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Abstract Single-trial analysis of human electroencepha-

lography (EEG) has been recently proposed for better

understanding the contribution of individual subjects to a

group-analyis effect as well as for investigating single-

subject mechanisms. Independent Component Analysis

(ICA) has been repeatedly applied to concatenated single-

trial responses and at a single-subject level in order to

extract those components that resemble activities of inter-

est. More recently we have proposed a single-trial method

based on topographic maps that determines which voltage

configurations are reliably observed at the event-related

potential (ERP) level taking advantage of repetitions across

trials. Here, we investigated the correspondence between

the maps obtained by ICA versus the topographies that we

obtained by the single-trial clustering algorithm that best

explained the variance of the ERP. To do this, we used

exemplar data provided from the EEGLAB website that are

based on a dataset from a visual target detection task. We

show there to be robust correpondence both at the level of

the activation time courses and at the level of voltage

configurations of a subset of relevant maps. We addition-

ally show the estimated inverse solution (based on low-

resolution electromagnetic tomography) of two corre-

sponding maps occurring at approximately 300 ms post-

stimulus onset, as estimated by the two aforementioned

approaches. The spatial distribution of the estimated

sources significantly correlated and had in common a right

parietal activation within Brodmann’s Area (BA) 40.

Despite their differences in terms of theoretical bases, the

consistency between the results of these two approaches

shows that their underlying assumptions are indeed

compatible.

Keywords Single-trial � Independent Component

Analysis (ICA) � Event-Related Potential (ERP)

Introduction

Classical analysis and interpretation of ERPs in human EEG

is based on averaging peri-stimulus electrical responses to

generate a single time series for each electrode within a

given scalp montage. Although this has the advantage of

increasing to a great extent the signal-to-noise ratio, it relies

on the simplistic assumption that the signal related to the

stimulus is stationary in time and that any activity that is not

fixed in time is ‘‘noise’’. On the other hand, single-trial
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methods are made problematic by the presence of many

known and unknown sources of noise (physiological and

instrumental) that can obfuscate the signal of interest. As a

consequence a priori hypotheses about the brain processes

underlying the measured signal are required. ICA is cur-

rently a typical single-trial analysis approach (Bell and

Sejnowski 1995; Makeig et al. 1999, 2002). This technique

relies on the hypothesis that brain activity is the result of a

superimposition of a number of independent components in

a number less than or equal to the total number of elec-

trodes. Each of these components has an associated time

course of the activity in every trial and a scalp map, rep-

resenting the strength of the volume-conducted component

activity at each scalp electrode. The applicability of ICA to

ERP analyses has been shown repeatedly in a context in

which it is possible to attribute a physiological meaning to

one or more components (Makeig et al. 2002; Debener et al.

2004), for artifacts detection (Vigario 1997) and more

generally for EEG pattern recognition and classification

(Naeem et al. 2006; De Lucia et al. 2008). Numerous other

approaches have been developed in the area of blind source

separation (Belouchrani et al. 1997; Tang et al. 2005;

Barbati et al. 2006), and several methods at the level of

single waveforms either based on assuming stationary

stereotypic wave shapes (Knuth et al. 2006) or on filtering

and de-noising (Quiroga and Garcia 2003; Georgiadis et al.

2005).

More recently, a novel single-trial clustering algorithm

based on topographic information has been proposed. This

method stems from the hypothesis that event-related

potentials at a single-trial level exhibit a semi-stationary

temporal structure, characterized by a few representative

topographic maps that appear over short time periods on

the order of at least 10–20 ms duration. This hypothesis has

been explored both at the single-subject (De Lucia et al.

2007a) and at a group level of analysis (De Lucia et al.

2007b) on a set of data from an auditory object discrimi-

nation experiment. The suitability of this model can be

demonstrated by computing the amount of explained var-

iance, as we will detail below, as well as by showing that it

provides sufficient information so as to allow an above

chance classification accuracy of independent datasets

(Tzovara et al. 2010). The advantages of this approach are

that it offers a flexible tool for estimating which voltage

configurations appear reliably across trials, their latencies,

and their differences across experimental conditions.

Moreover, it takes full advantage of the reference-inde-

pendent information conveyed by the spatial characteristics

of the electric field measured at the scalp and does not

make explicit a priori assumptions about the frequency or

temporal features of the EEG signal.

Because these various single-trial analysis approaches

stem from very different assumptions, it is an obvious

question whether they detect/extract consistent information

and to which extent they are comparable. Here, we com-

pared the results of an ICA-based analysis and those

obtained by the single-trial topographic clustering algo-

rithm on a dataset derived from a visual target detection

task. Despite their differences in terms of a priori

assumptions and theoretical bases, one common goal is to

estimate components that are consistent across trials so as

to provide insights about the spatio-temporal profile of

event-related brain activity (i.e. its time course and voltage

distribution at the scalp), which ultimately reflects the

activity of underlying sources.

Materials and Methods

Subjects, Stimuli and Task

Ten subjects participated in the experiment. ERPs were

recorded while the subjects attended a sequence of visual

stimuli appearing briefly in any of five squares arrayed

horizontally above a central fixation cross. In each exper-

imental block, one (target) box was differently colored

from the rest. Whenever a square appeared in the target

box, the subject was asked to respond quickly with a right

thumb button press. The subject was asked to ignore circles

presented either at the attended location or at an unattended

one (for full details see Makeig et al. 1999). The dataset we

consider here contains only target stimuli presented at the

two attended locations in the left visual field for a single

subject (downloadable from the EEGlab website,

http://sccn.ucsd.edu/eeglab/).

EEG Acquisition and Preprocessing

EEG data were collected from 30 scalp electrodes mounted

in a standard electrode cap at locations based on a modified

International 10–20 system, and from two periocular

electrodes placed below the right eye and the left outer

canthus. Signals were referenced to the right mastoid and

sampled at 512 Hz. Before the analysis, the dataset was

down-sampled to a 128 Hz sampling rate and 40 Hz low-

pass filtered. In total, we consider here 80 trials (including

1 s of baseline and 2 s of post-stimulus responses) base-

line-corrected and common average re-referenced, con-

catenated one after the other.

ICA Analysis

The ICA analysis was performed using EEGLAB, ver-

sion 6.01b, a freely available open source toolbox
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(http://sccn.ucsd.edu/eeglab/). We performed the indepen-

dent component decomposition based on the ‘infomax’

ICA algorithm (Bell and Sejnowski 1995). The suitability

of this ICA decomposition for ERP analysis is discussed in

(Makeig et al. 1999).The output comprised a total of 32

components (i.e. equal to the number of electrodes) (for a

complete methodological description of the ICA analysis

on this dataset see Makeig et al. 1999). After visual

inspection of the scalp maps and of the time-course of their

activation, we selected the components accounting for

artifacts. One of these components was clearly related to

eyeblinks and therefore it was eliminated. The EEG data

were back-projected to the subset of remaining 31 com-

ponents. All the analyses we report in the following refer to

this ‘clean’ dataset.

Single-Trial Topographic Analysis

Model Estimation

We consider each topography (or map) as an N-dimen-

sional vector m = {m1(t),m2(t),…,mN(t)}, with N number

of electrodes, for each trial and time-point (Fig. 1a). Each

vector m is normalized by its global field power so as to not

take into account instantaneous strength (Lehmann 1987;

Michel et al. 2001, 2004; Murray et al. 2008). We would

like to emphasize that at this point all the information about

latencies and trial assignment is lost, as all the maps are

treated as points in an N-dimensional space without any

tracking of their original order in time. It is also worthwhile

to remind the reader that analyses based on topographic

information are inherently independent of the reference

electrode (cf. Michel et al. 2004; Murray et al. 2008 for a

treatment of this issue).

In the attempt to represent our dataset in a number of

representative maps, we propose to model the ensemble

{m} as a mixture of Gaussians (GMM) (Fig. 1b):

pðm lj ;rÞ ¼
X

k
pkGkðlk;rkÞ; k ¼ 1; ::;Q ð1Þ

where Gk is the kth Gaussian distribution with mean lk,

covariance rk, and pk prior probability. The mean of each

of these Gaussians will be referred to as template map and

considered as a prototypical voltage map for all those sets

of maps that have been clustered together in one of the

Gaussian. Q is the total number of Gaussians, which needs

to be decided a priori before estimating the model’s

parameters.

The GMM is estimated by an expectation–maximization

algorithm, Baum-Welch algorithm (Dempster et al. 1977),

which iterates the estimation of the model parameters in

order to maximize the likelihood. This algorithm requires

the parameters of the GMM to be initialized. Here we

consider as initial means those obtained by a k-means

clustering algorithm (Bishop 1995). The initial guess of the

covariance (here restricted to be diagonal) is obtained by

considering the topographies closer to each of the means as

estimated by the k-means algorithm. The priors, {pk}, are

obtained by the relative number of topographies for each

cluster. In this GMM estimation, the value of the total

number of Gaussians is fixed a priori. In order to find the

optimum value of Q, we estimate a GMM model for a set

of values of Q ranging from 4 to 28 and we choose the

value of Q corresponding to a value of explained variance

above a certain threshold.

ERP Analysis Based on the GMM

Once the optimal GMM model has been estimated, it is

possible to assign to each map m, a posterior probability for

each of the Gaussians. An example of posterior probability

is provided in the inset of Fig. 1b for one of the maps. In

this example, the cluster colored ‘blue’ is the one providing

the highest posterior probability among the three; this map

is therefore best represented by the template map corre-

sponding to the blue Gaussian. By rearranging these pos-

terior probabilities in the original order of trials and time

(Fig. 1c), we can investigate which maps are best repre-

sented by one template map across trials and locked in time

(Fig. 1d).

Specifically, we are interested in estimating at which

point in time the average posterior probability exhibits a

significant modulation with respect to pre-stimulus base-

line. The presence of these modulations is indicative of the

degree to which the model is representative of stimulus-

related activity and of the presence of one specific template

map across trials and at a certain latency. This statistical

analysis was performed by means of a non-parametric test

(Kruskall–Wallis) which contrasts—at each time-frame—

the posterior probability values and corresponding median

along the baseline across trials. For each of the estimated

GMM, we consider therefore the total number of Gaussians

Q and the subset of these Gaussians, Q’, whose posterior

probability was significantly higher than baseline in some

temporal intervals during the post-stimulus period. In

general, not all the template maps will exhibit a posterior

probability with a significant modulation with respect to

baseline, and therefore Q’ will be lower than or equal to Q.

We further constrain our analysis by considering as ‘active’

only those template maps with posterior probabilities sig-

nificantly higher than baseline for at least 10 consecutive

data-points, here corresponding to approximately 78 ms.

This is a means of correcting for temporal auto-correlation

in the data (e.g. Guthrie and Buchwald 1991).
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In order to choose the best model, we compute for each

total number of maps Q, the global explained variance

(GEV) on the whole dataset and on those time periods

where there was a significant modulation of the posterior

probability. The GEV is based on the correlation between

the template maps and the GFP-normalized voltage maps

recorded at each time point and each trial and the instan-

taneous GFP. This notion of explained variance is an

established measure in the context of microstate analysis,

where the correlation is computed between template maps

(estimated at average ERP level) and instantaneous voltage

configuration of the average ERP (Murray et al. 2008;

Pourtois et al. 2008). We choose the value of Q which

provides a maximum or local maximum of the explained

variance over these sub-periods (Fig. 2, red line).

Comparison Between Single-Trial and ICA Analyses

After selecting the mixture of Gaussians we considered

within the set of template maps only those whose posterior

probability was deemed ‘active’ according to the above-

mentioned criteria. As our aim is to compare the information

Fig. 1 Flow-chart of the GMM modeling of the ERP dataset and

statistical analysis. a Voltage maps are pooled together irrespective of

time and trials in an N-dimensional space, where N is the total

number of electrodes; (b) the ensemble of observations {m} are

modeled as a GMM. In this panel we provide an example of three

Gaussians in the mixture. Model’s parameters allows to assign to each

map a vector of posterior probabilities as shown for one exemplar

map belonging to the ‘blue’ Gaussian; (c) These set of posterior

probabilities are re-ascribed with respect to time and trials; (d)

Averaging across trials the posterior probabilities for each Gaussian

and at each time-point, we can infer the presence of template maps

during the post-stimulus period with respect to baseline, indicative of

the degree of stimulus-related modulation of maps presence

Fig. 2 Explained variance as a function of number of Gaussians in

the mixture of Gaussians model. The blue line refers to the explained

variance computed over the entire dataset. The red line refers to sub-

periods where the posterior probabilities across trials were signifi-

cantly higher than baseline. The tendency to obtain a higher explained

variance when computed over those sub-periods shows how the

model explains mostly those parts of the data which is event-related

and locked across trials
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conveyed by ICA and single-trial topographic clustering

methods for ERP interpretation, we selected those ICA scalp

maps that best correlated spatially with the Q’ template

maps. In parallel, we computed the average activations of

these scalp maps and compared the latencies of their maxima

with those of the corresponding average posterior probabil-

ities as obtained by the single-trial topographic analysis. It is

worth emphasizing that a resemblance of the spatial maps

obtained by the two analyses does not presuppose a similar

temporal profile of the corresponding average activations.

Finally, we computed the EEG current source locations

based on low-resolution electromagnetic tomography

(LORETA) (Pascual-Marqui et al. 1994) of corresponding

maps in the two approaches at latencies that were related to

known ERP components. LORETA uses a three-shell

spherical head model including scalp, skull, and brain

compartments, registered to the digitized Montreal Neu-

rological Institute (MNI) MRI template (Talairach and

Tournoux 1988). The solution space corresponds to cortical

gray matter sampled at 6-mm resolution, resulting in a total

of 3005 voxels.

Results

The total explained variance of the GMM model increased

with the total number of maps in the model when computed

on the overall dataset (Fig. 2, blue line). The explained

variance on those temporal intervals during which some of

the posterior probabilities exhibited a significant modula-

tion with respect to baseline (i.e. were ‘active’), peaked at

two values of total number of maps Q (Fig. 2, red line). We

therefore chose Q = 11 as this was providing the relative

maximum contribution of explained variance (68%). The

total number of active template maps Q’, was 5. We

therefore refer to these five template maps in the analyses

that follow. The average posterior probabilities across trials

for these template maps are shown in Fig. 3a together with

the intervals of significant modulation with respect to

baseline for each of them (thicker lines). The correspond-

ing template maps are shown in Fig. 4a.

Among the 31 scalp projections identified by ICA, we

selected those providing the highest spatial correlation with

the abovementioned Q’ template maps (Fig. 4; Table 1).

We discuss here only those scalp projections that were the

most correlated with the Q’ template maps even if several

others also produced an high and significant correlation.

The mean activations of the selected scalp projections

exhibited a temporal pattern closely resembling those of

the posterior probabilities of corresponding template maps

(Fig. 3a,b). In particular, the latencies of the peaks were

matching when the maxima of the average posterior

probabilities fell within periods of statistically significant

modulation. The latencies of these peaks are indicated by

arrows in Fig. 3. For example, the first template map

peaked at 297 ms (39th data point) post-stimulus onset, and

the ICA component whose scalp projection was most

highly correlated with the first template map peaked at

305 ms (40th data point) post-stimulus onset. That is to

say, their latency differed by only one data point. A full

description of the periods of activity of the five template

maps, their latencies and differences with the mean acti-

vation latencies of the ICA components is listed in Table 1.

It is worth noting that the peaks of activations in both

panels of Fig. 3 occurred between 305 and 437 ms post-

stimulus onset (here we focus only on the absolute peak of

each activation, although other earlier peaks are also

important and possibly accounting for early visual com-

ponents). The appearance of the earliest of these compo-

nents (component 1, blue trace in Fig. 3) at 297 and

305 ms, respectively, is consistent with the so-called P300

component, related to attending to novel stimuli. The later

subset of components peaking between 391 and 437 ms,

possibly comprised activities related to the motor response.

This pattern of components has been extensively described

in the original publication (Makeig et al. 1999).

In correspondence to the first of these components, we

computed the inverse solution based on standard LORETA

and we compared the results between the blue-framed

maps obtained in the two approaches (Fig. 5). A quanti-

tative comparison was possible only at the level of spatial

correlation since, based on one single subject dataset, we

are not in the position to assess statistically which sources

were significantly active. The spatial (Pearson) correlation

between the 3005 voxels within the inverse solution points

was r = 0.57 (p \ 10-15). To assess the existence of

spatially overlapping sources, we looked at peaks of the

inverse solution values as a percentage of the absolute

maximum for each of the two solutions. At 80% of the

maximum value for each of the two inverse solutions, we

found the first overlapping voxels, whose peak was located

at 34, 33, 57 mm using the Talairach and Tournoux (1988)

coordinate system. This peak falls within Brodmann’s Area

(BA) 40 of the right hemisphere (Fig. 4, coronal view).

Discussion

The results reported here support the consistency between

an ICA-based ERP analysis and a recently introduced

single-trial topographic clustering algorithm. Several

common lines of interpretation can be derived from these

results. Both methods uncovered the presence of ERP

components that matched each other both with respect to

the latencies of their activation peaks and also their spatial

configurations. In particular, three template maps estimated
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by the single-trial topographic clustering algorithm had

their peak of activation that was nearly synchronous with

the ICA-defined component scalp projection with which it

also showed the highest spatial correlation. The first of

these voltage configurations in the two approaches was

identified as related to the classical P300 component,

related to the appearance of infrequent or unexpected

stimuli. The spatial distribution of the estimated inverse

sources was significantly correlated and had in common

one peak of activation within the right BA40. The signif-

icance of the estimated inverse solution is, however,

severely limited by the low number of electrodes in the

EEG montage (see Michel et al. 2004 for discussion on this

point). Here, we show that even in an extreme case of poor

Fig. 3 Results obtained by

applying the single-trial

topographic clustering

algorithm and ICA on the same

datset from a visual target

detection experiment. a Mean

posterior probabilities of the

five template maps obtained by

the single-trial topographic

clustering algorithm which were

significantly higher than

baseline in at least one sub-

period of continuous ten data

points (bold lines highlight

these periods); text arrows show

the post-stimulus latencies of

the peaks for each posterior

probability, when the peak was

within periods of statistical

significance; (b) Mean

activation of the six independent

components (in arbitrary units)

whose scalp projection best

correlated with the template

maps obtained by the single-

trial topographic algorithm (see

Fig. 3 and Table 1); colors are

assigned so as to emphasize the

corresponding average posterior

probability as in panel a; text

arrows show the post-stimulus

latencies of the peaks for each

components, corresponding to

the ones shown in panel a

Fig. 4 a Template maps as

obtained by the single-trial

topographic clustering

algorithm; frame colors

correspond to the ones of the

time courses of posterior

probabilities in Fig. 2a; (b)

scalp map projections (in

arbitrary units) of the six

independent components that

best correlated with the template

maps shown in a; frame colors

correspond to the ones of the

activation time courses as in b
of Fig. 2
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spatial sampling of the voltage measurement we can expect

a high correlation and partial spatial overlap in the esti-

mated sources.

Other scalp maps obtained by ICA were highly corre-

lated and with close peak latencies to those of the template

maps estimated by the single-trial topographic algorithm.

Table 1 Description of the template maps and mean posterior probabilities obtained by the single-trial topographic analysis and their com-

parison of corresponding scalp maps and activation profiles obtained by ICA

Spatial 

Correlation 
0.92 0.93 0.86 0.90 0.82 

‘Active’ time 

periods 
445–805ms 

-617– -539 

508 – 578ms 
234 – 516ms 313 – 422ms 336 – 586ms 

Peak latency 

297ms – 391ms – 430ms 

Latency 

difference  

data points (ms) 

1 (8) – 2 (15) – 1(8) 

(First row) Pearson correlations between the spatial configurations of the five template maps estimated by single-trial topographic clustering

algorithmas (Fig. 3a) and the five scalp map projections, within the 31 obtained by ICA- that were most highly correlated; (Second row) Post-

stimulus periods were the posterior probabilities were significantly higher than baseline;(Third row) Latencies of the peaks of the mean posterior

probabilities (when these were also active wit respect to baseline); (Fourth row) Distance (in time-frames and ms) in time of the peak as shown in

the previous row and those of the mean activations obtained by ICA

Fig. 5 Source estimations based on LORETA computed on the blue-

framed voltage map in Fig. 3 estimated by the single-trial topographic

approach (a) and ICA (b). These two maps share a common pattern of

activation peaking at approximately the same latency in both analyses

and around 300 ms post-stimulus onset. The spatial location of these

estimated sources was highly correlated (R = 0.57, P \ 10-15). A

common set of sources (maximum located at 34 -33 57 mm,

Talairach coordinates) appeared in the right parietal lobe, within BA

40 as shown in the coronal view of both panels
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These results are compatible with what has been repeatedly

shown in several experimental contexts; namely that sev-

eral independent components can be clustered together as

representing the same physiological process (Makeig et al.

2002; Debener et al. 2004). Several other secondary peaks

of mean activation were closely matching those of the

mean posterior probabilities (Fig. 2a,b), suggesting a large

degree of overlap between the pattern of event-related

components estimated by the two approaches. Here, we

focused only on the most correlated voltage configurations

and their corresponding global maxima in the mean acti-

vation profiles.

The analyses presented here do not support the conclu-

sion that these two approaches allows to derive common

ERP interpretation, but rather that there is a high degree of

overlap between the pattern of estimated activation profiles

and corresponding voltage configurations. Although this

general agreement should be more extensively investigated

in a larger dataset including several subjects, the consis-

tency between these two approaches provides a good basis

for validating to which extent ERP analyses can be con-

ducted without making explicit a priori hypotheses on the

statistical properties (i.e. independency) of the temporal

activations of estimated voltage configurations. Indeed, the

two approaches discussed in the present study aim at two

different goals. The single-trial topographic analysis aims

at estimating which event-related voltage configurations

are active across trials and exhibit some form of stationa-

rity or semi-stationarity (i.e. their activation lasts for some

dozens of ms); ICA focuses on finding temporally inde-

pendent source signals and corresponding scalp projec-

tions. As a consequence, the voltage configurations

estimated by these two approaches will in general reflect

different patterns of underlying activity. The template

maps obtained using the single-trial topographic analysis

based on a GMM model can result from the activation of

largely overlapping source distributions, whereas the scalp

projection resulting from ICA is likely to correspond to

more spatially compact activity. However, the general

agreement with the results obtained in terms of temporal

patterns of the activation and correlation of estimated

voltage configurations shows that the bases of these two

approaches are compatible. Comparisons between different

single-trial ERP analyses can help researchers evaluate the

extent to which results are driven by a specific hypothesis

or assumption or rather by the dataset itself. Reliability of

ERP findings therefore benefit by cross-validating patterns

of results inferred from different analysis models.
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