
Comparing Inter-Tool Communicatioin in

Control- Centred Tool Integration Frameworks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jennifer G. Harvey Chris D. Marlin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Department zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Computer Science,
Flinders University of South Australia,

Adelaide, South Australia

email: {jenny, marlin} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ cs.jlinders.edu.au

Abstract

Tool integration frameworks provide the devices needed to
define and refine customised integrated software
engineering environments. The customisation that they
provide relates both to the specific tools populating the
environment and the nature of the interaction between
tools (i.e. the style of integration). A number of such
tool integration frameworks are available, either as the
results of research projects or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas commercial products.
Unfortunately for potential users or purchasers of these
frameworks, it is unclear to what extent the provided
integration devices can adequately describe the integration
required in a particular situation. This paper presents
progress towards an approach to the precise description of
tool integration devices; this approach uses an operational
model based on information structures to formally
describe tool integration devices. The approach is
illustrated by describing selected features of the
integration devices of two control-centred tool integration
frameworks - a research prototype framework, FIELD
/27], and a commercial framework, Hewlett-Packard’s
SoftBench /6]. The paper shows how this approach
facilitates the comparison of the features concemed and
thus informs a discussion on the styles of integration
which can be expressed in the two integration devices.

Keywords: software engineering environments, CASE,
tool integration, tool integration frameworks, control
integration, inter-tool communication, FIELD, SoftBench.

1 . Introduction

Tool integration frameworks offer a reusable facility for
the integration of software engineering tools; typically,
they provide at least a communication mechanism, a data
storage and control facility, and a vehicle for the
construction of consistent user interfaces. In order to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafford
access to these facilities by the tools which populate a
tool integration framework, the framework incorporates
one or more integration devices, usually in the form of a
specially developed programming language or extensions
to an existing language; this language is used to describe
the desired style of tool integration. The nature of the

provided integration devices clearly limits the range of
integration styles which can be expressed in a particular
framework. Furthermore, although much work has been
done defining and characterising both integration and these
integration devices (e.g. [2-5,20]), there is little work
which seeks to assess the expressiveness of the integration
devices provided by tool integration frameworks. This is
surprising, as the amount of support that an integrated
environment can offer to software developers is determined
both by the tool set provided and the manner in which the
tools can cooperate to achieve a software development goal
(i.e. the extent to which thiey are integrated).

Our work represents one approach to assessing and
comparing the expressiveness of integration devices. The
motivation for this work is described in [13], and 1121
presents a layered, information structure model; this model
is based on the work of Wegner [32] and Plotkin [25], and
in the style of Marlin [15-181 and others (e.g. [7,17,18,21-
241). Specifically, the model has been developed to provide
a formal approach to describing the semantics of the inter-
tool communication features (encompassing control
integration, together with some aspects of data integration)
of integration devices. Our approach yields significantly
more precise comparisons of the functionality provided by
various frameworks than ;has been obtained with the less
formal comparative techniques employed in the past (e.g.,
those surveyed in 1111). Furthermore, we illustrate how
this approach facilitates comparisons of the features
provided by the framework and how such a comparison
assists with an assessment of the styles of integration
which can be expressed using the respective devices.

This paper is organised as follows. Section 2 discusses
the focus of our work, ancl briefly outlines the information
structure model. In Sections 3 and 4, we illustrate the
application of the model with descriptions of aspects of
inter-tool communicaticin in a research prototype
framework, FIELD [28], and a commercial framework,
Hewlett-Packard’s SoftBeinch [6]. Section 5 discusses how
the descriptions in Sections 3 and 4 elucidate differences
which are significant to1 the construction and use of
integrated environments. We characterise the different
approaches identified as “tool driven” and “user driven”.

67
0-8186-8019-9/97 $10.00 0 1997 IEEE

The paper closes with some concluding remarks and a
discussion of ongoing work, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Modelling inter-tool communication

2.1. Inter-tool communication

As described above, this paper is concemed with the
integration devices provided in tool integration
frameworks. Specifically, we focus on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontrol-centred tool
integration frameworks, in which there is a separation of
the issues of data management and communication
between tools1. Our focus on control-centred integration
should not be taken as an indication that control-centred
tool integration frameworks are necessarily superior to the
data-centred approach, merely that the modelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequired
for the two approaches is quite distinct and that we have
chosen to study the former for the present.

In the case of control-centred tool integration
frameworks, flexibility is achieved via variations in the
tool set comprising an instantiated framework and through
the ability to vary the modes of interaction between these
tools. With respect to the latter, there will be some means
to express the modes of inter-tool communication; this
integration device is usually a language which may be
highly specific or may be effectively an extension to some
more general-purpose language. In any case, this language
of inter-tool communication has a domain of discourse
relating to services provided or to be provided by tools,
and of data or references to data (since tools will typically
manipulate data of some kind as part of carrying out the
services they provide). Thus, in relation to the five themes
of integration described by Wasserman [31], inter-tool
communication includes not only control integration, but
also some aspects of data integration, such as recording
which data is relevant to the current project.

Thus, the model presented in this section has been
developed to describe the inter-tool communication
facilities provided by integration devices in a range of
control-centred tool integration frameworks. In this
particular paper, we focus on several issues of service
provision. The descriptions presented in Sections 3 and 4
of the paper concentrate on these concerns as selected
features of two frameworks are examined. Readers familiar
with the languages involved may thus notice that
unnecessary details (such as the full syntax of a language
feature) are elided for the purposes of our discussion.

2.2. A motivating example

We introduce an example, which is revisited in
Section 5, to illustrate the sort of information which is of
concern to environment builders and users, tool integration
language designers and integration programmers, and yet
which is not freely available in vendor documentation or
other formal and informal literature.

Suppose a tool, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA, requires that an editor, ToolB,
load some data, say prog.c, ready for editing. ToolA sends
such a request to ToolB. Can ToolA suspend operation
until the request is complied with? Will it be notified of
the outcome of the request? What assumptions can ToolA
make if a reply to the request is not expected? Can it
continue operation independent of any reply?

Suppose that, some time later, ToolA requests the
termination of ToolB. However, unsaved editing changes
have been made to progc, so ToolB asks the user whether
to save the file before terminating. Suppose that the user
cancels the termination request sent from ToolA. Is ToolA
informed of this event? Can ToolA override the user’s
request? If ToolA is not informed of the user’s action,
what assumptions can it make in subsequent operation?

Suppose that ToolA wishes ToolB to suspend
operation while ToolA performs some processing without
disturbance from ToolB. Can it request such suspension
and, later, resumption of processing? Can it request, for
example, that ToolB disable various user options?

The answers to questions such as these provide valuable
insight into the integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstyles used by various tool
integration frameworks. While several current efforts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare
concentrating on characterising the differences between a
number of different tool integration framework
architectures such as realised in CORBA, SoftBench and
Polylith, as in [l], our work is focused on identifying the
differences between implementations of one specific
architecture - the control-centred tool integration
architecture introduced in Section 2.1.

2.3. The layered operational semantic model

The model used to describe the inter-tool
communication facilities is an information structure model
[32]; in such a model, a collection of objects, known
collectively as information structures, are defined to
characterise those aspects of interest in the system under
examination, and the semantics of the relevant aspects of
the system’s operation are described as manipulations on
the information structures. The manipulations are
formulated with primitive operations and other, “higher-
order”, operations defined by the model.

The various components of our model fuse into a
layered model, as illustrated in Figure 1. This figure
shows that the model has five layers; from the lowest to

Information Structures Information Structures

Alternatively, in &-centred integration, both data
management and tool communication are embedded in
the environment repository. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure 1. A layered model of inter-tool

communication.

68

the highest, these are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 the information structures themselves, describing those

aspects of the state of tool integration frameworks
which relate to inter-tool communication,
the communication substrate, covering the delivery zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
receipt of communication messages by tools,
primitive operations, defining elementary information
structure manipulations, such as insertion and deletion
opcrations, and basic communication primitives, such
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreceive,
higher order operations, defining more complex
operations, such as setting up a communication
channel between two tools, and

0 the actual descriptions of integration devices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
senderID

to the messages which can be sent on that channel. The
basic building blocks of thle model, messages and tools,
are represented by informaition structures. The Message
information structure is depicted in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. It conveys
information identifying thie message (messageID), the
sending tool (sender1:D) and the target tool
(recipientID), as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i S the data contents of the
message (messageData), and the mode of the message
(messageMode). The last of these, the message mode,
indicates the message type, and thus determines how the
message is to be interpreted by the recipient; the message
modes supported by the imodel include "Req" (for a
request message), " N o t " (for a notification), and "Repl"
(for a reply).

recipientID messageID messageMode

toolID

In Figure 1, the horizontal lines indicate that each layer
is defined in terms of the layer below. Thus, the
communication substrate layer is defined only in terms of
the information structures defined in the information
structures layer, whereas the primitive operations layer is
defined in terms of both the communication substrate layer
and the information structures layer. Likewise, the
descriptions of the integration devices, forming the
uppermost layer, utilise the higher-order operations and the
primitive operations. While the higher-order operations are
not strictly csscntial, they provide a convcnient method for
eliding various details of processing which are constant
across the tool integration frameworks under consideration,
thus facilitating the comparison of descriptions of
integration features.

By developing a model that consists of several layers, it
is possible to have a single description that caters for the
different information requirements of various groups,
providing clarity while presenting the detail when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequjred;
this notion of a layered model has also been explored by
Oudshoorn and Marlin [21-231 in the context of the

inputMsgs l i s t

A tool publishes its integration signature, that is, a list
of the messages which it is willing to receive (represented
as pattern strings) and a list of messages that it can emit
(represented as strings). Each tool is represented by a
ToolCommunications information structure, depicted in
Figure 3; each such structure consists of the tool's unique
identification (toolID), a list of the patterns published by
the tool (inputMsgs) and the messages emitted by the tool
(outputMsgs). Each entry in the inputMsgs list consists
of:

a pattern, which is a string representing a message of
interest to this tool,
a pattermode, which will be either "Req", "Not", or

Repl I# , and which indicates the required delivery mode
of input message, and
a list called patternl3indings, which records the
identity of various tools from which the messages
represented by the pattern and patternMode of this
particular inputMsgs entry can be received.

Similarly, each entry in the: outputh4sgs list consists of
description of programming languages. For example, tool 0 msg, the content of the message to be sent,
integration framework designers and tool integration 0 a msgMode, which is thle mode of the message to be
language designers can obtain the precise definitions that sent, and
they require, whilst integration programmers and other 0 a list called msgBindings, which records the identity
interested groups can read to the level most convenient to of various tools to which the messages represented by
them. this Darticular outDutMsss entrv can be sent.

Y

It is apparent from the contents of the
ToolCommunications structure that valid communication

The concept of the model is one of tools whch
communicate by sending messages on communication
channels. Each communication channel is typed according

Figure 3. A ToolCommunications information structure.

69

connections between tools can be established by binding
entries in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatternBindings list of the inpuwgs
list in one tool to entries in the outputMsgs lists of other
tools; note that the patternBindings lists and the
msgBindings lists are reciprocal, in the sense that where a
pattern in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA is bound to a message in ToolB, the
same message in ToolB will be bound to the pattern in
ToolA.

Indeed, the contents of these lists can be determined
statically, and this suggests that communication
connections between tools could be determined statically.
However, while the set of output messages remains
constant for the execution lifetime of the tool, the range of
valid input messages for a tool may vary. For example, a
tool may wish to accept a certain message for a short
period of its operation only; this would be modelled by
dynamically altering its inputMsgs list to insert an entry
corresponding to the message or messages which are to be
received for this time period and then removing these
entries later.

A number of primitive and higher-order operations (the
second and third layers in Figure 1) are required to describe
realistic integration devices; because of limited space, only
a brief indication of their usefulness can be presented here.
Primitive operations provide insertion, deletion, update
and search operations, an iterator, a selector and a
matching operation, and basic communication facilities.
Three primitives deserve to be mentioned explicitly:

noAction
indicates that a tool remains idle in terms of inter-
tool communication,

causes all communication bindings to become
inactive except for those listed in bindings (thereby
causing the tool to cease receiving messages from the
inactivate bindings), and

effects a resumption of message processing, which
ceased due to the use of a suspend operation.

An example of a typical statement involving a

suspend operation except for {bindings)

resume operation

primitive operation might be:

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt find ToolCommunications where

{toolID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= thisTool.toolID1;

The syntax of this statement reflects the syntax style
used for most primitives and higher-order operations in the
model, indicating the operation being invoked (find in
this case), the information structure to which the operation
is applied (ToolComunications), and the parameters
being transmitted (in this case, the part where { toolID =
thisTool. toolID)). This particular statement locates the
ToolComunications information structure that has its
toolm attribute equal to the value of the variable
thisTool . toolID, and retums the result in the variable A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A backwards arrow, t, indicates an assignment and may
be used in the primitives’ parameters, as in:

B t create new ToolComunications where
{ toolID t “EDIT” 1 ;

In this case, a new ToolComunications information
structure is created, and its toolm attribute is given the
value “EDITii. A pointer to the new structure is assigned

There is one hgher-order operation used in the

STARTtool where {operation = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoperation);

tO B.

descriptions in this paper,

which causes a tool, currently inactive in the environment,
and which can provide operation, to register its initial
integration interface (and thereby become a contributing
part of the environment); this operation retums TRUE if
successful and FALSE otherwise.

In addition, the model provides two variables,
thisTool and 1astMsg. The former returns the
ToolComunications information structure for the tool
under consideration, and 1astMsg returns the most recent
message that was received by the tool. The variables can
be used to select attributes of the information structures,
as in lastMsg .messageID. The descriptions of integration
devices also make use of temporary variables to store
intermediate values; these are denoted by capital characters,
such as A and D.

2.4. Describing inter-tool communication
language features

As mentioned before, the model presented here is a
layered information structure model. In order to complete
the uppermost layer of Figure 1 (covering the descriptions
of integration devices), it is necessary to provide adequate
descriptions of the transformations of the information
structures caused by the various relevant language features.
This is done by giving an algorithmic description of an
event corresponding to each inter-tool communication
language feature. These events describe the semantics of
communication between tools by setting up integration
interfaces and communication bindings, rearranging
interfaces and bindings, and transferring information to and
from the integration interfaces. Each of the algorithms is
reg& as a set of actions executed in place of the
language feature it describes. The descriptions are Pascal-
like, using features of the language in conjunction with
the model primitives and higher-order operations. More
details may be found in [121.

Integration devices can be regarded as having three
groups of inter-tool communication events. First, there is
a group concerned with integration interface specijkation,
and includes publication of the Notification intelface
(information messages that will be accepted) and the
Request interfuce (services that will be offered to the
environment). The second group, message sending,
incorporates sending of Notification, Request and Reply
messages. The final group is concemed with message
reception, and is comprised of the receipt of Notification,
Request and Reply messages. Hence, we determine the
following communication events:

70

Notification-publication,
Request-publication,
Notification-send,
Request-send,
Reply-send,
Notification-receive,
Request-receive, and
Reply-receive.

The next two sections of the paper describe relevant
features of integration devices provided by each of
SoftBench and Field. Because of limited space, only a
selection of these features can be presented. Those chosen
for the purposes of illustration are the communication
events: (4) Request-send, (5) Reply-send, and (8)
Reply-receive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 . The EDL tool integration language

of SoftBench

3.1. The SoftBench tool integration framework

Hewlett-Packard’s SoftBench tool integration
framework embraced the message-server technology
pioneered by Field to fashion the Broadcast Message
Server (BMS). SoftBench is furnished with several
integration devices with which to describe tool zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
encapsulations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a shell script facility (ciclient), header and
library files for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and C++, and the Encapsulation
Description Language (EDL) [8]. EDL is a C-like
specification language, designed specifically for tool
integration; it is for this reason that the EDL integration
device was selected for examination in this work.

The conceptual model of integration in SoftBench is
one of events and actions. In order to communicate with
the rest of the environment, a tool encapsulation

defines its interface by specifying and publishing the
events in which the tool has an interest, and associates
one or more actions and tool services with each event -
this can be done at any time during the tool’s
execution lifetime, and a published event can be

withdrawn if it is no longer of interest;
communicates with other tools by generating events,
usually after completion of some action by the tool, so
that other tools can both monitor the operation of the
tool and react accordingly.

Events are published as pattern strings and generated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas
messages; a tool will receivle an event only if the generated
message matches one or more of its published pattern
strings. SoftBench supports three message types: Request,
Notification and Failure m.essages. Failure messages are
generated to indicate the lack of success in fulfilling the
requirements of a Request message (successful completion
is indicated with a Notification message). Figure 4,
adapted from [9], illustrates the interaction between the
BMS and an encapsulated tool.

Requlest, Notification

messqes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx;3

Event
Pub I cat i tn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. The BMS architecture of Hewlett-
Packard’s SoftBench.

SoftBench supports a tool class concept, which
determines the minimum set of messages that should form
a tool’s integration interface. Accordingly, the BMS
maintains a database of tool classes, a list of known tools
in each class, and information about each tool’s location
and invocation details. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 ID = make-message-id() ;

NP = make-messagepattem(Notify, ID, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatternN) ;

NE = make-event (MESSAGE, NP, cal lbackfunctW ;
add-event (NE) ;

FP = make-message-pattern(Failure, ID, PatternF) ;

FE = make-event(MESSAGE, FP, callbackfunctnF);

add-event (FE) ;
/ * send the request message * /
send-message (Request, requestedService, ID) ;

Figure 5. Defining and publishing reply events in EDL.

71

3.2. The description of features of the EDL tool
integration language zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Section 2.4 described three groups of communication
events, and selected (4) Request-send, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) Reply-send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
(8) Reply-receive for elaboration in our descriptions of
integration devices. In the language features of EDL, the
Request-send and Reply-send communication events relate
to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend-message statement. The Reply-receive event
does not occur as the result of a specific language feature,
but as part of the event processing loop of EDL.

Request-send

Consider the statement

send-message (Request, requestedservice, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;

where Request is the message type, requestedsemice
and ID represent fields or collections of fields to be
completed by the user, and where ID is an optional field.
For Request messages, it is assumed that the integration
programmer will define and publish events, as described in
Section 3.1, which will recognise specific replies from the
recipients of the Request message which are of interest to
this tool. To denote an event as a reply to a specific
request, an identifier is produced for the message and
included in each reply event. Figure 5 illustrates this. In
this example, italicised items represent fields or
collections of fields for which the programmer substitutes
values. Line 1 generates a string which is used to identify

Request-send 4

1

2

3

4

5

6

7

8

9
10
11

12

13
14
15
16

17

18

19
20

both the message and events. A Notification event is
defined (lines 2 and 3) and published (line 4), and a Failure
event is also defined and published (lines 5 - 7). Both of
these events will trap replies to the request message, sent
in line 9. Control is returned to the encapsulation
immediately after the Request message is sent.

Figure 6 shows the algorithmic description of the
Request-send event, which is the communications event
corresponding to this language feature. The description
consists of three phases. Phase 1 establishes the set of
communication bindings that are associated with the
Request message by locating the entry in the tool's
outputMsgs list that matches both the message mode and
the contents of the requestedservice field; this occms
in lines 1 to 3. If there are no communication bindings
associated with the output message, an attempt is made to
locate and invoke a tool which can process the request
(line 5). Recall that this is possible because SoftBench
maintains a database of tool classes. If an appropriate tool
is invoked, and therefore has published its integration
signature, the set of communication bindings is again
determined (lines 6 through 8). If the set is empty (i.e. no
tool willing to accept the request message was found),
phase 2 returns "Fail" as a reply to the encapsulation.
Phase 3 occurs when a list of communication bindings
exists. Here, the message is generated and sent to each tool
bound to this output message. Note that the identification
used for the message, ZD, is generated separately by the
user (as in Figure 5, line 1).

B t find item in thisTool.outputMsgs where { / * phase 1 * /

msg = requestedService,

msgMode = "Req" };

- if B.msgBindings = NULJ., then
if START tool where {oDeration = requestedservice} then

B t find item in thisToo1.outputMsgs where {

msg = requestedservice,

msgMode = "Req" I ;
end if;

end if;

- if B.msgBindings = NULL then
theReply t "Fail" ;

-- for all A & B.msgBindings &
send messaae to A.toolID where {

messageID t ID,

senderID t thisTool.toolID,

messageMode t "Req" 1 ;
-- end for a;

-- end if. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. The Request-send event in EDL.

/* phase 2 * /

/ * phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 * /

72

Reply-send event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 either
2

3

4 send messaae to 1astMsg.senderID where (zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7

8

9 I noAction].

[either [A t “Success”;

I A t “Fail” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ;

messageID t lastMsg.messageID,

messageMode t “Repl“ ,
messageData t A,

senderID t thisTool.too1ID } ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. The Request-receive event in EDL,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Reply-send

The Reply-send event also relates to the
send-message command. The formats used for Reply
messages are:

send-message (Notify, “Success“, requestID) ;
send-message (Failure, requestID) ;

The first format indicates a successful completion of
the requested service, and the second represents a failure to
provide the service. As noted before, there is no obligation
for an encapsulation to reply, to limit the number of
replies sent, or to define and publish events to recognise
possible replies.

The algorithmic description in Figure 7 describes the
Reply-send communication event in EDL. A Reply
message in the model will indicate either “Success” or
“Fail” (lines 2 and 3), and includes the messageID field of
the associated Request message (line 5).

Reply-receive

The Reply-receive event is defined by the algorithmic
description in Figure 8, which describes the effect of the
receipt of a Reply message - there is no associated inter-
tool communication operation. Note that the events
defined and published previously in order to recognise this
and other replies to the Request message will be removed
from the integration interface of the tool only if the
integration programmer specifies such removal.

3.3. Discussion

From the previous two subsections, we have seen that
the request-reply sequence in SoftBench’s EDL consists of
the following steps:

A tool, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA, defines and publishes zero or
more events which will recognise incoming Reply
messages of interest associated with the Request
message to be sent (Figure 5).
ToolA composes and sends the Request message
(Figures 5 and 6) .
If no tools exist which can service the request, a
“Fail” reply is returned (Figure 6) .

(4) If one or more tools can service the request, they
might not return a Reply message, or will reply
indicating “Success“ or “Fail” (Figure 7).
If a reply has been sent, it will be received by ToolA
if it defined and published an event to recognise this
reply (Figure 8). ToolA might remove this event
and/or other reply events, or it might leave some or
all of these events in place.

The last step is demonstrated more clearly in the finite
state machine in Figure 9. In this figure, transitions are
depicted as arrows, transition events are placed above the
transition, and actions takein upon a transition are in bold,
and located below the transition. Transition guards are
placed in square brackets at a transition source. Variables
and semantic structures are used in the diagram, and these
are indicated in italics. The diagram extends the description
of the Request-send and Reply-receive event descriptions
by demonstrating the interleaved operation of the
encapsulation. For EDL, it also elucidates the importance
of the additional pre- and post-event processing required to
make the Request-send event meaningful and to
distinguish the effect of a tlool sending a Request message
from that of sending a Notification message.

The transition from the start state, Send request, to the
state Process replies is caused by a Request-send event -
at this time, the identifier of the Request message and the
events published by the tool to recognise replies to this
message, rEvents, are recorded. The first part of the figure
illustrates particularly well the difficulties that arise from
the flexibility provided by the Request-send and
Reply-receive language features of EDL. Here there is no
transition from Process replies to Send request - given the
right conditions a tool may remain in this state
indefinitely, continuing to receive replies for any previous
Request-send communication event. Naturally, this is not
the intention behind these language features. EDL requires
that they be used in conjunction with the features used
normally to establish and remove an integration interface

(5)

Reply-receive event -3

theReply t 1astMsg.messageData.

Figure 8. The Reply-receive event in EDL.

73

Request-send event:
send AsyncRequest[id] i:
Vi E msgBindings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinterfacer id] t o

Process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn replies

add id to idList
set interface[id] to rEvents

llremove interfacerid]
remove id from idListll

add id to idList
set interfacerid] to rEvents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. Finite state machine representing the Request-send and Reply-receive events
for EDL.

(as in steps (1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) above, and demonstrated in
Figure 5).

The second part of Figure 9 includes the usual pre- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
post-processing specified by an integration programmer. In
this case, as each reply is received, the reply events might
be deleted from the intelface list and the identifier removed
from the list of message identifiers - the optional nature
of the actions is indicated by enclosing them in vertical
bars. Additionally, the start state will again be achieved if
there are no Request-send events remaining for which
Reply-receive events can occur.

The situation of a Request-send event where no reply
events have been defined (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArEvents is empty) is
illustrated clearly in the second part of the figure. In such a
case, the intequce list will be devoid of content, and the
tool will return immediately to the start state. Such a

scenario mirrors the Notification-send communication
event, which is event (3) in the list given in Section 2.4
and whose description has been omitted here for the sake
of brevity.

4 . A description of inter-tool
communication in Field’s MPI

4.1 The Field tool integration framework

Field (the Friendly Integrated Environment for Learning
and Development) [26-291 is a research prototype tool
integration framework that first demonstrated that practical
integrated tool sets are possible, using a message passing
framework. The ideas exhibited by Field form the basis for
many of the current generation of tool integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

74

Messag PatternPublicatbn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. The MSG architecture of Field,

showing the MPI and PSI integration
devices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

frameworks and software engineering environments, such
as DEC’s FUSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[19], Sun’s SPARCworks, SGI’s
Codevision and Hewlett-Packard’s SoftBench (described in
Section 3).

The conceptual model used by Field is that of control
via messages. Tools communicate by sending zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
receiving messages; the routing of messages is the
responsibility of a central message server (MSG) which
records details of operational tools and their interfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas
sets of message patterns. Tools register with the MSG
upon invocation, and, at the same time, indicate with
message patterns the set of messages that they have an
interest in receiving. In this way, tools publicise their
integration interface. The set of message patterns may
change during the execution lifetime of the tool - a tool is
free to deregister current message patterns and to register
new message patterns. When a tool receives a message
which matches one of its currently registered message
patterns, an associated function is invoked. Field supports
three message types: Notification messages, Request
messages and Reply messages.

Rather than providing a specific integration language,
Field provides two complementary facilities for describing
required integrations - the MSG Program Interface (MPI),
and the Policy Server Interface (PSI). The MPI is a
message client library, providing entries needed to send and
receive messages. The PSI derives from the Forest

environment [10,14,30], ,and supports the MPI by
providing the ability to tr,anslate messages before they
reach the message server and by ensuring priority
processing of designated messages. A PSI is described
using a Policy Language based on that provided by the
Forest system which defines the actions to be taken on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
messuge-tool-user triplets; this allows for different actions
to be defined for various tool-user group combinations.
The MPI, rather than the PSI, will be the focus of the
descriptions in this paper. Figure 10, adapted from [26],
illustrates the message server architecture and the MPI and
PSI devices.

4.2. The description of aspects of the Field tool
integration language

Extensions to the basic model

The description of the lVlPI language features uses a
special list - an additional attribute, replyData list,
attached to the ToolComunications information
structure. This is shown in Figure 11. There will be one
entry in this list for each Request message emitted by the
tool for which a reply remains outstanding. It will contain
two fields. The first, rID, records the identifier associated
with the Request and Reply messages. The next, rcount,
keeps a record of the number of outstanding Reply
messages, and is initialised to zero.

Request-send

The Request-send event in MPI is divided into two
sub-events, which we will call Sync-Request-send and
Async-Request-send. The MPI function

MSGcall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(REGID, requsstedservice) ;

relates to the Sync-Request-send event, and suspends
operation until a reply is received. The function

MSGcallback (MSGID, c:allbackRmctn,
requestedService) ;

is the language feature related to the Async-Request-send,
and returns control immediately to the tool - thus, it
specifies a function to be called upon receipt of a reply by
the tool’s encapsulation. Figure 12 shows the algorithmic
description of the Request-send communications event
corresponding to these functions. It comprises three
phases. Phase 1 is comparable to the phase 1 of Figure 6
(the Request-send description of EDL); however, it is
apparent at lines 2 and 6 tlhat the criteria for locating the
corresponding output message is less restrictive than that

..
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2tternBinding.s i . . i msgsindings f

i pacternMode i i msgMode f rCount i .. < ... : :

list l ist ,’....... < > .. :
.

. . . . msg ! : pat tern

inputMsgs list
...

Figure 11. The extended ToolCommunications information structure.

75

Request-send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3

4
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6

7
8
9

10

11

12

13
14

15
16

17

18

19
20
21
22

required by EDL. Note that if the set of communication
bindings for the Request message remains empty at the
end of phase 1, no further action is taken.

Phase 2 proceeds if communication bindings exist.
Firstly, in line 10, a message identifier is produced for use
in the Request message and all subsequent replies that are
received from the recipients of the request. At lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 and
12, a new entry is inserted into the replyData list of this
tool's ToolCommunications information structure. Then,
the count of Reply messages expected is incremented for
each communication binding (lines 13 and 14), before the
Request message is sent (lines 15 through 18). Phase 3,
on lines 20 and 21, will only occur for the
S ync-Request-send event.

Reply-send

Reply-send communication event is
The language feature of MPI which corresponds to the

/* phase 2 * /

A t find item in thisTool.outputMsgs where { / * phase 1 * /

msg = requestedservice };

- if A.msgBindings = NULL then
if START tool where loweration = requestedService} then

A t find item in thisTool.outputMsgs where {

msg = requestedService 1;
end if:

end if;

- if A.msgBindings # NULL then
MSGID t provide-msgID;

B t insert item in thisTool.replyData where {

rID t MSGID 1;
-- for all C A.msgBindings &

B.rCount t B.rCount + 1;
- send messaue C.toolID where {

messageID t MSGID,

senderID t thisTool.toolID,

messageme t "Req" 1 ;
end for all;
/ * for the Sync-Request-send event */ / * phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 * /
suswend oweration excewt for {A.msgBindings};

_ _ _ end if. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. The Request-send event in MPI.

Reply-send event +
1

2

3

4

5

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

MSGreply (MSGID, replyDa ta) ;

The algorithmic description of this feature is shown in
Figure 13. The description is similar to that of EDL, but
lacks the option to refrain from sending a reply.

Reply-receive

The receipt of a Reply (or Notification or Request)
message occurs as part of the event loop of MPI. Again
we define two sub-events - a Sync-Reply-receive event
that occurs in response to a Sync-Request-send event, and
an Async-Reply-receive event that occurs in response to
an Async-Request-send event. The algorithmic description
of these in Figure 14 comprises three phases. The first
locates the replyData entry for the incoming reply. The
reply is ignored if no matching entry is found (line 3) .
Phases 2 and 3 expose the stricter control of the
Reply-receive communication

[either [A t "Success";

I A t "Fail" I ;
send messaue to 1astMsg.senderID where {

messageID t lastMsg.messageID,

messageme t "Repl" ,
messageData t A,

senderID t thisTool.toolID 1 .

event that Field preserves.

Figure 13. The Request-receive event in MPI.

76

/ * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 * /

/ * phase 2 * /

Reply-receive event -+
A t find item in thisTool.replyData where {

if A not NULL then
rID = 1astMsg.messageID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;

- if 1astMsg.messageData = "Fail" then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2

4

5

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

8 __-- remove item from thisTool . replyData where {A} ;
9 resume -; / * for a Sync-Reply-receive * /
10

11

12

1 3

14 resume oDeration; / * for a Sync-Reply-receive * /
15

l6 _.- end if.

A.rCount t A.rCount - 1;

- if A.rCount = 0 then
theReply t "Fail" ;

end if;

else i f 1astMsg.messageData = "Success" then / * phase 3 * / --
theReply = "Success" ;

~ - - remove item from thisTool . replyData where {A) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
end if; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14. The Reply-receive event in Field's MPI.

The last "Fail" reply (phase 2) or the first "Success" reply
(phase 3) is returned to the tool encapsulation as the
unique reply to be processed. In phase 2, "Fail" messages
cause the count of Reply messages received to be
decremented (line 5) and checked to determine whether the
current reply is the last expected (line 6). If so, this is set
as the unique reply message (line 7), and all other
communication channels are reopened for a
Sync-Reply-receive event (line 9).

In phase 3, the first "Success" message is designated as
the reply, and all other communication channels are
reopened for a synchronous Request-send event. Note that
in phase 2 and phase 3, the entry in replyData for this
message is removed (lines 8 and 13); therefore, once a
reply has been specified, further Reply messages bearing
the same identifier will be ignored.

4.2.3. Discussion

Field supports both synchronous and asynchronous
Request messaging (Figure 12), and guarantees that there
will be only one reply processed for each request (Figure
14). The Sync-Request-send event causes an
encapsulation to

cease the generation of further Request-send events, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and
delay Reply-receive events which match any other
previous Async-Request-send events

until the appropriate Reply-receive event for this message
has occurred. An encapsulation continues to operate in a
normal manner, receiving and sending messages, after an
Async-Request-send event. Figure 15, representing the
Request-send and Reply-receive events using finite state
machines, clearly demonstrates these differences.

The left-hand side of the diagram illustrates the
Synchronous Request-Reply sequence. From the start
state, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASend request, a Sync-Request-send event causes a

transition to the Gather replies (Sync) state. From here,
the only option is to retiurn to the start state, via the
Process reply state, after one of the designated replies is
received.

The right-hand side depicts the asynchronous Request-
Reply sequence. Here, the Gather replies (Async) state
demonstrates clearly that a tool can generate further
Request-send events of either type (by remaining in this
state or transitioning to the Gather replies (Sync) state).
Furthermore, after a Reply.-receive event from either of the
Gather replies states has caused a transition to Process
reply, the system returns to Gather replies (Async) if
Async-Request-send events remain for which replies are
outstanding (indicated by the contents of the variable
idlist).

5 . Comparison of the language
features

The layered model for inter-tool communication has
been used to present clear and precise descriptions of inter-
tool communication events in tool integration frame-
works. The precision engendered by the model exposes the
differences in the semantics of the relevant aspects of the
tool integration frameworks under scrutiny. Most often,
these differences are not (discernible from the framework
documentation provided by the vendor, nor from other
literature. In other cases, descriptions of the language
features in the documentation are ambiguous, or
descriptions of the frameworks and the integration
languages are contradictory. In both cases, the model
serves to clarify the semantics. Finally, where the
semantics of a language feature or group of language
features are known, the impact in terms of the integration
style that can be achieved because of those semantics is
frequently not apparent. ,4gain, the model indicates the
style or styles of integration supported by a framework.

77

[rCount= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI]
Reply-receive event:
receive Fail Reply[id [not empty(idList)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c

[empty(idList)]

Rep1 y-r ece ive event: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

subtract 1 from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArCount subtract 1 from rCount[id] add id to idList
set rCount[id] to#msgs sent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 15. Finite State Machine representing the Request-send and Reply-receive events
in Field’s MPI.

The previous sections have demonstrated this clarity
with descriptions of the Request-Reply component of
inter-tool communication in two tool integration
frameworks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- SoftBench and Field. The language features
described will now be compared. Some aspects of the
comparison are relatively obvious from the informal
descriptions of the language, but others are more subtle
and only revealed by a detailed examination such as this.

Both languages permit some degree of dynamic
determination of their integration interface and hence the
set of tools from which they will accept messages and to
which they will send messages. Both tools base this on
declared message patterns. In the case of EDL, the
matching that occurs between a tool’s output message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
another tool’s input pattern will include the message mode
(either Request, Notification or Failure). Field has less
restrictive matching requirements which ignore the

messagemode and thus allows one pattern to be used for
Request and Notification messages.

It is clear from their informal descriptions that Field
supports synchronous Request messages with a language
feature, and that SoftBench does not support it in this
way. It is claimed in the informal literature that
synchronous behaviour (that is, delaying the processing of
messages until a reply is received) is programmable in
EDL. What is not clear, however, is how this can be
achieved, nor, indeed, the design decision which lead to
only asynchronous messaging being provided. We will
address the first issue here and the second will be addressed
later in this section.

Consider Figure 9, which depicts the Request-reply
sequence of EDL. Three steps are necessary to emulate the
semantics of a synchronous request (that is, to delay
processing of incoming messages). The first step is to
remove the contents of the array interSam so that no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

78

further Reply-receive events can occur. This will ensure
that the encapsulation is in the start state. Secondly, the
Request-send event transition from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProcess replies
state must be disabled so that when the transition from the
start state to this state occurs, no further Request-send
events can be generated. Finally, the desired Request-send
event occurs; this places the encapsulation in the Process
replies state, where the only replies that can be accepted
are those which have been specified for this event. Once
the required number of Reply-receive events have occurred,
the disabled Request-send transition is re-enabled. The
encapsulation can remain in this state, or return to the
start state if the interface entry for the initial Request-send
event is removed. Although it is true that it would have
been possible to work out what is involved in emulating a
synchronous request in EDL, our modelling technique has
made the complexities of doing so particularly apparent.

The descriptions of the Request and Reply
communication events highlights differences in the
flexibility of the Request-reply process. Field is quite rigid
in its approach, allowing the programmer no option zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- for
every Request message, exactly one Reply message will
be received. SoftBench, however, exhibits more
versatility, providing the integration programmer with
many options which include the following extremes:

a tool does not define any reply events; it requires
some service to be provided, but is not interested in the
result,
a tool defines arbitrarily many reply events to capture
some specific Notification and Failure replies (and
perhaps ignores other possible replies),
a tool refrains from replying to a Request message,
a tool replies many times to a Request message,
a tool receives one reply to a Request message, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
then removes all defined reply events for that request,
and
a tool never removes the defined reply events.

As an example of the implication of this versatility,
consider the following implementation of the scenario
introduced in Section 2.2:

ToolA sends a Request message "START EDIT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
prog . c'", which is received by ToolB.
ToolB loads prog.c, and replies "EDIT SUCCESS" to
ToolA. The file, progc, is now available for editing
(either by a user, or via Request messages from a tool).
ToolA, some time later, sends a Request message
"STOP EDIT prog. c", which is received by ToolB.
Tool A has possibly defined and published events S
and F to recognise Reply messages associated with this
Request message.
As unsaved editing changes have been made to prog.c,
ToolB asks the user whether to save the file before
unloading it. The user responds by telling ToolB to
cancel the STOP request. No Reply messages are sent to
ToolA.

This is an illustrative message only, and does not
reflect the format of a SoftBench message. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 ToolA continues operation, and does not remove
events S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF from its published interface.

This scenario would a.ppear to indicate that the
communication between (at least) two tools cooperating to
support the editing of source code is insufficient, as ToolA
is not informed of the outcoime of the STOP request. What
it demonstrates, however, is the "user-driven'' integration
style employed by SoftBench, where tools make few
assumptions about the fine-grained processes employed by
users engaged in software development. The user-driven
model of SoftBench expects the user to initiate inter-tool
communication by announcing the next required action.
To accommodate this interaction style, SoftBench tools
incorporate an extensive menu system with which the user
can invoke tools and through which the user can interact
with other tools. In addition, an Execution Manager tool
is provided via which any tool can be invoked or
terminated by the user.

We characterise the model of tool interaction employed
by Field as "tool-driven". It is assumed in this integration
style that the tools are semi or fully autonomous, and
that, although the user is in control of the general
behaviour of the environment, the tool interaction makes
assumptions about the support that the user requires and
therefore tools can react autonomously and work in
concert. As the tools, then, are instigating certain actions,
the initiators of such actions necessarily need to be
informed of the result, in order to determine their next
courses of action.

The decision of the designers of SoftBench's EDL
language to omit a synchronous messaging facility can be
understood in the light of the user-driven integration style.
In such a style, most operations performed by the
environment are initiated by and visible to the user. When
something unintended occwrs, as in the case of the scenario
above, either the user caused that occurrence, or the user is
aware of the problem and can therefore react to it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 . Summary, concllusions and future

work

An approach to the precise description of tool
integration devices in tool integration frameworks has
been described. Th~s approach employs a layered model to
describe these devices in a way which can cater to the
differing information needs of a range of people who may
have an interest in the semantics of the features provided
by a tool integration framework for describing styles of
inter-tool communication and who may wish to gain an
appreciation for the various styles of such interaction
which may be supported conveniently by a particular
framework. The model has been illustrated by presenting
representative aspects of the descriptions of inter-tool
communication in two frameworks: SoftBench and Field.
The tool integration devices of the two frameworks were
then compared, at least insofar as this could be illustrated
using those aspects presented in the separate descriptions.

The model presented in this paper allows the precise
description of the tool integration devices provided by tool

79

integration frameworks, and facilitates a kind of
comparison of these devices which has not otherwise been
possible to date. Although some aspects of the
comparison may well have been clear to the assiduous
from the user manuals and other documentation provided
to potential users of the systems, the descriptions in terms
of our model make possible a range of precise statements
about the similarities and differences between the systems.

Plans for future work fall into three broad areas:

Our immediate plans include the description of one
more commercial framework: DEC's FUSE [19].
This is expected to yield some points of divergence
from the two control-centred frameworks already
described and should also give access to another
community of users for the future work in (2) below.
As much as one can judge from the literature
available, it appears that the design of the integration
devices provided in tool integration frameworks has
not been influenced by an explicit analysis of what
users of these devices (i.e., those carrying out the
process of customising the framework to the needs of
a particular organisation or project) want to do with
them and how they would prefer to express the
desired styles of integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABased on experience in
using comparative models of semantics in the design
of programming languages [IS], we propose to use
the model described in this paper as the basis for the
design of tool integration devices which allow the
convenient expression of the styles of integration
which are required in practice. This work will proceed
by analysing which features of existing tool
integration devices are actually used and how they are
employed (whether, for example, they are fi-equently
used to emulate some semantic pattern or protocol
which is not provided by the tool integration
framework as a primitive). These findings can then
be related back to the semantic descriptions of
existing devices, and new devices designed and
described in terms of the model.
Finally, we plan to be able to generate the inter-tool
communication aspects of tool integration
frameworks from the semantic descriptions written in
terms of our model, in an analogous manner to that
used for generating programming language
implementations from similar descriptions [22,23].
This would, for example, enable the generation of an
implementation of some proposed new set of devices
designed as a result of the process described in (2) to
be tested in practice, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand then further refined.

engineering research program involving the Department of
Computer Science at Flinders University and the CSIRO-
Macquarie University Joint Research Centre for Advanced
Systems Engineering; funding for this work from the
CSIRO Institute of Information Science and Engineering
is gratefully acknowledged.

We particularly thank our colleagues in the Software
Engineering Environments group at Flinders University,
especially Bradley Schmerl, Michael Read and Michael
McCarthy; they have offered useful advice and their
discussions helped in the development of the paper.
Thanks are due also to the anonymous referees for their
comments.

Bibliography

D.J. Barrett, L.A. Clarke, P.L. Tan: and A. Wise. A
framework for event-based software integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACM Transactions on Software Engineering and
Methodology, Vol. 5, No. 4, 1996, pp. 378-421.
A. Brown and P. Feiler. An analysis technique for
examining integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin a project support
environment. Technical Report No. CMU/SEI-92-
TR-35, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 1992.
A. Brown, P.H. Feiler and K.C. Wallnau.
Understanding integration in a sofhvare development
environment. Technical Report No. CMU/SEI-91-
TR-3 1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 1992.
A. Brown and M. Penedo. "Integration" Working
Group summary: SETA2. ACM Ada Letters, Vol.

A.W. Brown. An examination of the current state of
IPSE technology. in Proc. 15th Int. Con. Sofnyare
Engineering, Baltimore, Maryland, 1993, pp. 338-
347.
M. Cagan. HP SoftBench: An architecture for a new
generation of software tools. Hewlett-Packard
Journal, Vol. 41, No. 3, 1990, pp. 36-47.
D.H. Freidel. Modelling communication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi
synchronisation in parallel programming languages,
Dept. Computer Science, University of Iowa, Iowa
City, Iowa, Ph.D. Thesis, Technical Report No. 84-
01, 1984.
B. Fromme. HP Encapsulator: bridging the
generation gap. Hewlett-Packard Journal, Vol. 41,

B. Fromme and J. Walker. An open architecture for
tool and process integration. in Proc. Int. Con$ on
Software Engineering Environments. Reading. U.K..

XIV, 1994, pp. 85-92.

NO. 3, 1989, pp. 59-68.

Acknowledgments 1993, IEEE Eomputgr Society Press, Los Aiamitos;

The work described in this paper has been supported
from a number of sources. These include Hinders
University of South Australia, and the University of
South Australia. Preliminary work on the development of
the model of inter-tool communication was supported by
the Centre de Recherche en Informatique de Nancy (CRIN),
France. This work forms part of a collaborative software

California, pp. 56-62.
[lo] D. Garlan and E. Ilias. Low-cost adaptable tool

integration policies for integrated environments. in
ACM SIGSOFTPO: Fourth Symposium on
Software Development Environments, Irvine,
California., ACM SIGSOFT Software Engineering
Notes, 15,6, Dec., 1990, pp.1-10.

80

[zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 J.G. Harvey. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASofnYare Engineering Environments:
classifications and models. Technical Report No.
CS-93-002, School of Computer and Information
Science, University of South Australia, Adelaide,
South Australia, 1993.

[121 J.G. Harvey and C.D. Marlin. Describing Inter-Tool
Communication in Tool Integration Frameworks.
Technical Report No. CS-95-012, School of
Computer and Information Science, University of
South Australia, Adelaide, South Australia, 1995.
(also Dept. Computer Science, Flinders University of
South Australia, Technical Report No. 96-01 .)

[13] J.G. Harvey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand C.D. Marlin. Towards a formal
description of tool integration frameworks.
Australian Computer Science Communications, Vol.

(141 E. Ilias. Policies for tool integration in integrated
programming environments, Oregon Graduate
Institute of Science and Technology, Oregon,
Masters Thesis, Technical Report No. CR-90-04,
1990.

[15] C.D. Marlin. Coroutines: A Programming
Methodology, a Language Design and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm
Implementation. Lecture Notes in Computer Science
95, Springer-Verlag, 1980.

[16] C.D. Marlin. A methodical approach to the design of
programming languages. Technical Report No. 83-
05, Dept. Computer Science, University of Iowa,
Iowa City, Iowa, 1983.

[17] C.D. Marlin and D.H. Freidel. A model for
communication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin programming languages with
buffered message passing. Technical Report No. 83-
09, University of Iowa, Iowa City, Iowa, 1983.

[l8] C.D. Marlin and D.H. Freidel. Comparing
communication in two languages employing buffered
message-passing. Joumul of Systems and Soware,

[19] K. Michaels. Defining an architecture for control
integration. in SEE'93: Proc. 6th Con$ Soware
Engineering Environments, Reading, U.K., 1993,
IEEE Computer Society Press, Los Alamitos,
California, pp. 63-7 1.

[20] B. Nejmeh. Characteristics of Integrable Somare
Tools. Technical Report No. INTEG-SN-TOOLS-
89036-N, Version 1 .O, Software Productivity
Consortium, Herndon, Virginia, 1989.

[21] M.J. Oudshoorn. ATLANTIS: A tool for language
definition and interpreter synthesis, Dept. Computer
Science, University of Adelaide, Adelaide, South

17, NO. 1, 1995, pp. 199-207.

Vol. 12, NO. 2, 1990, pp. 87-105.

Australia, Ph.D. Thesis, Technical Report No. TR

[22] M.J. Oudshoorn arid C.D. Marlin. Language
definition and implementation. Australian Computer
Science Communications, Vol. 11, No. 1, 1989,

[23] M.J. Oudshoorn and C.D. Marlin. Interpretive
language implementation from a layered operational
model. in Proc. 5th Intemutional Conference on
Computing and In.ormation, Sudbury, Ontario,
Canada, 1993.

[24] M.J. Oudshoorn, K.J. Ransom and C.D. Marlin.
Generating an implementation of a parallel
programming language from a formal semantic
definition. Australian Computer Science
Communications, Vol. 14, 1992, pp. 641-654.

[25] G.D. Plotkin. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA structural approach to operational
semantics. Technical Report No. 085/091,
Computer Science Department, Aarhus University,
Aarhus, Denmark, 1913 1.

[26] S. Reiss. FIELD: A Friendly Integrated Environment
for Leaming and Development. Kluwer Acadcmic
Press, 1994.

[27] S.P. Reiss. Integration mechanisms in the Field
environment. Technical Report No. CS-88-18,
Computer Science Department, Brown University,
Providence, Rhode Island, 1988.

[28] S.P. Reiss. Connecting tools using message passing
in the Field environiment. IEEE Sofnyare, Vol. 7 ,

[29] S.P. Reiss. Interacting with the Field environment.
Sojiware - Practice and Experience, Vol. 20, No. S 1,

[30] K.J. Sullivan and D. Notkin. Reconciling
environment integration and component
independence. in A CM SIGSOFTPO: Fourth
Symposium on SofnYare Development
Environments, Irvirie, California., 1990, ACM
SIGSOFT Software Engineering Notes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15, 6, pp.

[31] A.I. Wasserman. Tool integration in Software
Engineering Environments. in Proc. Sojlwure
Engineering Environments: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn Int. Workshop on
Environments, Chinon, France, 1989, Springer-
Verlag, pp. 138-149.

[32] P. Wegner. Data structure models for programming
languages. in Proc. Symposium on Data Structures
in Programming Languages, 1971, ACM SIGPLAN
Notices, 6,2, Feb., 1971, pp. 1-54.

92-04, 1992.

pp. 26-36.

NO. 4, 1990, pp. 57-66.

1990, pp. 89-115.

22-23, pp. 22-33.

81

