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Abstract 

Tool integration frameworks provide the devices needed to 
define and refine customised integrated software 
engineering environments. The customisation that they 
provide relates both to the specific tools populating the 
environment and the nature of the interaction between 
tools (i.e. the style of integration). A number of such 
tool integration frameworks are available, either as the 
results of research projects or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas commercial products. 
Unfortunately for potential users or purchasers of these 
frameworks, it is unclear to what extent the provided 
integration devices can adequately describe the integration 
required in a particular situation. This paper presents 
progress towards an approach to the precise description of 
tool integration devices; this approach uses an operational 
model based on information structures to formally 
describe tool integration devices. The approach is 
illustrated by describing selected features of the 
integration devices of two control-centred tool integration 
frameworks - a research prototype framework, FIELD 
/27], and a commercial framework, Hewlett-Packard’s 
SoftBench /6]. The paper shows how this approach 
facilitates the comparison of the features concemed and 
thus informs a discussion on the styles of integration 
which can be expressed in the two integration devices. 

Keywords: software engineering environments, CASE, 
tool integration, tool integration frameworks, control 
integration, inter-tool communication, FIELD, SoftBench. 

1 .  Introduction 

Tool integration frameworks offer a reusable facility for 
the integration of software engineering tools; typically, 
they provide at least a communication mechanism, a data 
storage and control facility, and a vehicle for the 
construction of consistent user interfaces. In order to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafford 
access to these facilities by the tools which populate a 
tool integration framework, the framework incorporates 
one or more integration devices, usually in the form of a 
specially developed programming language or extensions 
to an existing language; this language is used to describe 
the desired style of tool integration. The nature of the 

provided integration devices clearly limits the range of 
integration styles which can be expressed in a particular 
framework. Furthermore, although much work has been 
done defining and characterising both integration and these 
integration devices (e.g. [2-5,20]), there is little work 
which seeks to assess the expressiveness of the integration 
devices provided by tool integration frameworks. This is 
surprising, as the amount of support that an integrated 
environment can offer to software developers is determined 
both by the tool set provided and the manner in which the 
tools can cooperate to achieve a software development goal 
(i.e. the extent to which thiey are integrated). 

Our work represents one approach to assessing and 
comparing the expressiveness of integration devices. The 
motivation for this work is described in [13], and 1121 
presents a layered, information structure model; this model 
is based on the work of Wegner [32] and Plotkin [25], and 
in the style of Marlin [15-181 and others (e.g. [7,17,18,21- 
241). Specifically, the model has been developed to provide 
a formal approach to describing the semantics of the inter- 
tool communication features (encompassing control 
integration, together with some aspects of data integration) 
of integration devices. Our approach yields significantly 
more precise comparisons of the functionality provided by 
various frameworks than ;has been obtained with the less 
formal comparative techniques employed in the past (e.g., 
those surveyed in 1111). Furthermore, we illustrate how 
this approach facilitates comparisons of the features 
provided by the framework and how such a comparison 
assists with an assessment of the styles of integration 
which can be expressed using the respective devices. 

This paper is organised as follows. Section 2 discusses 
the focus of our work, ancl briefly outlines the information 
structure model. In Sections 3 and 4, we illustrate the 
application of the model with descriptions of aspects of 
inter-tool communicaticin in a research prototype 
framework, FIELD [28], and a commercial framework, 
Hewlett-Packard’s SoftBeinch [6]. Section 5 discusses how 
the descriptions in Sections 3 and 4 elucidate differences 
which are significant to1 the construction and use of 
integrated environments. We characterise the different 
approaches identified as “tool driven” and “user driven”. 
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The paper closes with some concluding remarks and a 
discussion of ongoing work, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Modelling inter-tool communication 

2.1. Inter-tool communication 

As described above, this paper is concemed with the 
integration devices provided in tool integration 
frameworks. Specifically, we focus on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontrol-centred tool 
integration frameworks, in which there is a separation of 
the issues of data management and communication 
between tools1. Our focus on control-centred integration 
should not be taken as an indication that control-centred 
tool integration frameworks are necessarily superior to the 
data-centred approach, merely that the modelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequired 
for the two approaches is quite distinct and that we have 
chosen to study the former for the present. 

In the case of control-centred tool integration 
frameworks, flexibility is achieved via variations in the 
tool set comprising an instantiated framework and through 
the ability to vary the modes of interaction between these 
tools. With respect to the latter, there will be some means 
to express the modes of inter-tool communication; this 
integration device is usually a language which may be 
highly specific or may be effectively an extension to some 
more general-purpose language. In any case, this language 
of inter-tool communication has a domain of discourse 
relating to services provided or to be provided by tools, 
and of data or references to data (since tools will typically 
manipulate data of some kind as part of carrying out the 
services they provide). Thus, in relation to the five themes 
of integration described by Wasserman [31], inter-tool 
communication includes not only control integration, but 
also some aspects of data integration, such as recording 
which data is relevant to the current project. 

Thus, the model presented in this section has been 
developed to describe the inter-tool communication 
facilities provided by integration devices in a range of 
control-centred tool integration frameworks. In this 
particular paper, we focus on several issues of service 
provision. The descriptions presented in Sections 3 and 4 
of the paper concentrate on these concerns as selected 
features of two frameworks are examined. Readers familiar 
with the languages involved may thus notice that 
unnecessary details (such as the full syntax of a language 
feature) are elided for the purposes of our discussion. 

2.2. A motivating example 

We introduce an example, which is revisited in 
Section 5, to illustrate the sort of information which is of 
concern to environment builders and users, tool integration 
language designers and integration programmers, and yet 
which is not freely available in vendor documentation or 
other formal and informal literature. 

Suppose a tool, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA, requires that an editor, ToolB, 
load some data, say prog.c, ready for editing. ToolA sends 
such a request to ToolB. Can ToolA suspend operation 
until the request is complied with? Will it be notified of 
the outcome of the request? What assumptions can ToolA 
make if a reply to the request is not expected? Can it 
continue operation independent of any reply? 

Suppose that, some time later, ToolA requests the 
termination of ToolB. However, unsaved editing changes 
have been made to progc, so ToolB asks the user whether 
to save the file before terminating. Suppose that the user 
cancels the termination request sent from ToolA. Is ToolA 
informed of this event? Can ToolA override the user’s 
request? If ToolA is not informed of the user’s action, 
what assumptions can it make in subsequent operation? 

Suppose that ToolA wishes ToolB to suspend 
operation while ToolA performs some processing without 
disturbance from ToolB. Can it request such suspension 
and, later, resumption of processing? Can it request, for 
example, that ToolB disable various user options? 

The answers to questions such as these provide valuable 
insight into the integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstyles used by various tool 
integration frameworks. While several current efforts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
concentrating on characterising the differences between a 
number of different tool integration framework 
architectures such as realised in CORBA, SoftBench and 
Polylith, as in [l], our work is focused on identifying the 
differences between implementations of one specific 
architecture - the control-centred tool integration 
architecture introduced in Section 2.1. 

2.3. The layered operational semantic model 

The model used to describe the inter-tool 
communication facilities is an information structure model 
[32]; in such a model, a collection of objects, known 
collectively as information structures, are defined to 
characterise those aspects of interest in the system under 
examination, and the semantics of the relevant aspects of 
the system’s operation are described as manipulations on 
the information structures. The manipulations are 
formulated with primitive operations and other, “higher- 
order”, operations defined by the model. 

The various components of our model fuse into a 
layered model, as illustrated in Figure 1. This figure 
shows that the model has five layers; from the lowest to 

Information Structures Information Structures 

Alternatively, in &-centred integration, both data 
management and tool communication are embedded in 
the environment repository. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure 1. A layered model of inter-tool 

communication. 
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the highest, these are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 the information structures themselves, describing those 

aspects of the state of tool integration frameworks 
which relate to inter-tool communication, 
the communication substrate, covering the delivery zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
receipt of communication messages by tools, 
primitive operations, defining elementary information 
structure manipulations, such as insertion and deletion 
opcrations, and basic communication primitives, such 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreceive, 
higher order operations, defining more complex 
operations, such as setting up a communication 
channel between two tools, and 

0 the actual descriptions of integration devices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
senderID 

to the messages which can be sent on that channel. The 
basic building blocks of thle model, messages and tools, 
are represented by informaition structures. The Message 
information structure is depicted in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. It conveys 
information identifying thie message (messageID), the 
sending tool (sender1:D) and the target tool 
(recipientID), as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i S  the data contents of the 
message (messageData), and the mode of the message 
(messageMode). The last of these, the message mode, 
indicates the message type, and thus determines how the 
message is to be interpreted by the recipient; the message 
modes supported by the imodel include "Req" (for a 
request message), " N o t "  (for a notification), and "Repl" 
(for a reply). 

recipientID messageID messageMode 

toolID 

In Figure 1, the horizontal lines indicate that each layer 
is defined in terms of the layer below. Thus, the 
communication substrate layer is defined only in terms of 
the information structures defined in the information 
structures layer, whereas the primitive operations layer is 
defined in terms of both the communication substrate layer 
and the information structures layer. Likewise, the 
descriptions of the integration devices, forming the 
uppermost layer, utilise the higher-order operations and the 
primitive operations. While the higher-order operations are 
not strictly csscntial, they provide a convcnient method for 
eliding various details of processing which are constant 
across the tool integration frameworks under consideration, 
thus facilitating the comparison of descriptions of 
integration features. 

By developing a model that consists of several layers, it 
is possible to have a single description that caters for the 
different information requirements of various groups, 
providing clarity while presenting the detail when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequjred; 
this notion of a layered model has also been explored by 
Oudshoorn and Marlin [21-231 in the context of the 

inputMsgs l i s t  

A tool publishes its integration signature, that is, a list 
of the messages which it is willing to receive (represented 
as pattern strings) and a list of messages that it can emit 
(represented as strings). Each tool is represented by a 
ToolCommunications information structure, depicted in 
Figure 3; each such structure consists of the tool's unique 
identification (toolID), a list of the patterns published by 
the tool (inputMsgs) and the messages emitted by the tool 
(outputMsgs). Each entry in the inputMsgs list consists 
of: 

a pattern, which is a string representing a message of 
interest to this tool, 
a pattermode, which will be either "Req", "Not", or 

Repl I# ,  and which indicates the required delivery mode 
of input message, and 
a list called patternl3indings, which records the 
identity of various tools from which the messages 
represented by the pattern and patternMode of this 
particular inputMsgs entry can be received. 

Similarly, each entry in the: outputh4sgs list consists of 
description of programming languages. For example, tool 0 msg, the content of the message to be sent, 
integration framework designers and tool integration 0 a msgMode, which is thle mode of the message to be 
language designers can obtain the precise definitions that sent, and 
they require, whilst integration programmers and other 0 a list called msgBindings, which records the identity 
interested groups can read to the level most convenient to of various tools to which the messages represented by 
them. this Darticular outDutMsss entrv can be sent. 

Y 

It is apparent from the contents of the 
ToolCommunications structure that valid communication 

The concept of the model is one of tools whch 
communicate by sending messages on communication 
channels. Each communication channel is typed according 

Figure 3. A ToolCommunications information structure. 
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connections between tools can be established by binding 
entries in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatternBindings list of the inpuwgs 
list in one tool to entries in the outputMsgs lists of other 
tools; note that the patternBindings lists and the 
msgBindings lists are reciprocal, in the sense that where a 
pattern in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA is bound to a message in ToolB, the 
same message in ToolB will be bound to the pattern in 
ToolA. 

Indeed, the contents of these lists can be determined 
statically, and this suggests that communication 
connections between tools could be determined statically. 
However, while the set of output messages remains 
constant for the execution lifetime of the tool, the range of 
valid input messages for a tool may vary. For example, a 
tool may wish to accept a certain message for a short 
period of its operation only; this would be modelled by 
dynamically altering its inputMsgs list to insert an entry 
corresponding to the message or messages which are to be 
received for this time period and then removing these 
entries later. 

A number of primitive and higher-order operations (the 
second and third layers in Figure 1) are required to describe 
realistic integration devices; because of limited space, only 
a brief indication of their usefulness can be presented here. 
Primitive operations provide insertion, deletion, update 
and search operations, an iterator, a selector and a 
matching operation, and basic communication facilities. 
Three primitives deserve to be mentioned explicitly: 

noAction 
indicates that a tool remains idle in terms of inter- 
tool communication, 

causes all communication bindings to become 
inactive except for those listed in bindings (thereby 
causing the tool to cease receiving messages from the 
inactivate bindings), and 

effects a resumption of message processing, which 
ceased due to the use of a suspend operation. 

An example of a typical statement involving a 

suspend operation except for {bindings) 

resume operation 

primitive operation might be: 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt find ToolCommunications where 

{toolID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= thisTool.toolID1; 

The syntax of this statement reflects the syntax style 
used for most primitives and higher-order operations in the 
model, indicating the operation being invoked (find in 
this case), the information structure to which the operation 
is applied (ToolComunications), and the parameters 
being transmitted (in this case, the part where { toolID = 
thisTool. toolID)). This particular statement locates the 
ToolComunications information structure that has its 
toolm attribute equal to the value of the variable 
thisTool . toolID, and retums the result in the variable A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A backwards arrow, t, indicates an assignment and may 
be used in the primitives’ parameters, as in: 

B t  create new ToolComunications where 
{ toolID t “EDIT” 1 ; 

In this case, a new ToolComunications information 
structure is created, and its toolm attribute is given the 
value “EDITii. A pointer to the new structure is assigned 

There is one hgher-order operation used in the 

STARTtool where {operation = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoperation); 

tO B. 

descriptions in this paper, 

which causes a tool, currently inactive in the environment, 
and which can provide operation, to register its initial 
integration interface (and thereby become a contributing 
part of the environment); this operation retums TRUE if 
successful and FALSE otherwise. 

In addition, the model provides two variables, 
thisTool and 1astMsg. The former returns the 
ToolComunications information structure for the tool 
under consideration, and 1astMsg returns the most recent 
message that was received by the tool. The variables can 
be used to select attributes of the information structures, 
as in lastMsg .messageID. The descriptions of integration 
devices also make use of temporary variables to store 
intermediate values; these are denoted by capital characters, 
such as A and D. 

2.4. Describing inter-tool communication 
language features 

As mentioned before, the model presented here is a 
layered information structure model. In order to complete 
the uppermost layer of Figure 1 (covering the descriptions 
of integration devices), it is necessary to provide adequate 
descriptions of the transformations of the information 
structures caused by the various relevant language features. 
This is done by giving an algorithmic description of an 
event corresponding to each inter-tool communication 
language feature. These events describe the semantics of 
communication between tools by setting up integration 
interfaces and communication bindings, rearranging 
interfaces and bindings, and transferring information to and 
from the integration interfaces. Each of the algorithms is 
reg& as a set of actions executed in place of the 
language feature it describes. The descriptions are Pascal- 
like, using features of the language in conjunction with 
the model primitives and higher-order operations. More 
details may be found in [ 121. 

Integration devices can be regarded as having three 
groups of inter-tool communication events. First, there is 
a group concerned with integration interface specijkation, 
and includes publication of the Notification intelface 
(information messages that will be accepted) and the 
Request interfuce (services that will be offered to the 
environment). The second group, message sending, 
incorporates sending of Notification, Request and Reply 
messages. The final group is concemed with message 
reception, and is comprised of the receipt of Notification, 
Request and Reply messages. Hence, we determine the 
following communication events: 
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Notification-publication, 
Request-publication, 
Notification-send, 
Request-send, 
Reply-send, 
Notification-receive, 
Request-receive, and 
Reply-receive. 

The next two sections of the paper describe relevant 
features of integration devices provided by each of 
SoftBench and Field. Because of limited space, only a 
selection of these features can be presented. Those chosen 
for the purposes of illustration are the communication 
events: (4) Request-send, (5) Reply-send, and (8) 
Reply-receive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  The EDL tool integration language 

of SoftBench 

3.1. The SoftBench tool integration framework 

Hewlett-Packard’s SoftBench tool integration 
framework embraced the message-server technology 
pioneered by Field to fashion the Broadcast Message 
Server (BMS). SoftBench is furnished with several 
integration devices with which to describe tool zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
encapsulations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a shell script facility (ciclient), header and 
library files for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and C++, and the Encapsulation 
Description Language (EDL) [8]. EDL is a C-like 
specification language, designed specifically for tool 
integration; it is for this reason that the EDL integration 
device was selected for examination in this work. 

The conceptual model of integration in SoftBench is 
one of events and actions. In order to communicate with 
the rest of the environment, a tool encapsulation 

defines its interface by specifying and publishing the 
events in which the tool has an interest, and associates 
one or more actions and tool services with each event - 
this can be done at any time during the tool’s 
execution lifetime, and a published event can be 

withdrawn if it is no longer of interest; 
communicates with other tools by generating events, 
usually after completion of some action by the tool, so 
that other tools can both monitor the operation of the 
tool and react accordingly. 

Events are published as pattern strings and generated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
messages; a tool will receivle an event only if the generated 
message matches one or more of its published pattern 
strings. SoftBench supports three message types: Request, 
Notification and Failure m.essages. Failure messages are 
generated to indicate the lack of success in fulfilling the 
requirements of a Request message (successful completion 
is indicated with a Notification message). Figure 4, 
adapted from [9], illustrates the interaction between the 
BMS and an encapsulated tool. 

Requlest, Notification 

messqes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx;3 

Event 
Pub I cat i tn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. The BMS architecture of Hewlett- 
Packard’s SoftBench. 

SoftBench supports a tool class concept, which 
determines the minimum set of messages that should form 
a tool’s integration interface. Accordingly, the BMS 
maintains a database of tool classes, a list of known tools 
in each class, and information about each tool’s location 
and invocation details. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 ID = make-message-id( ) ; 

NP = make-messagepattem(Notify, ID, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatternN) ; 

NE = make-event (MESSAGE, NP, cal lbackfunctW ; 
add-event (NE) ; 

FP = make-message-pattern(Failure, ID, PatternF) ; 

FE = make-event(MESSAGE, FP, callbackfunctnF); 

add-event (FE ) ; 
/ *  send the request message * /  
send-message (Request, requestedService, ID) ; 

Figure 5. Defining and publishing reply events in EDL. 
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3.2. The description of features of the EDL tool 
integration language zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Section 2.4 described three groups of communication 
events, and selected (4) Request-send, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) Reply-send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
(8) Reply-receive for elaboration in our descriptions of 
integration devices. In the language features of EDL, the 
Request-send and Reply-send communication events relate 
to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsend-message statement. The Reply-receive event 
does not occur as the result of a specific language feature, 
but as part of the event processing loop of EDL. 

Request-send 

Consider the statement 

send-message (Request, requestedservice, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; 

where Request is the message type, requestedsemice 
and ID represent fields or collections of fields to be 
completed by the user, and where ID is an optional field. 
For Request messages, it is assumed that the integration 
programmer will define and publish events, as described in 
Section 3.1, which will recognise specific replies from the 
recipients of the Request message which are of interest to 
this tool. To denote an event as a reply to a specific 
request, an identifier is produced for the message and 
included in each reply event. Figure 5 illustrates this. In 
this example, italicised items represent fields or 
collections of fields for which the programmer substitutes 
values. Line 1 generates a string which is used to identify 

Request-send 4 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 
11 

12 

13 
14 
15 
16 

17 

18 

19 
20 

both the message and events. A Notification event is 
defined (lines 2 and 3) and published (line 4), and a Failure 
event is also defined and published (lines 5 - 7). Both of 
these events will trap replies to the request message, sent 
in line 9. Control is returned to the encapsulation 
immediately after the Request message is sent. 

Figure 6 shows the algorithmic description of the 
Request-send event, which is the communications event 
corresponding to this language feature. The description 
consists of three phases. Phase 1 establishes the set of 
communication bindings that are associated with the 
Request message by locating the entry in the tool's 
outputMsgs list that matches both the message mode and 
the contents of the requestedservice field; this occms 
in lines 1 to 3. If there are no communication bindings 
associated with the output message, an attempt is made to 
locate and invoke a tool which can process the request 
(line 5). Recall that this is possible because SoftBench 
maintains a database of tool classes. If an appropriate tool 
is invoked, and therefore has published its integration 
signature, the set of communication bindings is again 
determined (lines 6 through 8). If the set is empty (i.e. no 
tool willing to accept the request message was found), 
phase 2 returns "Fail" as a reply to the encapsulation. 
Phase 3 occurs when a list of communication bindings 
exists. Here, the message is generated and sent to each tool 
bound to this output message. Note that the identification 
used for the message, ZD, is generated separately by the 
user (as in Figure 5, line 1). 

B t find item in thisTool.outputMsgs where { / *  phase 1 * /  

msg = requestedService, 

msgMode = "Req" }; 

- if B.msgBindings = NULJ., then 
if START tool where {oDeration = requestedservice} then 

B t find item in thisToo1.outputMsgs where { 

msg = requestedservice, 

msgMode = "Req" I ;  
end if; 

end if; 

- if B.msgBindings = NULL then 
theReply t "Fail" ; 

-- for all A & B.msgBindings & 
send messaae to A.toolID where { 

messageID t ID, 

senderID t thisTool.toolID, 

messageMode t "Req" 1 ; 
-- end for a; 

-- end if. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. The Request-send event in EDL. 

/*  phase 2 * /  

/ *  phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 * /  
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Reply-send event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 either 
2 

3 

4 send messaae to 1astMsg.senderID where ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

8 

9 I noAction]. 

[ either [ A t “Success”; 

I A t “Fail” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ;  

messageID t lastMsg.messageID, 

messageMode t “Repl“ , 
messageData t A, 

senderID t thisTool.too1ID } ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. The Request-receive event in EDL,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Reply-send 

The Reply-send event also relates to the 
send-message command. The formats used for Reply 
messages are: 

send-message (Notify, “Success“, requestID) ; 
send-message (Failure, requestID) ; 

The first format indicates a successful completion of 
the requested service, and the second represents a failure to 
provide the service. As noted before, there is no obligation 
for an encapsulation to reply, to limit the number of 
replies sent, or to define and publish events to recognise 
possible replies. 

The algorithmic description in Figure 7 describes the 
Reply-send communication event in EDL. A Reply 
message in the model will indicate either “Success” or 
“Fail” (lines 2 and 3), and includes the messageID field of 
the associated Request message (line 5). 

Reply-receive 

The Reply-receive event is defined by the algorithmic 
description in Figure 8, which describes the effect of the 
receipt of a Reply message - there is no associated inter- 
tool communication operation. Note that the events 
defined and published previously in order to recognise this 
and other replies to the Request message will be removed 
from the integration interface of the tool only if the 
integration programmer specifies such removal. 

3.3. Discussion 

From the previous two subsections, we have seen that 
the request-reply sequence in SoftBench’s EDL consists of 
the following steps: 

A tool, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAToolA, defines and publishes zero or 
more events which will recognise incoming Reply 
messages of interest associated with the Request 
message to be sent (Figure 5). 
ToolA composes and sends the Request message 
(Figures 5 and 6) .  
If no tools exist which can service the request, a 
“Fail” reply is returned (Figure 6) .  

(4) If one or more tools can service the request, they 
might not return a Reply message, or will reply 
indicating “Success“ or “Fail” (Figure 7). 
If a reply has been sent, it will be received by ToolA 
if it defined and published an event to recognise this 
reply (Figure 8). ToolA might remove this event 
and/or other reply events, or it might leave some or 
all of these events in place. 

The last step is demonstrated more clearly in the finite 
state machine in Figure 9. In this figure, transitions are 
depicted as arrows, transition events are placed above the 
transition, and actions takein upon a transition are in bold, 
and located below the transition. Transition guards are 
placed in square brackets at a transition source. Variables 
and semantic structures are used in the diagram, and these 
are indicated in italics. The diagram extends the description 
of the Request-send and Reply-receive event descriptions 
by demonstrating the interleaved operation of the 
encapsulation. For EDL, it also elucidates the importance 
of the additional pre- and post-event processing required to 
make the Request-send event meaningful and to 
distinguish the effect of a tlool sending a Request message 
from that of sending a Notification message. 

The transition from the start state, Send request, to the 
state Process replies is caused by a Request-send event - 
at this time, the identifier of the Request message and the 
events published by the tool to recognise replies to this 
message, rEvents, are recorded. The first part of the figure 
illustrates particularly well the difficulties that arise from 
the flexibility provided by the Request-send and 
Reply-receive language features of EDL. Here there is no 
transition from Process replies to Send request - given the 
right conditions a tool may remain in this state 
indefinitely, continuing to receive replies for any previous 
Request-send communication event. Naturally, this is not 
the intention behind these language features. EDL requires 
that they be used in conjunction with the features used 
normally to establish and remove an integration interface 

(5 )  

Reply-receive event -3 

theReply t 1astMsg.messageData. 

Figure 8. The Reply-receive event in EDL. 
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Request-send event: 
send AsyncRequest[id] i: 
Vi E msgBindings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinterfacer id] t o  

Process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn replies 

add id to idList 
set interface[id] to rEvents 

llremove interfacerid] 
remove id from idListll 

add id to idList 
set interfacerid] to rEvents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 9. Finite state machine representing the Request-send and Reply-receive events 
for EDL. 

(as in steps (1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) above, and demonstrated in 
Figure 5).  

The second part of Figure 9 includes the usual pre- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
post-processing specified by an integration programmer. In 
this case, as each reply is received, the reply events might 
be deleted from the intelface list and the identifier removed 
from the list of message identifiers - the optional nature 
of the actions is indicated by enclosing them in vertical 
bars. Additionally, the start state will again be achieved if 
there are no Request-send events remaining for which 
Reply-receive events can occur. 

The situation of a Request-send event where no reply 
events have been defined (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArEvents is empty) is 
illustrated clearly in the second part of the figure. In such a 
case, the intequce list will be devoid of content, and the 
tool will return immediately to the start state. Such a 

scenario mirrors the Notification-send communication 
event, which is event (3) in the list given in Section 2.4 
and whose description has been omitted here for the sake 
of brevity. 

4 .  A description of inter-tool 
communication in Field’s MPI 

4.1 The Field tool integration framework 

Field (the Friendly Integrated Environment for Learning 
and Development) [26-291 is a research prototype tool 
integration framework that first demonstrated that practical 
integrated tool sets are possible, using a message passing 
framework. The ideas exhibited by Field form the basis for 
many of the current generation of tool integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Messag PatternPublicatbn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. The MSG architecture of Field, 

showing the MPI and PSI integration 
devices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

frameworks and software engineering environments, such 
as DEC’s FUSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[19], Sun’s SPARCworks, SGI’s 
Codevision and Hewlett-Packard’s SoftBench (described in 
Section 3). 

The conceptual model used by Field is that of control 
via messages. Tools communicate by sending zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
receiving messages; the routing of messages is the 
responsibility of a central message server (MSG) which 
records details of operational tools and their interfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
sets of message patterns. Tools register with the MSG 
upon invocation, and, at the same time, indicate with 
message patterns the set of messages that they have an 
interest in receiving. In this way, tools publicise their 
integration interface. The set of message patterns may 
change during the execution lifetime of the tool - a tool is 
free to deregister current message patterns and to register 
new message patterns. When a tool receives a message 
which matches one of its currently registered message 
patterns, an associated function is invoked. Field supports 
three message types: Notification messages, Request 
messages and Reply messages. 

Rather than providing a specific integration language, 
Field provides two complementary facilities for describing 
required integrations - the MSG Program Interface (MPI), 
and the Policy Server Interface (PSI). The MPI is a 
message client library, providing entries needed to send and 
receive messages. The PSI derives from the Forest 

environment [10,14,30], ,and supports the MPI by 
providing the ability to tr,anslate messages before they 
reach the message server and by ensuring priority 
processing of designated messages. A PSI is described 
using a Policy Language based on that provided by the 
Forest system which defines the actions to be taken on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
messuge-tool-user triplets; this allows for different actions 
to be defined for various tool-user group combinations. 
The MPI, rather than the PSI, will be the focus of the 
descriptions in this paper. Figure 10, adapted from [26], 
illustrates the message server architecture and the MPI and 
PSI devices. 

4.2. The description of aspects of the Field tool 
integration language 

Extensions to the basic model 

The description of the lVlPI language features uses a 
special list - an additional attribute, replyData list, 
attached to the ToolComunications information 
structure. This is shown in Figure 11. There will be one 
entry in this list for each Request message emitted by the 
tool for which a reply remains outstanding. It will contain 
two fields. The first, rID, records the identifier associated 
with the Request and Reply messages. The next, rcount, 
keeps a record of the number of outstanding Reply 
messages, and is initialised to zero. 

Request-send 

The Request-send event in MPI is divided into two 
sub-events, which we will call Sync-Request-send and 
Async-Request-send. The MPI function 

MSGcall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(REGID,  requsstedservice) ; 

relates to the Sync-Request-send event, and suspends 
operation until a reply is received. The function 

MSGcallback (MSGID, c:allbackRmctn, 
requestedService) ; 

is the language feature related to the Async-Request-send, 
and returns control immediately to the tool - thus, it 
specifies a function to be called upon receipt of a reply by 
the tool’s encapsulation. Figure 12 shows the algorithmic 
description of the Request-send communications event 
corresponding to these functions. It comprises three 
phases. Phase 1 is comparable to the phase 1 of Figure 6 
(the Request-send description of EDL); however, it is 
apparent at lines 2 and 6 tlhat the criteria for locating the 
corresponding output message is less restrictive than that 

.............................................. .. .......................................... 
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2tternBinding.s i . .  i msgsindings f 

i pacternMode i i msgMode f rCount i .............................................. < ......................................... : .................................. : 

list . .  . .  . .  . .  l ist ,’....... ..................................... < > ........................................ : .................................. 
. .  . .  . .  . .  . .  . .  . .  

. .  . .  msg ! :  . .  . .  pat tern 

inputMsgs list 
............................................... 

Figure 11. The extended ToolCommunications information structure. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

4 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

7 
8 
9 

10 

11 

12 

13 
14 

15 
16 

17 

18 

19 
20 
21 
22 

required by EDL. Note that if the set of communication 
bindings for the Request message remains empty at the 
end of phase 1, no further action is taken. 

Phase 2 proceeds if communication bindings exist. 
Firstly, in line 10, a message identifier is produced for use 
in the Request message and all subsequent replies that are 
received from the recipients of the request. At lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  and 
12, a new entry is inserted into the replyData list of this 
tool's ToolCommunications information structure. Then, 
the count of Reply messages expected is incremented for 
each communication binding (lines 13 and 14), before the 
Request message is sent (lines 15 through 18). Phase 3,  
on lines 20 and 21, will only occur for the 
S ync-Request-send event. 

Reply-send 

Reply-send communication event is 
The language feature of MPI which corresponds to the 

/*  phase 2 * /  

A t find item in thisTool.outputMsgs where { / *  phase 1 * /  

msg = requestedservice }; 

- if A.msgBindings = NULL then 
if START tool where loweration = requestedService} then 

A t find item in thisTool.outputMsgs where { 

msg = requestedService 1; 
end if: 

end if; 

- if A.msgBindings # NULL then 
MSGID t provide-msgID; 

B t insert item in thisTool.replyData where { 

rID t MSGID 1;  
-- for all C A.msgBindings & 

B.rCount t B.rCount + 1; 
- send messaue C.toolID where { 

messageID t MSGID, 

senderID t thisTool.toolID, 

messageme t "Req" 1 ; 
end for all; 
/ *  for the Sync-Request-send event */ / *  phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 * /  
suswend oweration excewt for {A.msgBindings}; 

_ _ _  end if. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. The Request-send event in MPI. 

Reply-send event + 
1 

2 

3 

4 

5 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

MSGreply (MSGID, replyDa ta) ; 

The algorithmic description of this feature is shown in 
Figure 13. The description is similar to that of EDL, but 
lacks the option to refrain from sending a reply. 

Reply-receive 

The receipt of a Reply (or Notification or Request) 
message occurs as part of the event loop of MPI. Again 
we define two sub-events - a Sync-Reply-receive event 
that occurs in response to a Sync-Request-send event, and 
an Async-Reply-receive event that occurs in response to 
an Async-Request-send event. The algorithmic description 
of these in Figure 14 comprises three phases. The first 
locates the replyData entry for the incoming reply. The 
reply is ignored if no matching entry is found (line 3) .  
Phases 2 and 3 expose the stricter control of the 
Reply-receive communication 

[ either [ A t "Success"; 

I A t "Fail" I ;  
send messaue to 1astMsg.senderID where { 

messageID t lastMsg.messageID, 

messageme t "Repl" , 
messageData t A, 

senderID t thisTool.toolID 1 .  

event that Field preserves. 

Figure 13. The Request-receive event in MPI. 
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/ *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 * /  

/ *  phase 2 * /  

Reply-receive event -+ 
A t find item in thisTool.replyData where { 

if A not NULL then 
rID = 1astMsg.messageID zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;  

- if 1astMsg.messageData = "Fail" then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

4 

5 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

8 __-- remove item from thisTool . replyData where {A} ; 
9 resume -; / *  for a Sync-Reply-receive * /  
10 

11 

12 

1 3  

14 resume oDeration; / *  for a Sync-Reply-receive * /  
15 

l6 _.- end if. 

A.rCount t A.rCount - 1; 

- if A.rCount = 0 then 
theReply t "Fail" ; 

end if; 

else i f  1astMsg.messageData = "Success" then / *  phase 3 * /  -- 
theReply = "Success" ; 

~ - -  remove item from thisTool . replyData where {A) ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
end if; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14. The Reply-receive event in Field's MPI. 

The last "Fail" reply (phase 2) or the first "Success" reply 
(phase 3) is returned to the tool encapsulation as the 
unique reply to be processed. In phase 2, "Fail" messages 
cause the count of Reply messages received to be 
decremented (line 5) and checked to determine whether the 
current reply is the last expected (line 6). If so, this is set 
as the unique reply message (line 7), and all other 
communication channels are reopened for a 
Sync-Reply-receive event (line 9). 

In phase 3, the first "Success" message is designated as 
the reply, and all other communication channels are 
reopened for a synchronous Request-send event. Note that 
in phase 2 and phase 3, the entry in replyData for this 
message is removed (lines 8 and 13); therefore, once a 
reply has been specified, further Reply messages bearing 
the same identifier will be ignored. 

4.2.3. Discussion 

Field supports both synchronous and asynchronous 
Request messaging (Figure 12), and guarantees that there 
will be only one reply processed for each request (Figure 
14). The Sync-Request-send event causes an 
encapsulation to 

cease the generation of further Request-send events, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and 
delay Reply-receive events which match any other 
previous Async-Request-send events 

until the appropriate Reply-receive event for this message 
has occurred. An encapsulation continues to operate in a 
normal manner, receiving and sending messages, after an 
Async-Request-send event. Figure 15, representing the 
Request-send and Reply-receive events using finite state 
machines, clearly demonstrates these differences. 

The left-hand side of the diagram illustrates the 
Synchronous Request-Reply sequence. From the start 
state, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASend request, a Sync-Request-send event causes a 

transition to the Gather replies (Sync) state. From here, 
the only option is to retiurn to the start state, via the 
Process reply state, after one of the designated replies is 
received. 

The right-hand side depicts the asynchronous Request- 
Reply sequence. Here, the Gather replies (Async) state 
demonstrates clearly that a tool can generate further 
Request-send events of either type (by remaining in this 
state or transitioning to the Gather replies (Sync) state). 
Furthermore, after a Reply.-receive event from either of the 
Gather replies states has caused a transition to Process 
reply, the system returns to Gather replies (Async) if 
Async-Request-send events remain for which replies are 
outstanding (indicated by the contents of the variable 
idlist). 

5 .  Comparison of the language 
features 

The layered model for inter-tool communication has 
been used to present clear and precise descriptions of inter- 
tool communication events in tool integration frame- 
works. The precision engendered by the model exposes the 
differences in the semantics of the relevant aspects of the 
tool integration frameworks under scrutiny. Most often, 
these differences are not (discernible from the framework 
documentation provided by the vendor, nor from other 
literature. In other cases, descriptions of the language 
features in the documentation are ambiguous, or 
descriptions of the frameworks and the integration 
languages are contradictory. In both cases, the model 
serves to clarify the semantics. Finally, where the 
semantics of a language feature or group of language 
features are known, the impact in terms of the integration 
style that can be achieved because of those semantics is 
frequently not apparent. ,4gain, the model indicates the 
style or styles of integration supported by a framework. 
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[rCount= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ]  
Reply-receive event: 
receive Fail Reply[id [not empty(idList)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 

[empty(idList)] 

Rep1 y-r ece ive event: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

subtract 1 from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArCount subtract 1 from rCount[id] add id to idList 
set rCount[id] to#msgs sent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 15. Finite State Machine representing the Request-send and Reply-receive events 
in Field’s MPI. 

The previous sections have demonstrated this clarity 
with descriptions of the Request-Reply component of 
inter-tool communication in two tool integration 
frameworks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- SoftBench and Field. The language features 
described will now be compared. Some aspects of the 
comparison are relatively obvious from the informal 
descriptions of the language, but others are more subtle 
and only revealed by a detailed examination such as this. 

Both languages permit some degree of dynamic 
determination of their integration interface and hence the 
set of tools from which they will accept messages and to 
which they will send messages. Both tools base this on 
declared message patterns. In the case of EDL, the 
matching that occurs between a tool’s output message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
another tool’s input pattern will include the message mode 
(either Request, Notification or Failure). Field has less 
restrictive matching requirements which ignore the 

messagemode and thus allows one pattern to be used for 
Request and Notification messages. 

It is clear from their informal descriptions that Field 
supports synchronous Request messages with a language 
feature, and that SoftBench does not support it in this 
way. It is claimed in the informal literature that 
synchronous behaviour (that is, delaying the processing of 
messages until a reply is received) is programmable in 
EDL. What is not clear, however, is how this can be 
achieved, nor, indeed, the design decision which lead to 
only asynchronous messaging being provided. We will 
address the first issue here and the second will be addressed 
later in this section. 

Consider Figure 9, which depicts the Request-reply 
sequence of EDL. Three steps are necessary to emulate the 
semantics of a synchronous request (that is, to delay 
processing of incoming messages). The first step is to 
remove the contents of the array interSam so that no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

78 



further Reply-receive events can occur. This will ensure 
that the encapsulation is in the start state. Secondly, the 
Request-send event transition from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProcess replies 
state must be disabled so that when the transition from the 
start state to this state occurs, no further Request-send 
events can be generated. Finally, the desired Request-send 
event occurs; this places the encapsulation in the Process 
replies state, where the only replies that can be accepted 
are those which have been specified for this event. Once 
the required number of Reply-receive events have occurred, 
the disabled Request-send transition is re-enabled. The 
encapsulation can remain in this state, or return to the 
start state if the interface entry for the initial Request-send 
event is removed. Although it is true that it would have 
been possible to work out what is involved in emulating a 
synchronous request in EDL, our modelling technique has 
made the complexities of doing so particularly apparent. 

The descriptions of the Request and Reply 
communication events highlights differences in the 
flexibility of the Request-reply process. Field is quite rigid 
in its approach, allowing the programmer no option zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- for 
every Request message, exactly one Reply message will 
be received. SoftBench, however, exhibits more 
versatility, providing the integration programmer with 
many options which include the following extremes: 

a tool does not define any reply events; it requires 
some service to be provided, but is not interested in the 
result, 
a tool defines arbitrarily many reply events to capture 
some specific Notification and Failure replies (and 
perhaps ignores other possible replies), 
a tool refrains from replying to a Request message, 
a tool replies many times to a Request message, 
a tool receives one reply to a Request message, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
then removes all defined reply events for that request, 
and 
a tool never removes the defined reply events. 

As an example of the implication of this versatility, 
consider the following implementation of the scenario 
introduced in Section 2.2: 

ToolA sends a Request message "START EDIT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
prog . c'", which is received by ToolB. 
ToolB loads prog.c, and replies "EDIT SUCCESS" to 
ToolA. The file, progc, is now available for editing 
(either by a user, or via Request messages from a tool). 
ToolA, some time later, sends a Request message 
"STOP EDIT prog. c", which is received by ToolB. 
Tool A has possibly defined and published events S 
and F to recognise Reply messages associated with this 
Request message. 
As unsaved editing changes have been made to prog.c, 
ToolB asks the user whether to save the file before 
unloading it. The user responds by telling ToolB to 
cancel the STOP request. No Reply messages are sent to 
ToolA. 

This is an illustrative message only, and does not 
reflect the format of a SoftBench message. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 ToolA continues operation, and does not remove 
events S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF from its published interface. 

This scenario would a.ppear to indicate that the 
communication between (at least) two tools cooperating to 
support the editing of source code is insufficient, as ToolA 
is not informed of the outcoime of the STOP request. What 
it demonstrates, however, is the "user-driven'' integration 
style employed by SoftBench, where tools make few 
assumptions about the fine-grained processes employed by 
users engaged in software development. The user-driven 
model of SoftBench expects the user to initiate inter-tool 
communication by announcing the next required action. 
To accommodate this interaction style, SoftBench tools 
incorporate an extensive menu system with which the user 
can invoke tools and through which the user can interact 
with other tools. In addition, an Execution Manager tool 
is provided via which any tool can be invoked or 
terminated by the user. 

We characterise the model of tool interaction employed 
by Field as "tool-driven". It is assumed in this integration 
style that the tools are semi or fully autonomous, and 
that, although the user is in control of the general 
behaviour of the environment, the tool interaction makes 
assumptions about the support that the user requires and 
therefore tools can react autonomously and work in 
concert. As the tools, then, are instigating certain actions, 
the initiators of such actions necessarily need to be 
informed of the result, in order to determine their next 
courses of action. 

The decision of the designers of SoftBench's EDL 
language to omit a synchronous messaging facility can be 
understood in the light of the user-driven integration style. 
In such a style, most operations performed by the 
environment are initiated by and visible to the user. When 
something unintended occwrs, as in the case of the scenario 
above, either the user caused that occurrence, or the user is 
aware of the problem and can therefore react to it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 .  Summary, concllusions and future 

work 

An approach to the precise description of tool 
integration devices in tool integration frameworks has 
been described. Th~s approach employs a layered model to 
describe these devices in a way which can cater to the 
differing information needs of a range of people who may 
have an interest in the semantics of the features provided 
by a tool integration framework for describing styles of 
inter-tool communication and who may wish to gain an 
appreciation for the various styles of such interaction 
which may be supported conveniently by a particular 
framework. The model has been illustrated by presenting 
representative aspects of the descriptions of inter-tool 
communication in two frameworks: SoftBench and Field. 
The tool integration devices of the two frameworks were 
then compared, at least insofar as this could be illustrated 
using those aspects presented in the separate descriptions. 

The model presented in this paper allows the precise 
description of the tool integration devices provided by tool 
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integration frameworks, and facilitates a kind of 
comparison of these devices which has not otherwise been 
possible to date. Although some aspects of the 
comparison may well have been clear to the assiduous 
from the user manuals and other documentation provided 
to potential users of the systems, the descriptions in terms 
of our model make possible a range of precise statements 
about the similarities and differences between the systems. 

Plans for future work fall into three broad areas: 

Our immediate plans include the description of one 
more commercial framework: DEC's FUSE [19]. 
This is expected to yield some points of divergence 
from the two control-centred frameworks already 
described and should also give access to another 
community of users for the future work in (2) below. 
As much as one can judge from the literature 
available, it appears that the design of the integration 
devices provided in tool integration frameworks has 
not been influenced by an explicit analysis of what 
users of these devices (i.e., those carrying out the 
process of customising the framework to the needs of 
a particular organisation or project) want to do with 
them and how they would prefer to express the 
desired styles of integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABased on experience in 
using comparative models of semantics in the design 
of programming languages [IS], we propose to use 
the model described in this paper as the basis for the 
design of tool integration devices which allow the 
convenient expression of the styles of integration 
which are required in practice. This work will proceed 
by analysing which features of existing tool 
integration devices are actually used and how they are 
employed (whether, for example, they are fi-equently 
used to emulate some semantic pattern or protocol 
which is not provided by the tool integration 
framework as a primitive). These findings can then 
be related back to the semantic descriptions of 
existing devices, and new devices designed and 
described in terms of the model. 
Finally, we plan to be able to generate the inter-tool 
communication aspects of tool integration 
frameworks from the semantic descriptions written in 
terms of our model, in an analogous manner to that 
used for generating programming language 
implementations from similar descriptions [22,23]. 
This would, for example, enable the generation of an 
implementation of some proposed new set of devices 
designed as a result of the process described in (2) to 
be tested in practice, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand then further refined. 
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