ν = molecular viscosity, νe = eddy viscosity, g = 

gravity, and δiα = Kronecker’s delta.  The hydrostatic approximation reduces Eq. (1) to the 

horizontal momentum equations and no vertical momentum equation, Eq. (2). 
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In the full RANS vertical momentum equation, the dominant terms are advection and dynamic 

pressure and the local rate of change and the diffusion terms are considered negligible (Cushman-

Roisin, 1994); this is demonstrated by the disappearance of the vertical momentum equation 

under the hydrostatic approximation.  The balancing relationship is seen between dynamic 

pressure and vertical acceleration; advection is responsible for nonlinear wave steepening and 

dynamic pressure moderates the steepening rate and disperses the propagating wave into a series 

of solitary waves.  The solitary waves formed are the fastest traveling wave for a given height and 

unchanging form (Turner, 1973); the larger amplitude solitary waves pass energy to the smaller 

amplitude solitary waves as they evolve and propagate.  The rate of nonlinear steepening and the 

formation of solitary waves will increase as the surface mixed layer becomes thin or the 

amplitude of the initial basin-scale wave increases (Horn et al, 2001).   

Hydrostatic models have three different errors that tend to suppress nonlinear steepening, 

numerical dissipation, numerical diffusion and numerical dispersion.  Numerical dissipation of 

energy removes kinetic energy from the system, damping a wave and not allowing it to steepen.  

Numerical diffusion of mass alters the potential energy of a system by exchanging mass across 

the wave’s interface, reducing stratification, which impedes steepening.  Numerical dispersion 

causes the wave to change shape, thus acting like dynamic pressure.  The mass transport scheme 

typically used in hydrostatic models allows numerical diffusion of mass to dominate, which 

erroneously introduces mixing and incorrectly models internal wave energy transport and the 

spatial occurrence of the mixing; numerical dispersion is present, but it is not a dominant term, 

therefore often rendering hydrostatic models incapable of expressing the evolution and 

propagation of solitary waves.  Hydrostatic models show waves that propagate and steepen, but 

do not show the proper degeneration into a series of solitary waves; rather the wave continues to 

travel like a bore as numerical diffusion occurs at the wave front.  This is contrary to what theory 

and experiment has shown to occur in an actual system (Long, 1972; Horn et al, 2001).  The 

following two figures show an internal wave that evolves and propagates through time with a 

hydrostatic model.  Both systems begin with a 10m pycnocline that varies 4 kg/m3.  Fig. 1 shows 

a system with a 4.4m amplitude internal wave that is adequately modeled, while Fig. 2 shows a 

13m amplitude wave, which is not sufficiently modeled and the system is considered non-

hydrostatic.  The wave in Fig. 1 is a slow-moving basin-scale seiche that nearly maintains its’ 

initial shape and thickness.  The formation of a bore is seen within a few time steps in Fig. 2; 

diffusion of the wave front density gradient causes the pycnocline to increase in thickness, 

indicating that the steepened wave is overtopping itself and mixing is occurring.  The wave in this 

scenario shows dramatic change in shape and the thickness increases from 10m to 15m.   

The effects of wave front diffusion for the two scenarios can be seen through an analysis of 

the background potential energy (BPE).  As mixing occurs in a closed, adiabatic system, 

numerical diffusion will increase the BPE (Laval et al, 2003).  Fig. 3 shows the change in BPE at 

each time step compared with the initial BPE.  Almost immediately, the large amplitude (non-

hydrostatic) system shows an increase in BPE, which is coincident with the quick steepening of 

the wave front as seen in Fig. 2.  The BPE change for the large amplitude system is about an 

order of magnitude more than the smaller amplitude system. 
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Figure 1. Hydrostatic system, with a 

hydrostatic model: 10km long, 50m 

deep, 4.4m initial wave amplitude.         
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Figure 2. Non-hydrostatic system, 

with a hydrostatic model: 10km long, 

50m deep, 13m initial wave 

amplitude.
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In our research, hydrostatic and nonhydrostatic models are applied to several test cases to 

examine the propagation of internal waves within a system.  Application of both models allows 

comparison of model results and quantification of model skill in the simulation of internal wave 

dynamics.  The nonhydrostatic model resolves both wave steepening and dispersion effects so the 

correct shape of the propagating internal wave is retained.  In contrast, the hydrostatic model does 

not account for the dispersive forces, thus nonlinear wave steepening is allowed to progress 

unabated and the shape of the propagating internal wave is incorrect.  Comparisons are used to 

analyze where dynamic pressure has a contributing role in the physics of the system.  

Quantification of dynamic pressure effects allows assessment of the circumstances appropriate 

for the hydrostatic assumption.  As dynamic pressure is proportional to vertical acceleration, the 
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ratio between the modeled vertical and horizontal accelerations is investigated as an indicator of 

the dynamic state of a region.  Where this ratio is large, a nonhydrostatic state is presumed to 

exist and dynamic pressure needs to be resolved; where the ratio is small, the hydrostatic state 

should predominate.  This ratio is used to analyze model performance and our ability to a priori 

select the correct model type for a particular internal wave regime.       

 

 
 

Figure 3. Comparison of background potential energy. 
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