
UC Irvine
ICS Technical Reports

Title
Comparing instance-averaging with instance-saving learning algorithms

Permalink
https://escholarship.org/uc/item/6f14b097

Authors
Kibler, Dennis
Aha, David W.

Publication Date
1988-03-23
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6f14b097
https://escholarship.org
http://www.cdlib.org/


Notice; This Materiai

may be protected

by Copyright Law

(Titie17U.S.C.)

Comparing Instance-Averaging with

Instance-Saving Learning Algorithms

Dennis JCibler
David W, Aha

Irvine Computational Intelligence Project

Department of Information and Computer Science

University of California, Irvine, CA 92717

Technical Report 88-06

23 March 1988

Copyright © 1988 University of California, Irvine



!!:;noJB!Vi siflT ieoi}

b9t09toiq 9c!

wbJ IngnyqcO



Comparing Instance-Averaging with

Instance-Saving Learning Algorithms

Dennis Kibler David W. Aha

Department of Information Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.

(714) 856-8779

Problem Area: Concept Learning

General Approach: Instance-Based Algorithms

Evaluation Criteria: Empirical and Theoretical

Abstract

The goal of our research is to understand the power and appropriateness of instance-

based representations and their associated acquisition methods. This paper concerns

two methods for reducing storage requirements for instance-based learning algorithms.

The first method, termed instance-saving, represents concept descriptions by select

ing and storing a representative subset of the given training instances. We provide

an analysis for instance-saving techniques and specify one general class of concepts

that instance-saving algorithms are capable of learning. The second method, termed

instance-averaging, represents concept descriptions by averaging together some train

ing instances while simply saving others. We describe why analyses for instance-

averaging algorithms are difficult to produce. Our empirical results indicate that

storage requirements for these two methods sire roughly equivalent. We outline the

assumptions of instance-averaging algorithms and describe how their violation might

degrade performance. To mitigate the effects of non-convex concepts, a dynjumc

thresholding technique is introduced and applied in both the averaging and non-

averaging learning algorithms. Thresholding increases the storage requirements but

also increases the quality of the resulting concept descriptions.



Comp^ng Inst&nce-Arer&ging with Inst&nce-S&ying Learning Algontbms

1 Introduction

This paper addresses representational issues for the learning from examples task.

The object of this task is, given a set of training examples annotated with concept

i. jnerabership information, to yield a description for each concept represented by at

least one of the training examples. Representations based on rules, first order logic,

and decision trees have received significantly more attention in the machine learning

literature than have other, even simpler methods for describing concepts. This paper

explores the use of instances, either observed or constructed, to represent concepts.

Instance-based learning (IBL) algorithms are given a training set of instances and

derive a concept set from them. The concept set can then be used, along with the

chosen classification metric (similarity function), to describe concepts.

Classification metrics also determine how each training instance influences the rep

resentation of the concept. While the learning algorithms' efficiencies can degrade

when employing a poor classification metric, it is not obvious that the choice of the

metric influences which concepts can be leeirned. For this reason, we employ only the

simple neairest-neighbor classification algorithm in our experiments. Nearest-neighbor

classifications yield concepts which have a piecewise-linear boundary, enabling sim

pler analysis. Distinguishing the strengths and weaknesses of different classification

metrics is a future research problem.

Metrics for measuring the performance of IBL algorithms include generality (the

class of concepts which are learnable by the algorithm) and the resulting concept

set's accuracy (in mapping instance space to concept space), number of misclassifi-

cations (measured by its number of false positives and false negatives), and storage

requirements (size).

IBL techniques have not received a great deal of attention in the ML literature, in

part because they are presumed to be storage intensive. Two approaches have been

used in response to this problem. StanfiU and Waltz (1986) suggest using large num

bers of multiprocessors to significantly reduce memory limitation problems. Others

have researched methods for reducing storage requirements through either instance-



Comparing Instance-Averaging with Instance-Saving Learning Algorithms 2

averaging techniques (Sebestyen, 1962; Kohonen, 1986; Bradshaw, 1987) or by selec

tively saving some of the training instances (Kurtzberg, 1987; Kibler & Aha, 1987;

Connell & UtgofF, 1987). Several natural domains require surprisingly few instances to

be saved in order to attain high classification accuracies on new instances. Section 2

"• describes a family of IBL algorithms that attempt to reduce storage requirements

without sacrificing predictive abilities. Section 2 also introduces the notion of thresh

olding^ which suggests that instances which are fax firom previously observed instances

should be saved, even if they would be correctly classified.

Section 3 describes an analysis of some of the simpler IBL algorithms, showing

when they are guaranteed to succeed. Section 4 presents an empirical comparison of

the IBL algorithms introduced in Section 2 and discusses the advantages and problems

involved when using instance-averaging <uid thresholding techniques.

2 A Family of Instance-Based Learning Algorithms

In this section we discuss a family of incremental IBL algorithms. They all assume a

representation in which each instance is defined by a finite set of real-valued attributes.

All the algorithms also assume that a new disjunct is formed when a training instance

is misclassified by the current concept set. Consequently, the misclassified training

instance is added to the concept set. Thus we will refer to them as error-driven,

disjunct-learning (EDDL) algorithms.

Two pairs of EDDL algorithms are described in this section. The algorithms dif

fer in terms of whether they employ instance-averaging and/or adaptive thresholding

techniques. Algorithms that don't average instances simply discard correctly clzissified

training instances. Instance-averaging algorithms replace the correctly classified in

stance's nearest neighborin the current concept set with a weighted-average of the two

instances. Algorithms that don't employ thresholding techniques classify new training

instances in terms of whether they are in the saime concept as their nearest neighborin

the current concept set. Thresholding algorithms additionally require that the nearest

neighbor be within a specified distance (threshold) of the new instance. The general



CompaiiDg Instance-Averaging with Instance-Saving Learning Algorithms

Learn guesses for thresholds

V training instances t E T:

2.1 Find nn, the nearest neighbor of t in C
2.2 IF (t is classified correctly by nn)
2.3 AND (DISTANCB(t,nn) < THRESHOLD(CLASS(t)))

2.4 THEN replace nn in C with WBiGHTBD-AVBRAGB(t,nn)
2.5 ELSE add t to C

2.6 Update threshold guesses

Figure 1: EDDL learning algorithms: deriving concept set C &om training set T. Lines 1, 2.3, and 2.6
refer only to thresholding algorithms. Line 2.4 refers only to averaging algorithms.

Learning Algorithm

Growth

Growth -f AT

Diejnnctive Spanning (DS)

DS + AT

Options Employed

Averaging Thresholding

Corresponding Lines

in Figure 1

2,2.1-2,2.5

all bat 2.4

2,2.1-2,2.4-5

all

Table 1; Distinguishing the behaviors of the four EDDL algorithms.

skeleton of the four EDDL algorithms is given in Figure 1. Operations involving

thresholding and instance-averaging techniques are distinguished (preceded by bold

faced line numbers) in the figure. The two pairs of EDDL algorithms to be discussed

are summarized in Table 1 with respect to whether they employ instaince-averaging

and/or adaptive thresholding (AT) techniques.

The simplest algorithm presented here, which we refer to as the growth algorithm,

discards correctly classified traininginstances Jind saves misclassified traininginstances

in the current concept set. The disjunctive spanning algorithm, introduced by Brad-

shaw (1987), averages correctly classified training instances. Each instance is associ

ated with a weight (initialized to 1). When training instance t is classified correctly by

concept instance nn, the disjunctivespanning algorithm replaces nn with the weighted

average of t and nn. The weight of the averaged instance is defined as the sum of the

weights of nn and t. Thus instances correctly classified by concept instance nn affect

the relocation of nn in C as an inverse function of nn's weight and as a function of

their distance from nn.



CompATing InstAnce-AveTAging with Instance-Saving Learning Algohtbttis 4

Bradshaw (1987) reported that instance-averaging in the disjunctive spanning al

gorithm is unsafe in the following sense. An averaged "instance" not only might be

non-prototypical, but might not even be an instance of concept it was to represent.

Sebestyen (1962) also recognized this problem and attempted to solve it by introduc-

""ing an explicit, predefined threshold. Sebestyen's algorithm averaged a new instance

only if it W2is correctly classified and it was within the threshold distance of some

instance in the current concept set with the same classification.

While Sebestyen's algorithm describes how to use a threshold, no principled method

for setting the threshold was suggested. The choice for Sebestyen's threshold signif-

icsintly affects his algorithm's capability to learn concepts. Therefore we have devel

oped an adaptive thresholding techniquefor both the growth and disjunctive spanning

algorithms, denoted by growth-f-AT and DS-I-AT respectively.

The thresholding algorithms learn one threshold for each concept in the instance

space.^ A threshold for concept C is defined as the shortest distance between a pair

of instances in C that appear to lie in different disjimcts of C (i.e. they are intervened

by at least one instance in another concept). All thresholds are initialized to unrea

sonably large values and £ire recomputed after each training instance is incorporated.

Training instances are simply stored until the thresholds for each concept have sta-"

bilized. A threshold for concept C stabilizes when it has not changed by more than

P% during the incorporation of the last T training instances. (In the experiments

with the thresholding algorithms, P and T were assigned the values 5 and 10 respec

tively.) The learning algorithm is applied to the entire training set after the thresholds

have stabilized. The intuition here is to determine a good guess of the thresholds by

setmpling the training set until the guesses tend to stabilize.

The DS-I-AT algorithm further reduces the probability of yielding misclassifications

in the concept set by employing an instance-averaging function which weights old in-

st€inces more heavily than new ones. For each saved concept instance, Bradshaw's

(1987) algorithmfirst averages liberally and quickly becomes extremely conservative.

'Ideally, a threeholding algorithm should employ a $*t of "local" thresholds for each concept. The intuitionhere is
that a concept's threshold is not the same throughout the instance space; it would be large in "core" areas and low at
"boundary" areas of concept di^uncts. The simpler method is used in this paper because this ideal approach adds tmdue
complexity for our present purposes.



Compajing Instance-Averaging with Instance-Saving Learning Algorithms 5

In contrast, DS+AT uses an averaging zilgorithm (Kohonen, 1986) that gradually de

creases the effects of averaging. Kohonen's algorithm ensures that concept instances

are never quickly averaged far away from their initial location in instance space dJid

that all correctly classified training instances have a non-trivial impact on the forma-

^tion of the concept set.

3 Convergence of Instance-Saving Algorithms

In this section we will examine the issue of generality to determine which assump

tions guarantee the correctness of the learning algorithms introduced in Section 2.

Clearly none of the algorithms is guaranteed to always work. In particular none of

these algorithms would learn the concept of even numbers given positive and negative

instances of numbers. One bsisic assumption that IBL algorithms share is that if x

is close to y and x is a member of some concept C then y is a member of C. IBL

algorithms that average additionally assume that the underlying concept is convex. A

violation of this assumption suggests that the very process of averaging coiild result

in an instance located outside the concept class.

Cover and Hart (1967) demonstrated that, under very general statistical assump

tions, the nearest neighborhood decision policy has a Bayes Risk of at most twice the

optimal decision policy. This result is partially weakened by the fact that it requires

an unbounded number of samples. In contrast to statisticed assumptions, we make

geometric assumptions about the shape of the concept to be learned. We are then

able to show that the nearest neighbor (proximity) and growth algorithms converge,

in reasonable time, if the concept has a "nice" boundary (i.e. the boundary has a

finite size and separates the concept's interior from its exterior).

We need a few definitions for the analysis. For any c > 0, let the e-core of a set C

be all those points of C which have an e-ball about them contained in C. Similarly

we define the e-neighborhood of C to be all those points which are within e of some

point of C. If the set of points C contains the c-core of C and is contained in the c-

neighborhood of C, then C is an e-approximation of C. Finally, if the e-neighborhood



Comparing Instance-Averaging with f/istance-Saving Learning Algorithms

t -neightcrnood

concept

Figure 2: Parts of a coacept.

of a finite set of points F contains the entire space, then that set is an for the

space. The diagram in Figure 2 illustrates some of these concepts.

We first establish that the proximity algorithm, which saves every instance, nearly

always converges to an approximately correct definition of a concept when the bound

ary of the concept is sufficiently "nice". "Nearly always" mesms with probability

greater than 1 — where 6 is an arbitrarily smail positive number. "Approximately

correct" means that the generated concept is an c-approximationof the actual concept,

where c is an arbitrarily small positive number.

For simplicity we will establish the theorem for any finite polygon in a bounded

region in the pleme.

Theorem 1. Let C be any finite polygon with boundary length L in the unit square.

Given an c > 0, then the proximity algorithm will (approximately) learn C (with

confidence 1 —6).

Proof: Let e and 6 be arbitrary positive numbers. A mild extension of our previous

result (Kibler and Aha, 1988) yields: if TV" > (l/€^)/n(l/(^), then any N randomly-

selected samples will form an £-net (with confidence 1 —6) for C. Now let p be any

point of the unit square and let s be the closest point to p in the sample set. By

construction, we are guaranteed that s is within c of p.



Comp&iing Inst&ace-Aver&ging with Insi&nce-S&ring Leasning Algorithms 7

There axe three cases to consider.

1. s is in the c-core of C. Since the distance between s and p is less than c and s is

in the c-core, p is also in C. Consequently s correctly predicts that p is a member

i, ., oi C with confidence 1 —c.

2. s is outside the e-neighborhood of C. Since s is within e of p, then p is also

outside of C. In this case we also have that s correctly predicts that p is not a

member of C.

3. s is within the c-neighborhood but outside the c-core of C. This is the only case

in which s may incorrectly predict whether p is a member of C or not. Then we

can bound the size of the set of values on which this algorithm makes errors with

Since X is a fixed number, this shows that we can get arbitrarily close approximations

to the concept C. •

This proof allows us to conclude a number of qualitatively important statements.

• The set of false positives is contained in the outer ribbon (the c-neighborhood

of C excluding C). Similarly, the set of false negatives is contained in the inner

ribbon.

• The algorithm will not distinguish a concept from anything containing the c-core

and contained in its c-neighborhood. Consequently small perturbations in the

shape of a concept are not captured by this approach.

• No assumptions about the convexity of the concept, the connectedness (number of

components or disjuncts) of the concept, nor the relative positions of the various

components of the concepts need be made.

• The argument did not depend on the unit square, but rather on the "niceness"

of the boundary. The proof could be generalized to finite-sized polyhedron in

arbitrary Euclidean space.



Comparing Instance-Averaging with Instance-Saving Learning Algorithms

We now show that the growth algorithm will also learn concepts with "nice" bound-

Theorem 2. Let C be any finite polygon with boundary length L in the unit square.

^Given an e> 0, then the growth algorithm will (approximately) learn C (with confi

dence 1 —6).

Proof: As before choose N so large that we are guaranteed (with confidence 1 —5) to

have an c-net. Note that the proximity algorithm would store N instances to represent

the concept and its complement. The growth algorithm stores some subset of these

instzinces. If the resulting concept description is an e-approximation of C, then we are

done. If it is not, then another pass through the same N instances will add at leaist

one instance to our representation. If we repeat this process at most N times, then

we will be guaranteed that it converges to the concept. •

The reader may note that we have, perhaps unfairly, assumed that the algorithm

can re-examine the same N instances. We believe that the proof would hold without

this eissumption, but so far have been unable to produce the appropriate argument.

In practice, the growth algorithm tends to add points that are near the boundary.

As one can see, if enough border points are selected, the core points become extraneous

(in the sense that any point in the core would be correctly cleissified). In fact, as we

will demonstrate in Section 4, the number of instances saved in the concept set is

linearly proportional to the concept's boundary length.

The growth algorithm with thresholding converges by the same proof.

The above results give a good characterization of the classes of concepts learnable by

instance-saving algorithms. The situation for instance-averaging algorithms appears

to be more complex. Bradshaw (1987), Sebestyen (1962), Kohonen (1986), and several

others have demonstrated that instance-averaging techniques work in real domains.

We have been unable, however, to find any rezisonable constraints on the concept

shape that would guarantee such convergence.

Let us consider a few examples. Suppose that the concept to be learned was a



Composing Instonce-AvcToging with Inst&nce-SAYing Lco/nJng Algorithms

* Figure 3: An instance-averaging example: error sets for 2convex concepts.

ring and suppose we were given only positive examples. Then instance-averaging

approaches would converge to the center of mass (centroid) of the ring. Thus they

would converge to a point which was not even a member of the concept! Although this

is an extreme example, whenever a concept is not convex there is the possibility that

an instance-averaging algorithm will converge to a point not in the concept. Therefore

one reasonable constraint might be that instance-averaging algorithms will converge

if the concept is convex. Even this strong constraint, however, is not sufficient.

Consider the rectangular instance space in Figure 3. The space consists of two

triangulaxly-shaped concepts. If the training set is ordered so that all positive instances

precede edl negative instances, then instance-averaging algorithms will converge to the

centroids (shownin the figure). The shaded area would then represent the error set for

instance-averaging. Examples like these leave us in a quandary. Instance-averaging

algorithms work; when they do remains a mystery to us.

4 Performance of EDDL Algorithms

Instance-averaging algorithms can yield erroneously classified "instances" in the

concept set when one or more of the algorithm's assumptions are violated. These

algorithms are sensitive to the degree of convexity of the concepts, the distribution

of instances across disjuncts in the training set, the ratio of a concept's area to its

disjuncts' boundary lengths, and the ordering of instances in the training set.

We define the degree of convexity of a concept C as the probability that, given any

two points of C, the line segment joining the two points is also contained in C. The



Comp&ring Inst&nce-AveT&ging witB Instance-Saviiig Learning Algorithms

Instance Instance Total Errors in the Concept Set/Average Accuracy/Average Storage Requirements

Space Algorithm

Convexity Growth Growth-j-AT Disjunctive Spanning

largest 0/91%/7 0/93%/ll 0/93%/6

large 0/86'/./ll 0/88%/17 12/86%/n

smaller 0/86%/ll 0/88%/17 15/87'/./10

least 0/86%/ll 0/88%/18 20/88%/!1

DS+AT

0/94%/!!

l/89%/17

0/89%/16

0/89%/17

Table 2: Empirical results: varying instance space convexity.

probability that an averaging algorithm will yield concept set misclassifications vziries

inversely with the degree of convexity of the concept. For example, if all the concepts

are convex, then all instance-averagings will be safe. Applying aji averaging algorithm

to an instance space with a low degree of convexity, however, might result with several

concept set misclassifications, depending upon the particular training instances and

their ordering of presentation.

Table 2 summarizes the application of the four EDDL algorithms to a set of four

2-dimensional, square instance spaces. Each instance space consists of two concepts, A

and B, where A consists of a single, horizontal, rectangular disjunct and B consists of

the remainder of the space. A's disjunct extends across the entire width of the space

and its width is one-fourth the height of the space. The disjunct is located at the

north boundary of the first instance space and is gradually shifted southwards until

it is centered in the last (fourth) space. Thus the degree of convexity of B decreases

dramatically from the first to last space. The results summarize 100 applications of

the algorithms to each space, where each application used a 50-instsince training and

a (disjoint) 100-instance test set. All instances were randomly selected. As expected,

the number of misclassifications yielded by the disjunctive spanning (DS) algorithm

increased as the degree of convexity of the instance space decreased. The results show

that the DS+AT algorithm resulted with far fewer erroneously classified concept set

instances than did the DS algorithm. This can be attributed both to its thresholding

and conservative averaging algorithms. Interestingly, all four algorithms had about the

same accuracies on the test sets. The thresholding algorithms understandably saved

more instances than their counterparts since their thresholds add conditions to correct



CompATing InstAnce-Averaging with Instance-Saving Learning Algorithms

Percentage Total Errors in the Concept Set/Average Accuracy/Average Storage Requirements

of Instances

in Disjunct Growth

Algorithm

Growth+AT I Disjunctive Spanning

0/88y,/9 0/89%/14 36/88%/9

0/86%/ll 0/88%/18 20/88%/!!

Q/91%/32 0/92%/18 7/n%/n

0/72%/6 0/70y./10 l/74%/6

DS+AT

0/90%/14

0/89%/17

0/92%/17

0/72%/9

Table 3: Empirical results: varying the distribution of training set instances.

classifications and all misclassifications result in additions of training instances to the

concept set. The growth algorithm's simplicity suggests that it is the best algorithm

to use for these instance spaces.

Table 3 summarizes applications to the fourth (centered disjunct) instance space

during which the distribution of 50 training instances among concepts was varied. The

percentage of training instances in A was set at 10%, 25%, 50%, and 90%. Each algo

rithm was applied 100 times to each distribution setting. Again, the non-thresholding

averaging algorithm resulted with several erroneously classified concept set instances

and their number decreased as the distribution favored A. The latter is expected

since A is a convex concept and B is not. Therefore as the percentage of training

instances in B decreases, there will be fewer opportunities to erroneously average two

of .B's instances to yield a location in A's disjunct. Note that the accuracies (on 100

randomly selected, disjoint sets of test instances) are again relatively equal across the

algorithms and the thresholding algorithms have higher storage requirements.

The ratio of the boundary length of a concept disjunct to its area, as explained in

Section 3, also affects the accuracy and number of instances saved by the growth algo

rithm. We experimented with four 2-dimensional instance spaces. Each had a single,

centered, disjunct whose area remained constant across the four spaces. The shape

of the disjunct, however, was varied so that its boundary length/area ratio increased

monotonically in the four spaces. Each algorithm was applied to each space 25 times.

The experiments employed 100-instance training sets with 25% of the instances in the

lone disjunct. (The disjunct's area was 4.5% of the instance space.) Test sets contained

100 (disjoint) randomly selected instances. Figure 4 plots the average number of in-



Comparing Instance-Areraging with Instance-Saving Learning Algorithms

Average Number of Instances Saved By the Growth Algorithm

0.08

(200/2500)
Boundary Length/Area Ratio of Disjunct 0.404

(1010/2500)

Figure 4: Storage requirements as a function of the boundary length/area ratio of a single disjunct.

Instance Disjunct Total Errors in Concept Set/Average Accuracy/Average Storage Requirements

Space Boundary Area Algorithm

Length ' Growth Growth+AT Disjunctive Spanning DS+AT

1 200 2500 0/98%/ll 0/98%/27 l/96%/10 l/98y,/23

2 290 2500 0/96%/14 ! 0/98%/33 l/97%/14 0/98%/30

3 520 2500 0/93'/./21 0/96%/43 n/93%/23 2/96y./41

4 1010 2500 0/88%/33 0/93%/51 10/87%/34 2/94%/52

Table 4: Empirical results: varying the boundary length/area ratio of a single disjunct.

stances saved by the growth algorithm as a function of the boundary length/area ratio

of each space's disjunct. As anticipated in Section 3, the number of instances saved

increases as a linear, monotonically increasing function of the boundary length/area

ratio of the disjunct being learned. Thus the number of instances saved by the growth

algorithm increases cis the ratio of core/boundary length decreases.

In fact, this behavior occurred for all four algorithms. The results are summarized

in Table 4. Note that the thresholding technique "pays off" for the fourth (thinnest

disjunct) instance space in that the average accuracies for the thresholding algorithms

are higher than those of the non-thresholding algorithms. Thresholding algorithms

are usefully applied to instance spaces that contain narrow disjuncts and/or parts of

disjuncts.

It is useful to experiment with the EDDL algorithms in artificial instance spaces

in order to observe their behaviors resulting from the variance of a domain-dependent



Comparing Instance-Averaging with Instance-Saving Leaiidng Algoiithms 13

variable. Unfortunately, the information gained from these experiments may not apply

to real-world databases. We plan to observe and report on real-world applications of

these algorithms in the future while addressing problems such as noise, incomplete

information, and irrelevant attributes.

»-t

5 Conclusions

We have shown that instance-saving algorithms can learn a large class of reasonable

concepts, namely those with "nice" boundaries. We are unable to produce a similar

statement about instance-averaging algorithms. The growth algorithm, in both our

experiments with and without thresholding, stored about the same number of in

stances ats did the corresponding averaging algorithm. Furthermore, this number is

proportional to the ratio of concept boundary length to concept area. Both techniques

achieved about the same accuracy on random test sets although the instance-averaging

algorithms can yield false positives and false negatives in their concept set (a failing

that instance-saving algorithms do not have). The experiments also showed that our

adaptive thresholding techniques lessen the likelihood of storing misclassiiied instances

but increase the number of instances saved. Superior thresholding algorithms, how-,

ever, may not require significant increases in storage requirements. Finally, we have

not addressed a number of important concerns. In particular, we have not consid

ered weighting the strengths of different attributes, either singulsirly or in concert, nor

discussed noise issues. We hope to address these issues in our future research.

References

Bradshaw, G. (1987). Learning about speech sounds: The NEXUS project. In
Proceedings of the Fourth International Workshop on Machine Learning (pp. 1-
11). Irvine, CA: Morgan Kaufmann.

Connell, M. E., & Utgoff, P. E. (1987). Learning to control a dynamic physical
system. In Proceedings of the Sixth National Conference on Artificial Intelligence

(pp. 456-460), Seattle, WA: Morgan Kaufmann.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. LE.E.E.
Transactions on Information Theory^ 13^ 21-27.



Comp&xing Instance-Aver&ging with Inst&nce-Saring LeariuDg Algorithms

Kibler, D., & Aha, D. W, (1987). Learning representative exemplars of concepts:
An initial case study. In Proceedings of the Fourth International Workshop on
Machine Learning (pp. 24-30). Irvine, CA: Morgan Kaufmann.

Kibler, D., & Aha, D. W. (1988). Instance-based prediction of real-valued attributes.

To appear in ProcccdmjT^ of the Canadian Artificial Intelligence Conference. Ed
monton, Alberta.

Kohonen, T. (1986). Learning vector quantization for pattern recognition (Techni
cal Report TKK-F-A601). Espoo, Finland: Helsinki University of Technology,
Department of Technical Physics.

Kurtzberg, J. M. (1987). Feature analysisfor symbolrecognition by elastic matching.
I.B.M. Journal of Research and Development, SI, 91-95.

Sebestyen, G. S. (1962). Decision-making processes in pattern recognition. New York:
The Macmillan Company.

Stanfill, C., & Waltz, D. (1986). Toward memory-based rezisoning. Communications
of the Association for Computing Machinery, 29, 1213-1228.


