
Published in 2nd International Workshop on Software Mining, Palo Alto, California, Nov 11, 2013.

Comparing Incremental Latent Semantic Analysis Algorithms
for Efficient Retrieval from Software Libraries for Bug

Localization

Shivani Rao, Henry Medeiros, and Avinash Kak
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN, USA
{sgrao, hmedeiro, kak}@purdue.edu

ABSTRACT
The problem of bug localization is to identify the source files related to a

bug in a software repository. Information Retrieval (IR) based approaches

create an index of the source files and learn a model which is then queried

with a bug for the relevant files. In spite of the advances in these tools,

the current approaches do not take into consideration the dynamic nature

of software repositories. With the traditional IR based approaches to bug

localization, the model parameters must be recalculated for each change

to a repository. In contrast, this paper presents an incremental framework

to update the model parameters of the Latent Semantic Analysis (LSA)

model as the data evolves. We compare two state-of-the-art incremental

SVD update techniques for LSA with respect to the retrieval accuracy

and the time performance. The dataset we used in our validation exper-

iments was created from mining 10 years of version history of AspectJ

and JodaTime software libraries.

Keywords
Information Retrieval, Incremental Learning, Latent Semantic Analysis,

Bug Localization, Singular Value Decomposition

1. INTRODUCTION
Much effort in the software engineering community has gone into devel-

oping search based tools to aid the programmer/developer in narrowing

down the set of source files relevant to a bug. Such algorithms are col-

lectively referred to as Information Retrieval (IR) based bug localization

techniques [1–9]. These search based tools first construct an index from

the source files present in the most recent revision of the software. Sub-

sequently, a text model is learned from this index. A bug is localized by

treating the textual content of the bug as a query that is then used to fetch

the relevant documents from the model [10].

Despite the effectiveness of these approaches, the current state-of-the-art

bug localization tools are not efficient for deployment for a real software

system that is constantly evolving. As the software evolves, source files

may be added, deleted, or modified, which can leave the index and the

model out-of-sync with the repository. In order to ensure accurate re-

trieval, the current approaches to IR based bug localization re-compute

the index and the model from scratch for each bug that needs to be local-

ized in a newer version of the software. This traditional approach to bug

localization is commonly referred to as the batch-mode approach. The

batch-mode approach suffers from the following two shortcomings:

• Re-computing the index and the model from scratch is time-consuming

and can result in high turn around time or query latency [11] (See

Table 1).

• Since it is often the case that each commit to a repository affects

only a very tiny portion of the overall code base [10], re-learning

the model from scratch for each new bug is inefficient and may be

unnecessarily computationally expensive.

In a previous contribution [10], we presented an incremental update frame-

work that keeps the index and the model updated at each commit as

the software evolves using the Smoothed Unigram Model (SUM) and

the Vector Space Model (VSM). That work demonstrated that the SUM

and VSM based incremental frameworks gave us enhanced retrieval effi-

ciency with no penalty in retrieval accuracy. In this paper, we extended

our experiments to the Latent Semantic Analysis (LSA) model that has

been studied extensively in the software engineering community for a va-

riety of software maintenance activities [12–20].

In order to incrementally update the LSA model, we compare the follow-

ing two state-of-the-art incremental LSA algorithms:

• iLSI – This algorithm was proposed by Jiang et al. [21] to incre-

mentally update the LSA model of a dynamic collection of source

files and related documentation for the purpose of search-based au-

tomated traceability link recovery.

• iSVD – This algorithm was proposed by Brand [22] to incremen-

tally update the SVD components of a user preference matrix for

movie recommendation systems.

To the best of our knowledge, there has been no prior work in employ-

ing incremental approaches for efficient IR based bug localization using

the LSA model. Although our work with the iLSI algorithm is closely

related to the work reported in [21], there are two very important differ-

ences between how this algorithm was studied in [21] and how we use

it here. Our work makes explicit the limitation that the iLSI algorithm

is incapable of incorporating new information (source files and terms) as

a software library evolves. In other words, we show that the iLSI algo-

rithm is not the best choice for incrementally updating the LSA model of

an evolving software repository. Secondly, Jiang et al.’s [21] experimen-

tal validation consists of just two consecutive releases of the software

libraries they worked with. In contrast, our experiments are based on

commit-level information tracked over 10 years of commit history of the

software libraries on which we have reported our results.

Thus, our main goal in this paper is to compare the retrieval accuracy,

modeling error and speed of computation of the iSVD and the iLSI al-

gorithms mentioned above with the batch-mode LSA in the context of

IR based bug localization. We also present strategies for retraining the

model after a sequence of commits or for large commits (commits that

affect a significant portion of the source code) in order to keep the in-

crementally updated model close to the true model. In order to evaluate

our incremental model update framework, we have created a benchmark

dataset called moreBugs [23] that tracks commit-level changes over 10

years of developmental history of two software repositories: JodaTime

and AspectJ.

Table 1: Time spent in different stages of the retrieval process using the LSA model for software repositories of different sizes. As shown in the last

column, the query latency can range from 5 minutes to 50 minutes.

bug ID Dataset # of source

files

of

terms

Preprocessing

(seconds)

Indexing

(seconds)

Model Learning

(seconds)

Retrieval

(seconds)

Query Latency

(in minutes)

178828 JodaTime 486 10824 264.71 37.06 6.96 (k=60) 0.696 5.16

3192457 JodaTime 864 12174 603.18 92.70 10.47 (k=90) 0.894 11.79

371684 AspectJ 7594 40,256 2942.11 228.47 35.13 (k=100) 2.869 53.47

2. THE BATCH-MODE LSA ALGORITHM
In the LSA model, the source files are first represented by a |V| × M

term-document matrix whose rows correspond to the terms in the vocab-

ulary V and whose columns correspond to the M source files. We will

denote this matrix by A. Subsequently, the dimensionality of the vector

space in which the documents are represented is reduced by subjecting A

to a Singular Value Decomposition (SVD) and retaining only the top k

singular values: A ≈ UkSkV
T
k , where Uk is a |V| × k column-wise or-

thogonal matrix, Sk a k×k diagonal matrix of the singular values, and Vk

an M × k orthonormal matrix. For retrieval, a query is constructed from

the bug report and mapped to the LSA’s eigenspace: qk = qTUkS
−1

k . A

cosine similarity between qk and the columns of Vk is used to compute

the ranked list of source files vis-à-vis the query.

As SVD is one of the fundamental operations in manipulating matrices in

general, much research has been devoted in the past to the development of

numerically efficient algorithms for such a decomposition [24–27]. We

have used the popular Lancsoz SVD algorithm [28] designed for large

sparse matrices as our batch-mode LSA algorithm. The computational

complexity of this algorithm is O(|V|Mk2) and it is implemented as a

part of the ARPACK software library1.

3. INCREMENTAL FRAMEWORK FOR BUG LO-

CALIZATION
Figure 1 shows the framework for LSA-based incremental bug localiza-

tion that can be used as an alternative to the batch-mode framework. In

the following discussion, the superscript t indicates the current state of

the repository. The framework shown in Figure 1 entails the following

steps:

Change Processing: For each new commit, the set of source files that

are affected, called the change-set, is checked out and subject to the text

preprocessing steps described in [10].

Index Update: Recall that the columns of At correspond to the source

files At = [At
1A

t
2...A

t
M]. For the sake of developing the notation, assum-

ing for a moment that only a single file is involved in either the addition

to the library, or its modification, or deletion, we can then represent the

matrix At+1 as follows:

• Addition: At+1 = [AtAt+1

M+1
].

• Modification of jth file At+1 = [At
1A

t
2...A

t+1

j ...At
M]

• Deletion of jth source file At+1 = [At
1A

t
2...0...A

t
M]

In general, a single commit may involve a combination of the above men-

tioned changes, the notation shown generalizes in an obvious manner. Al-

though not shown explicitly in the notation above, addition of new terms

appends new rows to the term-document matrix A. If there are Ma new

source files and |Va| new terms added to the vocabulary, then the new

At+1 is of size {|V|+ |Va|} × {M +Ma}.

1http://www.caam.rice.edu/software/ARPACK/

Figure 1: Incremental update framework for bug localization.

Updating the Model: Given the SVD decomposition at commit t as

At ≈ U t
kS

t
kV

t
k

T
, and the updated term-document matrix At+1, the goal

of the model update is to estimate U t+1

k , St+1

k and V t+1

k . In Section 3.2,

we will briefly review the two incremental SVD algorithms that we are

comparing in this paper.

Retrieval for a bug report: The search process for a new bug report does

not involve the overhead of preprocessing, index and model creation. It

merely consists of two steps: (a) preprocessing of the bug report, and (b)

retrieval of the source files using the equations presented in Section 2.

3.1 When to Retrain?
Since the dimensionality reduction achieved by ignoring the smallest of

the singular values calculated by SVD can always be expected to intro-

duce some error in an LSA model, any incremental approach involving

LSA must make provision for occasionally re-acquiring the true model

through batch-mode learning. That raises the question of how often must

the batch-mode algorithm be invoked?

Additionally, as the reader will see later, the time gains achieved with

the incremental LSA algorithm are based on the assumption that {Ma +
Md} << M . That is, time gains are achieved only when the number

of source files affected is a small fraction of the total number of files

— an assumption easily satisfied for most commits in a real software

repository. Obviously, should it happen that a commit affects a large

portion of the source code, this assumption would not be satisfied, and the

amount of time taken to update the model would begin to approach the

time taken to re-compute the LSA model through the batch-mode SVD.

Thus, on encountering a revision in which a significant proportion of the

source files has changed, it might be computationally more efficient to

re-compute the SVD afresh.

Gauging when an incrementally updated model is no longer a good ap-

proximation to the true model can only be handled by a heuristic. This

is owing primarily to the fact that we do not have access to the true state

of the model as it is modified incrementally. One possible policy is to

retrain the model at every major release. We will refer to this as the ma-

jor_releases policy. Along the same lines, if the invocation of batch-mode

learning for re-acquiring the true model is to be triggered by how much

of the library was changed at a commit, we need to set a heuristic thresh-

old on the size of the change-set. This true model re-acquisition policy

will be denoted by major_changes and we will use nthresh to denote the

Table 2: Notation used in Algorithms 1 and 2

0mxn A matrix containing m rows and n columns of all zeros
In A n x n identity matrix

subscript k The number of eigenvalues retained

superscript T Transpose of a matrix

superscript t The commit (revision) number identifier of a repository
subscript a Denotes new or added information
subscript d Denotes deleted source files

threshold on the size of the change-set to trigger this policy. The incre-

mental update framework shown in Figure 1 has a decision box labeled

“retrain?” to allow for this policy. Note that even when the model is

computed afresh, only the index needs to be re-created; there is no need

to subject all the source files to the preprocessing steps mentioned earlier.

3.2 Review of Incremental Calculations of the SVD
Given At+1 and At, U t

k St
k and V t

k , the goal of the incremental SVD

update algorithm is to estimate U t+1

k , V t+1

k and St+1

k . Table 2 briefly

reviews the notation used in the presentation in this section. Due to lack

of space we skip the detailed steps of these algorithms and interested

readers are directed to the relevant papers that have been cited.

3.2.1 The iLSI algorithm [21]
This algorithm is based on the intuitive plausibility of the steps involved

(Algorithm 1). The overall complexity of iLSI is O({|V|+ |Va|} × k ×
{M + Ma} + k4 + {|V| + |Va|} × k2 + {M + Ma} × k2). Since

Ma << k << M , and |Va| << |V| the overall time taken to update the

SVD components is significantly reduced to O(|V| × k ×M + k4).

The main drawback of iLSI is that it ignores new information. In Steps 1

and 2 of the algorithm shown in Algorithm 1, the rows of U t
k and V t

k are

appended with zeros to create U ′ and V ′. The product U ′TAt+1V ′ thus

formed causes the new information in At+1 to be literally ignored. As we

will show, this results in an approximate update of the model parameters,

leading to a higher degree of modeling error and relatively lower retrieval

accuracy.

Algorithm 1 iLSI algorithm proposed by Jiang et. al [21].

Require: Ut
k of size |V| × k, V t

k of size M × k, St
k of size k × k, and At+1 of size

{|V|+ |Va|} × {M + Ma}
1: Append rows of zeros to Ut

k and V t
k to account for Ma new source files and |Va| new

terms respectively. U ′
=

[
Ut

k

0|Va|×k

]
and V ′

=

[
V t
k

0|Ma|×k

]

2: Compute the new central matrix via: Ŝ = U ′TAt+1V ′. Note that since At+1 contains

additional information, Ŝ is of size k × k and may not be perfectly diagonal.

3: Diagonalize Ŝ by SVD decomposition: Ŝ = ŨkS̃kṼk . All the three components are of
size k × k.

4: Compute the updated U
t+1

k
, St+1

k
and V

t+1

k
matrix as U

t+1

k
= U ′Ũk , V t+1

k
=

V ′Ṽk and S
t+1

k
= S̃

3.2.2 The iSVD algorithm [22]
This is a mathematically rigorous algorithm that incrementally updates

the components of SVD decomposition by using just the modifications

made to the term-document matrix (At), and not the entire matrix. The

changes to At are encoded using two matrices X and Y , where X con-

tains the column vectors corresponding to the changes for each affected

source file and the columns of Y are the indicator vectors where exactly

one element (the one corresponding to the affected source file) is set to 1

and the rest to 0.

The iSVD algorithm (summarized in Algorithm 2) computes the resid-

ual energy in X and Y with respect to U and the V eigenvectors that

needs to be accounted for in the update. Thus, the iSVD algorithm in-

corporates new information (source files/terms) that appear in At+1 more

directly in the update equations. Despite the additional QR step, the time-

complexity of the iSVD stays at O(|V| × k ×M + k4).

Algorithm 2 Incremental SVD (iSVD) proposed by Matthew Brand [22].

Require: Ut
k of size |V| × k, V t

k of size M × k, St
k of size k × k, X of size {|V| +

|Va|} × {Ma + Md}, Y of size {M + Ma} × {Ma + Md}
1: Compute Projection of X on U and Y on V . Both m and n are of size k×{Ma+Md}:

m =

[
Ut

k

0|Va|×k

]T

X and n =

[
V t
k

0|Ma|×K

]T

Y

2: Compute the residual energy in U and V space. mr is of the same size as X and nr is of
the same size as Y :

mr = X −

[
Ut

k

0|Va|×K

]
m and nr = Y −

[
V t
k

0Ma×K

]
n

3: Compute the QR decomposition of the residuals mr and nr as follows. P is of size
{|V|+ |Va|}× km and Rx is of size km × km. Q is of size {M +Ma}× kn and
Ry is of size kn × kn. km and kn are the ranks of the mr and nr matrices.

PRx
QR
←− mr and QRy

QR
←− nr

4: Compute the central matrix Ŝ and its SVD decomposition. Ũ is of size {k + km} × k

and Ṽ is of size {k + kn} × k and S̃ is of size k × k

Ŝ =

[
St
k 0k×kn

0km×k 0km×kn

]
+

[
m

Rx

] [
n

Ry

]T

Ŝ ≈ Ũk S̃k Ṽk
T

(1)

5: Compute the updated U
t+1

k
and V

t+1

k
matrix

U
t+1

k
=

[
Ut

k P
]
Ũk & V

t+1

k
=

[
V t
k Q

]
Ṽk & S

t+1

k
= S̃

4. EXPERIMENTAL VALIDATION
4.1 The Dataset
Similar to our previous work [10], we have used the moreBugs [23]

dataset to perform our experimental validation. The dataset contains

all the necessary information to evaluate both the batch-mode and the

incremental-mode approaches to IR based bug localization, namely: (a)

the commit-level changes taking place in the repository; (b) the release

history of the software; and (c) a set of closed/resolved issues/bugs. For

each of bug in item (c), the following information is available: (i) the

bug report’s textual content like title, description, comments and so on,

(ii) the source files that were fixed in order to resolve the bug (we call

this list of source files the patch-list or relevance list for the bug), and

(iii) the prefix snapshot of the software repository. While (c) alone suf-

fices for evaluation of the batch-mode approach, (a) and (b) are addition-

ally required for evaluation of the incremental update framework. This

publicly available benchmark dataset was created by mining 10 years of

commit history, release history and bug-fixing history for AspectJ (7477

commits) and JodaTime (1573 commits) projects. Table 3 displays quan-

titatively the contents of moreBugs. A technical report detailing the

creation of the dataset as well as how to obtain free public access to the

same is available through https://engineering.purdue.edu/RVL/

Database/moreBugs/.

Table 3: moreBugs specifications.

AspectJ JodaTime

Number of tags/releases 77 32

Number of revisions 7477 1537

Total duration of the project analyzed Dec ’02- Feb
’12

Dec ’03-June
’12

Number of bugs used in evaluation 321 43

Average number of source files/bug 5214 556

Average number of relevant source
files/bug

3.36 2.13

4.2 Evaluation Metrics
We have evaluated the incremental update algorithms using the following

three types of metrics:

4.2.1 Measuring the Modeling Error
As mentioned in section 3.1, the incrementally updated model is a close

approximation to the batch-mode learned model, and the degree of ap-

proximation can be measured through a metric called the Relative Mod-

eling Error [26]. RME is nothing but the ratio of the reconstruction error

Table 4: Quantifying the time spent in various stages of the retrieval pro-

cess.

Stage Batch-mode Incremental-mode

Preprocessing Batch Preprocessing

Time (BPT)

Change Preprocessing

Time (CPT)

Indexing Index Creation Time

(ICT)

Index Update Time

(IUT)

Model Learning Model Creation Time

(MCT)

Model Update Time

(MUT)

Retrieval Retrieval Time (RT) Retrieval Time (RT)

and is computed as follows: If U t
kG V t

k G and St
kG denote the batch-mode

trained model parameters at any revision and U t
k, St

k and V t
k are the SVD

components obtained through incremental updating, the RME is given

by:

RME = log

(

||At − U t
kS

t
kV

t
k

T
||

||At − U t
kG

St
kG

V t
k

T

G
||

)

RME ≥ 0 with equality taking place only when the incremental update

approach introduces no additional error.

4.2.2 Measuring Retrieval Performance
The metrics used to evaluate the retrieval accuracy of a search engine

are computed by examining the ranked list of source files returned by

the search engine in response to a query. The top Nr source files in the

ranked list is called the retrieved set and is compared with the relevance

list to compute the Precision and Recall metrics (denoted by P@Nr and

R@Nr respectively). In this paper, we report P@1, P@5, P@10 and

R@1, R@5 R@10. Precision and Recall share an inverse relationship, in

that, the Precision is higher than Recall for lower values of Nr and vice

versa for higher values of Nr . An overall metric of retrieval accuracy that

is independent of the cut-off Nr is known as Average Precision (AP), and

is defined as the area under the Precision-Recall curve. Higher values of

AP indicate a more effective retrieval engine. In this work, we report the

Mean Average Precision (MAP), which is the average of the AP values

over all the bugs in the software.

Another way to gauge retrieval accuracy is by using rank-based met-

rics [3] which measure the number of bugs for which at least one relevant

source file was retrieved at rank r. In our validation experiments, we have

presented rank measures for the following values of r: r = 1, 2 ≤ r ≤ 5,

6 ≤ r ≤ 10, 11 ≤ r ≤ 20 and r > 20.

4.2.3 Measuring Improvements in Retrieval Efficiency
The time spent on each stage of the retrieval process for the batch mode

approach and for the incremental approach can be quantified using met-

rics shown in Table 4. BPT, ICT and MCT vary with the size of the

repository, and CPT, IUT and MUT vary with the size of the change-sets.

Additionally, MCT and MUT vary with the complexity of the model (k).

RT remains the same regardless of the mode of operation.

From the above quantities, the following two quantifiable metrics can be

computed: (a) the Query Latency (QL) of a retrieval system is measured

as the time taken for computing the ranked list given a query as input, and

(b) the Net Computational Effort (NCE) is measured as the time spent in

keeping the model updated at each commit. For the batch-mode frame-

work QL can be quantified as BPT + ICT + MCT + RT , whereas

for the incremental update framework it is merely RT . NCE is the sum

of the time taken in preprocessing the source files in the change-sets, and

the time taken to update the index and the model parameters in the incre-

mental update mode (CPT + IUT +MUT).

4.3 Research Questions
We designed our validation experiments to answer the following research

questions (RQ):

1. RQ1: How similar is the incrementally updated model (computed

by the iSVD and iLSI algorithms) to the model learned using batch-

mode SVD?

2. RQ2: How does the retrieval accuracy obtained with the iSVD and

iLSI algorithms compare with the batch-mode approach?

3. RQ3: How do the two incremental update algorithms compare

with the batch-mode SVD approach in terms of retrieval efficiency?

4. RQ4: Under what conditions is it wise to retrain the model instead

of incrementally updating it?

5. RESULTS
The experimental framework was set up on a 2.4 GHz desktop computer

with 4 cores and 6 GB RAM. Two parameters affect the retrieval accuracy

of the batch-mode and the incremental mode approaches to bug localiza-

tion using the LSA model: (a) The number of eigenvalues retained k,

and (b) the type of query. We analyzed the sensitivity of the incremental

update approaches to the parameter k, and we experimented with three

types of queries created from the title and description fields of the bug

report: (a) title only (b) description only, and (c) title + description.

In the incremental update framework, there is yet another design choice

to consider – the decision as to when to retrain the LSA model. One can

either train at major releases (major_releases) or at commits where a sig-

nificant portion of the source files is affected (major_changes). In our

previous work [10] we found that in general when more than 100 source

files are affected in a commit, the time taken to incrementally update the

index approaches the time taken to re-compute it. Thus, for the results

presented in sections 5.1, 5.2 and 5.3, we used the retraining threshold

nthresh = 100 to identify commits at which the model is re-computed

(major_changes). In section 5.4 we vary nthresh and explore other de-

sign choices for retraining the LSA model and attempt to answer RQ4.

5.1 RQ1: Measuring Model Update Error
In order to answer RQ1, we have plotted RME results computed us-

ing the iSVD and iLSI algorithms in Figure 2 for JodaTime and As-

pectJ respectively. The model is re-calculated at major_changes with

nthresh = 100. Note that at the times when the model is retrained,

the error drops and then starts gradually increasing again as the model is

incrementally updated. For both software systems – JodaTime and As-

pectJ, the RME of the iSVD algorithm is significantly lower than that of

the iLSI algorithm.

Answer to RQ1: The incrementally updated model is closer to the true

model when using the iSVD algorithm as compared to the iLSI algorithm.

5.2 RQ2: Comparing Retrieval Accuracy
Tables 5 and 6 compare the retrieval accuracy of the incremental frame-

work (with retraining at major changes at nthresh = 100) and the batch-

mode approach for 43 JodaTime bugs and 321 AspectJ bugs using differ-

ent combinations of the title and description of the bug report as the query.

The last column shows the p-value computed from pairwise student’s t-

test to additionally confirm the statistical significance of our findings. It

can be seen in the tables that for most cases the retrieval accuracy ob-

tained by iLSI is significantly lower than that obtained using batch-mode.

On the other hand, when using the iSVD algorithm, we were unable to

establish statistically significant differences between the incremental and

batch-mode approaches.

Table 5: Comparing the retrieval accuracy using Precision and Recall at different points and the rank-based metrics for 43 bugs in JodaTime using the

LSA model (k=40). Columns labeled as R1 means r = 1, R5 means 2 ≤ r ≤ 5, R10 means 6 ≤ r ≤ 10, R20 means 11 ≤ r ≤ 20 and R21 means

r ≥ 21.

Query

Type

mode P@1 R@1 P@5 R@5 P@10 R@10 R1 R5 R10 R20 R21 MAP p

title

batch 0.1860 0.0860 0.1023 0.2876 0.0721 0.3822 8 9 7 3 16 0.2047

iSVD 0.1860 0.0860 0.1023 0.2876 0.0744 0.3899 8 10 6 2 17 0.2040 0.6752

iLSI 0.0930 0.0395 0.0605 0.1636 0.0605 0.3163 4 8 8 1 22 0.1326 0.006

description

batch 0.1163 0.0628 0.1256 0.3008 0.0791 0.3899 5 16 2 4 16 0.2145

iSVD 0.1628 0.0822 0.1209 0.2853 0.0744 0.3667 7 13 2 3 18 0.2206 0.466

iLSI 0.1163 0.0628 0.0837 0.1953 0.0581 0.2814 5 9 4 6 19 0.1593 0.008

title batch 0.1395 0.0744 0.1163 0.2845 0.0837 0.4093 6 14 3 4 16 0.2197

+ iSVD 0.1395 0.0744 0.1209 0.2891 0.0814 0.3977 6 14 2 4 17 0.2177 0.7055

description iLSI 0.1163 0.0628 0.0791 0.1915 0.0628 0.3047 5 8 5 5 20 0.1625 0.007

Table 6: Comparing the retrieval accuracy using Precision and Recall at different points and the rank-based metrics for 321 bugs in AspectJ using the

LSA Model (k=60). Columns labeled as R1 means r = 1, R5 means 2 ≤ r ≤ 5, R10 means 6 ≤ r ≤ 10 and R20 means 11 ≤ r ≤ 20 and R21
means r ≥ 21.

Query

type

mode P@1 R@1 P@5 R@5 P@10 R@10 R1 R5 R10 R20 R21 MAP p

title

batch 0.0648 0.0321 0.0346 0.0811 0.0287 0.1248 21 27 29 31 216 0.0692

iSVD 0.0586 0.0290 0.0340 0.0774 0.0265 0.1183 19 28 23 38 216 0.0666 0.131

iLSI 0.0463 0.0223 0.0309 0.0699 0.0250 0.1159 15 28 24 40 217 0.0603 0.009

description

batch 0.0342 0.0162 0.0329 0.0832 0.0289 0.1277 11 37 28 34 212 0.0642

iSVD 0.0342 0.0162 0.0348 0.0844 0.0283 0.1208 11 39 25 31 216 0.0634 0.682

iLSI 0.0373 0.0172 0.0298 0.0796 0.0252 0.1165 12 32 27 30 221 0.0592 0.088

title batch 0.0463 0.0238 0.0333 0.0788 0.0312 0.1312 15 35 31 31 212 0.0700

+ iSVD 0.0463 0.0238 0.0340 0.0784 0.0318 0.1349 15 35 35 27 212 0.0697 0.851

description iLSI 0.0340 0.0180 0.0315 0.0777 0.0281 0.1281 11 36 32 29 216 0.0627 0.016

Figure 2: Relative Modeling Error of the incrementally updated LSA

model for JodaTime at k=20 (left) and AspectJ at k=100 (right) (see in

color).

5.2.1 Sensitivity to the Parameter k

Figures 3 (a)-(c) and 4 (a)-(c) show the variation in the retrieval accuracy

with respect to k for the batch-mode and the two incremental algorithms

for JodaTime and AspectJ respectively using different combinations of

the title and the description fields of the bug report as the query. For both

datasets, the ranking of the algorithms in terms of retrieval accuracy is as

follows: iLSI ≺ iSVD � batch.

Answer to RQ2 The retrieval accuracy of iSVD is comparable to that

of batch-mode and the retrieval accuracy suffers when using the iLSI

algorithm.

5.3 RQ3: Evaluating Improvements in Time Per-

formance
Table 7 presents the mean and the median of the time spent in each step

of retrieval for the batch-mode and the incremental mode approaches, re-

spectively, for the two software libraries. Note that while MCT, BPT

and ICT are measured for each bug, MUT, IUT and CPT are measured

for each revision. Columns 5 and 8 show that the degree of speed-up

obtained in each of the stages of the retrieval process is significant. Addi-

tionally, since MUT, IUT and CPT depend on the size of the change-set,

they remain more or less constant for both JodaTime and AspectJ. For

example, as shown in the last two rows of Table 7, the median of MUT

for iSVD and iLSI for both JodaTime and AspectJ is under 1 second.

5.3.1 Query Latency
As shown in Table 8, the Query Latency (measured in seconds) is signif-

icantly reduced with the incremental update framework as the model is

always kept up-to-date.

5.3.2 Net Computational Effort in Keeping the Model Up-

dated
Since the change-set is relatively small, the overall time spent in keeping

the model updated (NCE) is just around 2 seconds for most revisions and

8 seconds on average, as shown in Table 9.

5.3.3 Sensitivity of MCT and MUT to k

The variation of MCT and MUT to the parameter k is plotted in Figures

3(d) and 4(d) for the two software repositories. As k increases, the fig-

ure shows that MCT increases more rapidly than MUT. In other words,

incremental update techniques save time in the model update stage. The

figures also compare the iSVD and iLSI algorithms in terms of MUT in-

dicating that iLSI is marginally faster than iSVD.

Answer to RQ3: With the incremental update framework, significant

speed-ups can be achieved in various stages of the retrieval process. The

Net Computational Effort (NCE) required at each commit to keep the

model updated was found reasonable within a few seconds. Both iSVD

and iLSI are significantly faster than the batch-mode LSA algorithm.

(a) (b) (c) (d)

Figure 3: (a)-(c) Sensitivity of retrieval accuracy to the parameter k of the LSA model using different types of query for 43 bugs in JodaTime (d)

Variation of MCT and MUT with k for JodaTime (see in color).

(a) (b) (c) (d)

Figure 4: (a)-(c) Sensitivity of retrieval accuracy to the parameter k of the LSA model using different types of query for 321 bugs in AspectJ (d)

Variation of MCT and MUT with k for AspectJ (see in color).

Table 7: Summary of the time taken (in seconds) by each of the stages of

the batch-mode and the incremental mode framework.

JodaTime (k=40) AspectJ (k=60)

mean median gain mean median gain

of batch 556 494 5214 5309

files inc 5.41 2 4.429 1

Pre- BPT 412.7 303.7 89 1628 1052.7 246

proc CPT 7.83 2.07 270 6.61 1.96 536

Index-
ICT 44.97 36.23 133 170.15 153.68 240

-ing IUT 0.34 0.19 188 0.71 0.29 607

iSVD
MCT 3.39 3.18 12- 12.58 12.93 15

MUT 0.27 0.20 15 0.85 0.87

iLSI
MCT 3.39 3.18 26 - 12.58 12.93 18

MUT 0.13 0.11 28 0.71 0.71

Table 8: Comparing the Query Latency (in seconds) of the batch-mode

and incremental mode approaches to bug localization.

JodaTime (k=40) AspectJ (k=60)

Model mean median mean median

batch 459.352 341.49 1806 1214.18

iSVD 0.3185 0.2483 0.3185 0.2483

iLSI 0.8131 0.725 1.3869 1.202

Table 9: Net Computational Effort (in seconds) to keep the model updated

using the incremental update framework.

JodaTime (k=40) AspectJ (k=60)

Model mean median mean median

iSVD 8.378 2.359 8.296 3.137

iLSI 8.329 2.352 7.6092 2.469

5.4 RQ4: When to Retrain?
Recall from section 3.1 that it may be necessary to retrain the model from

scratch and the decision of when to retrain can only be handled by a

heuristic. One possible policy is to re-compute the model only at ma-

jor releases of the software (major_releases). We found that while this

approach guarantees that the model error measure (RME) and the re-

trieval accuracy are not impacted2, the efficiency may suffer. In order to

demonstrate this, we plot the variation in MUT with respect to the size of

the change-set for the two software repositories and the two incremental

update models in Figure 5. Note that for some revisions in JodaTime’s

history the time taken to update the model is comparable to that of batch-

mode time. These commits typically affect 16 − 34% of the (or > 100)

source files and hence the assumption of Ma << M is no longer valid.

In other words, the design choice of retraining at major_releases may

guarantee retrieval accuracy but not retrieval effectiveness.

Alternatively, one could re-compute the model when a significant portion

of the source files are affected (major_changes). In order to identify such

commits, a threshold is set on the size of the change-set (nthresh). When

a commit affects more source files than the set threshold, we retrain the

model; otherwise the model is incrementally updated. We study the im-

pact of this threshold on the retrieval efficiency of the two incremental

update algorithms iLSI and iSVD. When nthresh is high, the model is re-

trained less frequently and the mean MUT is lower (see Figures 6 & 7

(a)). We also studied the variation in the retrieval accuracy (using MAP)

with respect to nthresh. Figures 6 & 7 (b)-(d) show the variation in the re-

trieval accuracy computed using the iSVD and the iLSI algorithms. Note

that since the iLSI ignores new information (source files/terms) present

in At+1, retrieval accuracy suffers when this threshold (nthresh) is in-

creased. On the other hand, since the iSVD algorithm more directly in-

corporates new information into the model, the retrieval accuracy stays

intact, even when the threshold (nthresh) is increased. Thus with the iLSI

algorithm one may need to retrain the model more frequently than when

the iSVD algorithm is used.

2Retrieval accuracy and RME follow similar trends as the ones shown
in Sections 5.2 and 5.1. We have omitted the results to save space and
avoid duplication.

(a) JodaTime-iLSI (b) JodaTime-iSVD (c) AspectJ-iLSI (d) AspectJ-iSVD

Figure 5: Sensitivity of MUT to the size of change-set with retraining at major_releases policy. The circled data points correspond to revisions where

a major fraction of source files (> 16% or > 100 source files) were affected. Observe that for these commits, MUT becomes comparable to the MCT

(see in color).

(a) MUT (b) title (c) description (d) title+description

Figure 6: (a) Sensitivity of retrieval efficiency to nthresh (threshold on size of change-set) with retrain at major_changes policy (b)-(d) Sensitivity of

retrieval effectiveness to nthresh for 43 bugs in JodaTime software (see in color).

(a) MUT (b) title (c) description (d) title+description

Figure 7: (a) Sensitivity of retrieval efficiency to nthresh (threshold on size of change-set) with retrain at major_changes policy (b)-(d) Sensitivity of

retrieval effectiveness to nthresh for 321 bugs in AspectJ software (see in color).

Answer to RQ4: It is more efficient and effective to retrain the LSA

model at commits where significant portion of the source files are

affected, as opposed to retraining at major releases. The iSVD al-

gorithm incorporates new information (source files/terms) more di-

rectly into the model, leading to lower model error. Thus the iSVD

algorithm requires less retraining compared to the iLSI algorithm.

6. THREATS TO VALIDITY
Any empirical research must be subject to an analysis of threats to its va-

lidity. In our previous contribution [10], we have highlighted the threats

to validity of the incremental update framework to IR based bug localiza-

tion. Due to space restrictions, we refrain from repeating such limitations.

Regarding the incremental LSA methods, one threat to the validity is our

vocabulary update mechanism. While incorporation of new source files

into the index is straightforward (see Section 3), vocabulary updates are

not so direct. Most often, when computing the LSA model, the removal

of the n most frequent/least frequent terms in the collection is a common

preprocessing step [2]. Let us denote this set as Velim. As the vocabulary

evolves, heuristics need to be applied to incorporate these terms selec-

tively into the index. In our current implementation, a new term is added

to the vocabulary only if it does not belong to Velim. One threat to va-

lidity is that Velim is computed only when an index is computed afresh

and we do not update this set as the software evolves. Nevertheless, soft-

ware vocabulary evolves at a very slow rate [29] [23], and thus we do not

expect this to impact the conclusions we derive from our experimental

findings.

7. RELATED WORK
SVD is a fundamental matrix operation that requires intensive computa-

tion, both in terms of time and storage space. Thus a number of optimiza-

tions have been proposed in the past. Although we have used the popular

Lancsoz SVD algorithm [28], alternate fast-SVD algorithms exist. One

such approach is called the Stochastic SVD algorithm (SSVD) [24] that

uses randomized algorithms to achieve extremely fast SVD computation

at a small sacrifice to the accuracy. Incremental versions of the SSVD

algorithm have also been proposed to process large term-document ma-

trices in smaller chunks [26]. Such incremental SVD algorithms achieve

speed up by just keeping track of U and S components and eliminating

the need to store A. Unfortunately, the incremental versions of the SSVD

algorithm are essentially sequential in nature and cannot consider cases

in which existing rows and columns are deleted or modified. Thus, we

have not explored this avenue of research any further.

8. CONCLUSION
In this paper, we have presented an incremental approach to IR based

bug localization using the LSA model. Our proposed approach keeps

the model updated with changes in the software from one commit to the

next. We have compared two state-of-the-art incremental SVD algorithms

— Brand’s incremental SVD [22] and Jiang et al.’s iLSI [21]. For ex-

perimental validation, we created a publicly available benchmark dataset

called moreBugs that tracks commit-level changes over 10 years of his-

tory of the following software repositories: AspectJ (7477 commits) and

JodaTime (1573 commits). We also presented strategies for retraining

the model using batch-mode from time to time. We have demonstrated

that significant speed-up in the retrieval process can be achieved using the

presented approach. Our analysis and findings reveal that the iLSI algo-

rithm is not suitable for incrementally updating the model of a software

repository as it ignores information found in new source files and terms.

This causes high model error and poor retrieval accuracy compared to the

iSVD algorithm and the batch-mode algorithm. Consequently, one might

need to retrain the model more frequently when using the iLSI algorithm

as opposed to iSVD algorithm.

9. REFERENCES
[1] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the Use of

Relevance Feedback in IR-based Concept Location,” Software

Maintenance, IEEE International Conference on, pp. 351–360,

2009.

[2] S. Rao and A. Kak, “Retrieval from Software Libraries for Bug

Localization: A Comparative Study of Generic and Composite

Text Models,” in Proceeding of the 8th Working Conference on

Mining Software Repositories. Waikiki, Honolulu, HI, USA:

ACM, 2011, pp. 43–52.

[3] S. Lukins, N. Kraft, and L. Etzkorn, “Source Code Retrieval for

Bug Localization using Latent Dirichlet Allocation,” in 15th

Working Conference on Reverse Engineering, 2008.

[4] B. Sisman and A. Kak, “Incorporating Version Histories in

Information Retrieval Based Bug Localization,” in Mining

Software Repositories (MSR), 2012 9th IEEE Working Conference

on, June 2012, pp. 50 –59.

[5] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs be Fixed?

More Accurate Information Retrieval-Based Bug Localization

Based on Bug Reports,” in Software Engineering (ICSE), 2012

34th International Conference on, June 2012, pp. 14 –24.

[6] N. Ali, A. Sabane, Y.-G. Gueheneuc, and G. Antoniol, “Improving

Bug Location Using Binary Class Relationships,” Source Code

Analysis and Manipulation, IEEE International Workshop on, pp.

174–183, 2012.

[7] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and

T. Menzies, “Automatic Query Reformulations for Text Retrieval

in Software Engineering,” in Software Engineering (ICSE), 35th

International Conference on, 2013.

[8] S. Haiduc, “Automatically Detecting the Quality of the Query and

its Implications in IR-based Concept Location,” in Proceedings of

the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, 2011, pp. 637–640.

[9] B. Sisman and A. C. Kak, “Assisting Code Search with Automatic

Query Reformulation for Bug Localization,” in Proceedings of the

10th Working Conference on Mining Software Repositories, 2013,

pp. 309–318.

[10] S. Rao, H. Medeiros, and A. Kak, “An Incremental Update

Framework for Efficient Retrieval from Software Libraries for Bug

Localization,” in Working Conference on Reverse Engineering,

2013.

[11] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

Information Retrieval. New York, NY, USA: Cambridge

University Press, 2008.

[12] J. I. Maletic and A. Marcus, “Supporting Program Comprehension

Using Semantic and Structural Information,” in Proceedings of the

23rd International Conference on Software Engineering, ser. ICSE

’01, 2001, pp. 103–112.

[13] A. Kuhn, S. Ducasse, and T. Girba, “Enriching Reverse

Engineering with Semantic Clustering,” in Reverse Engineering,

12th Working Conference on, 2005, p. 10.

[14] A. Kuhn, S. Ducasse, and T. Gîrba, “Semantic Clustering:

Identifying Topics in Source Code,” Source Information and

Software Technology archive, vol. 49, pp. 230–243, 2007.

[15] D. Poshyvanyk and A. Marcus, “Combining Formal Concept

Analysis with Information Retrieval for Concept Location in

Source Code,” in Program Comprehension, 2007. ICPC ’07. 15th

IEEE International Conference on, 2007, pp. 37–48.

[16] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and

V. Rajlich, “Combining Probabilistic Ranking and Latent Semantic

Indexing for Feature Identification,” in Program Comprehension,

2006. ICPC 2006. 14th IEEE International Conference on, 2006,

pp. 137–148.

[17] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An

Information Retrieval Approach to Concept Location in Source

code,” in In Proceedings of the 11th Working Conference on

Reverse Engineering, 2004, pp. 214–223.

[18] A. Marcus and J. I. Maletic, “Recovering

Documentation-to-Source-Code Traceability Links using Latent

Semantic Indexing,” in Proceedings of the 25th International

Conference on Software Engineering (ICSE ’03), 2003, pp.

125–135.

[19] A. De Lucia, R. Oliveto, and G. Tortora, “Adams Re-Trace:

Traceability Link Recovery via Latent Semantic Indexing,” in

Proceedings of the 30th international conference on Software

engineering, ser. ICSE ’08, 2008, pp. 839–842.

[20] A. Marcus and J. Maletic, “Identification of High-Level Concept

Clones in Source Code,” in Automated Software Engineering,

2001. (ASE 2001). Proceedings. 16th Annual International

Conference on, 2001, pp. 107–114.

[21] H. yi Jiang, T. Nguyen, I.-X. Chen, H. Jaygarl, and C. Chang,

“Incremental Latent Semantic Indexing for Automatic Traceability

Link Evolution Management,” in Automated Software Engineering,

2008. ASE 2008. 23rd IEEE/ACM International Conference on,

2008, pp. 59–68.

[22] M. Brand, “Fast Low-Rank Modifications of the Thin Singular

Value Decomposition,” Linear Algebra and its Applications, vol.

415, no. 1, pp. 20 – 30, 2006.

[23] S. Rao and A. Kak, “moreBugs: A New Dataset for Benchmarking

Algorithms for Information Retrieval from Software Repositories

(TR-ECE-13-07),” Purdue University, School of Electrical and

Computer Engineering, Tech. Rep., 04 2013.

[24] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding Structure

with Randomness: Probabilistic Algorithms for Constructing

Approximate Matrix Decompositions,” SIAM Review, vol. 53,

no. 2, pp. 217–288, May 2011.

[25] H. Zha and H. D. Simon, “On Updating Problems in Latent

Semantic Indexing,” SIAM J. Sci. Comput., vol. 21, no. 2, pp.

782–791, Sep. 1999.

[26] R. Řehůřek, “Subspace Tracking for Latent Semantic Analysis,” in

European Conference on Information Retrieval, 2011, pp.

289–300.

[27] “Stochastic svd,” http://code.google.com/p/redsvd/.

[28] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. The

Johns Hopkins University Press, Oct 1996.

[29] S. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol,

“Analyzing the Evolution of the Source Code Vocabulary,” in

Software Maintenance and Reengineering, 2009. CSMR ’09. 13th

European Conference on, March 2009, pp. 189 –198.

