Comparing Libraries for Generic Programming in

Haskell

Alexey Rodriguez
Johan Jeuring
Patrik Jansson

Alex Gerdes

Oleg Kiselyov
Bruno C. d. §S. Oliveira

Department of Information and Computing Sciences, Utrecht University
Technical Report UU-CS-2008-010

www.cs.uu.nl
ISSN: 0924-3275

Comparing Libraries for Generic Programming in Haskell

Alexey Rodriguez

Utrecht University, The Netherlands
alexey@cs.uu.nl

Alex Gerdes

Open University, The Netherlands
alex.gerdes@ou.nl

Abstract

Datatype-generic programming is defining functions that depend
on the structure, or “shape”, of datatypes. It has been around for
more than 10 years, and a lot of progress has been made, in partic-
ular in the lazy functional programming language Haskell. There
are more than 10 proposals for generic programming libraries or
language extensions for Haskell. To compare and characterize the
many generic programming libraries in a typed functional lan-
guage, we introduce a set of criteria and develop a generic program-
ming benchmark: a set of characteristic examples testing various
facets of datatype-generic programming. We have implemented the
benchmark for nine existing Haskell generic programming libraries
and present the evaluation of the libraries. The comparison is use-
ful for reaching a common standard for generic programming, but
also for a programmer who has to choose a particular approach for
datatype-generic programming.

1. Introduction

Software development often consists of designing a datatype
to which functionality is added. Some functionality is datatype
specific. Other functionality is defined on almost all datatypes,
and only depends on the structure of the datatype; this is called
datatype-generic functionality. Examples of datatype-generic func-
tionality are comparing two values for equality, searching a value of
a datatype for occurrences of a particular string or other value, edit-
ing a value, pretty-printing a value, etc. Larger examples include
XML tools, testing frameworks, debuggers, and data-conversion
tools.

Datatype-generic programming has been around for more than
10 years now. A lot of progress has been made in the last decade,
in particular with generic programming in the lazy functional pro-
gramming language Haskell. There are more than 10 proposals for
generic programming libraries or language extensions for Haskell.
Such libraries and extensions are also starting to appear for other
programming languages, such as ML.

Although generic programming has been used in several appli-
cations, it has few users for real-life projects. This is understand-
able. Developing a large application takes a couple of years, and
choosing a particular approach to generic programming for such a
project involves a risk. Few approaches that have been developed
over the last decade are still supported, and there is a high risk that
the chosen approach will not be supported anymore, or that it will
change in a backwards-incompatible way in a couple of years time.

Johan Jeuring

Utrecht University, The Netherlands
johanj@cs.uu.nl

Oleg Kiselyov
FNMOC, USA

oleg@pobox.com

Patrik Jansson

Chalmers University of Technology &
University of Gothenburg, Sweden

patrikj@chalmers.se

Bruno C. d. S. Oliveira

Oxford University, UK
bruno.oliveira@comlab.ox.ac.uk

The Haskell Refactorer HaRe [Li et al., 2003] is an exception,
and provides an example of a real-life project in which a generic-
programming technique (Strafunski [Ldmmel and Visser, 2002]) is
used to implement traversals over a large abstract syntax tree. How-
ever, this project contains several other components that could have
been implemented using generic-programming techniques, such as
rewriting, unification, and pretty-printing modules. These compo-
nents are much harder to implement than traversals over abstract-
syntax trees. Had these components been implemented generically,
we claim that, for example, the recent work of the HaRe team
to adapt the refactoring framework to the Erlang language [Der-
rick and Thompson, 2005] would have been easier. Other excep-
tions are the Haskell application Server (HappS), which uses the
extensible variant of Scrap Your Boilerplate [Limmel and Pey-
ton Jones, 2005], and the Catch [Mitchell and Runciman, 2007a]
and Reach [Naylor and Runciman, 2007] tools, which use the Uni-
plate [Mitchell and Runciman, 2007b] library to implement traver-
sals.

It is often not immediately clear which generic programming
approach is best suited for a particular project. There are generic
functions that are difficult or impossible to define in certain ap-
proaches. The set of datatypes to which a generic function can be
applied varies among different approaches, and the amount of work
a programmer has to do per datatype and/or generic function varies
as well.

The current status of generic programming in Haskell is com-
parable to the lazy Tower of Babel preceding the birth of Haskell
in the eighties [Hudak et al., 2007]. We have many single-site lan-
guages or libraries, each individually lacking critical mass in terms
of language/library-design effort, implementations, and users.

How can we decrease the risk in using generic programming?
We propose to design a common generic programming library for
Haskell. To increase the chances of continuing support, we will
develop this library in an international committee. The rationale
for developing a library for generic programming instead of a lan-
guage extension is that Haskell is powerful enough to support most
generic programming concepts by means of a library. Furthermore,
compared with a language extension, a library is much easier to
ship, support, and maintain. The library might be accompanied by
tools that depend on non-standard language extensions, for exam-
ple for generating embedding-projection pairs, as long as the core
is standard Haskell. The standard that the library design should
target is Haskell 98 and widely-accepted extensions (such as ex-
istential types and multi-parameter type classes) that are likely to
be included in the next Haskell standard [Haskell Prime list, 2006].

2008/4/24

The library should support the most common generic programming
scenarios, so that programmers can define the generic functions that
they want and use them with the datatypes they want.

To design a common generic programming library, we first have
to evaluate existing libraries to find out differences and commona-
lities, and to be able to make well-motivated decisions about inclu-
ding and excluding features. This paper is about comparing existing
libraries for generic programming in Haskell. We will evaluate and
compare the following libraries:

e [ightweight Implementation of Generics and Dynamics (LIGD)
[Cheney and Hinze, 2002]

e Polytypic programming in Haskell (PolyLib) [Norell and Jans-
son, 2004]

e Scrap your boilerplate (SYB) [Lammel and Peyton Jones, 2003,
2004]

e Scrap your boilerplate, extensible variant using typeclasses
[Lammel and Peyton Jones, 2005]

e Scrap your boilerplate, spine view variant [Hinze et al., 2006,
Hinze and Loh, 2006]

e Generics for the Masses (GM) [Hinze, 2006], including its
extensible and modular extension (EMGM) [Oliveira et al.,
2006].

e RepLib: a library for derivable type classes [Weirich, 2006]
e Smash your boilerplate [Kiselyov, 2006]
e Uniplate [Mitchell and Runciman, 2007b]

Note that this list does not contain generic programming language
extensions such as PolyP [Jansson and Jeuring, 1997], Generic
Haskell [Loh et al., 2003], or Template Haskell [Lynagh, 2003],
and no pre-processing approaches to generic programming such
as DrIFT [Winstanley and Meacham, 2006], and Data.Derive.
We strictly limit ourselves to library approaches, which, how-
ever, might be based on particular compiler extensions. The SYB
[Lammel and Peyton Jones, 2005] and Strafunski [Ldmmel and
Visser, 2003] approaches are very similar, and therefore we only
take the SYB approach into account in this evaluation. The func-
tionality of the Compos library [Bringert and Ranta, 2006] is sub-
sumed by Uniplate, and hence we only evaluate the latter.

We evaluate existing libraries by means of a set of criteria.
Papers about generic programming usually give desirable crite-
ria for generic programs. Examples of such criteria are: can a
generic function be extended with special behaviour on a partic-
ular datatype, and are generic functions first-class, that is, can they
take a generic function as argument. We develop a set of criteria
based on our own ideas about generic programming, and ideas from
papers about generic programming. For most criteria, we have a
generic function that determines whether or not the criterion is sat-
isfied. We have collected a set of generic functions for testing the
criteria. We try to implement all of these functions in the different
approaches.

We are aware of two existing comparisons of support for generic
programming in programming languages. Garcia et al. [2007] com-
pare the support for different kinds of generic programming in a
number of programming languages. Haskell supports all their eight
criteria. We use more fine-grained criteria to distinguish the Haskell
libraries which support datatype-generic programming. Hinze et al.
[2007] compare various approaches to datatype-generic program-
ming in Haskell. However, most of the covered approaches are lan-
guage extensions, and many of the recent library approaches have
not been included.

This paper has the following contributions:

e [t gives an extensive set of criteria for comparing libraries for
generic programming in Haskell. The criteria might be viewed
as a characterisation of generic programming in Haskell.

e It develops a generic programming benchmark: a set of charac-
teristic examples with which we can test the criteria for generic
programming libraries.

e It compares nine existing library approaches to generic pro-
gramming in Haskell with respect to the criteria, using the im-
plementation of the benchmark in the different libraries.

e The benchmark itself is a contribution. It can be seen as a
cookbook that illustrates how different generic programming
tasks are achieved using the different approaches. Furthermore,
its availability makes it easier to compare the expressiveness of
future generic programming libraries. The benchmark suite can
be obtained following the instructions at http://haskell.
org/haskellwiki/GPBench.

The outcome of this evaluation is not necessarily restricted to the
context of Haskell. We think this comparison will be relevant for
other programming languages as well.

This paper is organised as follows. Section 2 introduces datatype-
generic programming concepts and terminology. Section 3 shows
the design and contents of the benchmark suite. Section 4 intro-
duces and discusses the criteria we use for comparing libraries for
generic programming in Haskell. Section 5 summarizes the eval-
uation of the different libraries with respect to the criteria, using
the benchmark. Section 6 presents the evaluation in full detail.
Section 7 concludes.

2. Generic programming: concepts and
terminology

This section introduces and illustrates generic programming us-
ing a simplified form of the datatype-generic programming library
LIGD. The reason for using LIGD is that the encoding mechanisms
of this library are simple and probably easier to understand than
those of other more advanced libraries. We refer the reader to the
original LIGD paper [Cheney and Hinze, 2002] for a more detailed
explanation of this approach.

In polymorphic lambda calculus it is impossible to write one
parametrically polymorphic equality function that works on all
datatypes [Wadler, 1989]. That is why the definition of equality
in Haskell uses type classes, and ML uses equality types. The Eq
type class provides the equality operator ==, which is overloaded for
a family of types. To add a newly defined datatype to this family,
the programmer defines an instance of equality for it. Thus, the
programmer must manually write definitions of equality for every
new datatype that is defined. For equality, this process could be
automated by using the type class deriving mechanism. However,
this mechanism can only be used with a small number of type
classes because it is hardwired into the language, making it closed
and impossible to extend or change by the programmer.

Generic programming addresses the concern mentioned above
in the form of generic functions. Generic functions are defined once
and work for a large family of datatypes. In generic programming,
the introduction of a new datatype does not require redefinition
or extension of all existing generic functions. We merely need to
describe the new datatype to the library, and all existing and future
generic functions will be able to handle it.

Below we give a brief introduction to generic programming and
the terminology that we use throughout this paper.

A type-indexed function (TIF) is a function that is defined on
every type of a family of types. We say that the types in this
family index the TIF, and we call the type family a universe. A
TIF is defined by case analysis on types: each type is assigned a

2008/4/24

geq :: Repa — a — a — Bool
geq (RUnit) Unit Unit = True
geq (RSum r2 1) (Inl a1) (Inl a2) = geq 12 a1 a2
geq (RSum ra ny) (Inr b1) (Inr b2) = geq 1 b1 ba
geq (RSum ra my) — _ = False
geq (RProd 2 1) (Prod a1 b1) (Prod az b2)

=geq a2 a1 az A\ geq 1, b1 b

Figure 1. Type-indexed equality function in the LIGD library

data Unit = Unit
dataSumab =1Inla| Inrb
data Prod ab = Prod ab

Figure 2. Unit, sum and product datatypes

function that acts on values of that type. As a familiar example,
consider the TIF equality implemented using Haskell type classes.
The universe consists of the types that are instances of the Fq type
class. Equality for each of these types is given by the == method
of the corresponding instance. And the case analysis on types is
provided by instance selection.

Haskell type classes are only one of the possible implementa-
tions of TIFs. In this section we use LIGD with Generalised Al-
gebraic Datatypes (GADTs) [Peyton Jones et al., 2006] to imple-
ment TIFs. As an example, we start with the equality TIF which
is indexed by a universe consisting of units, sums and products.
We show the definitions in Figures 1 and 2. Note that in Haskell
type variables appearing in type signatures are implicitly univer-
sally quantified.

The first argument of the function is a type representation, it
describes the type of the values that are to be compared (second
and third arguments). Haskell does not allow functions to depend
on types, so here types are represented by a GADT. This has
the advantage that case analysis on types can be implemented by
pattern matching, a familiar construct to functional programmers.
The GADT represents the types of the universe consisting of units,
sums and products:

data Rep t where
RUnit :: Rep Unit
RSum ::Rep a — Rep b — Rep (Sum a b)
RProd :: Repa — Rep b — Rep (Prod a b)

geq has three type-indexed function cases, one for each of the base
types of the universe.

Let us now turn to the concept of TIF instantiation. Instantiation
is the process by which we make a TIF specific to some type t, so
that we can apply the resulting function to t values. In LIGD the
instantiation process is straightforward: geq performs a fold over
Rep t using pattern matching, and builds an equality function that
can be used on t values. In other approaches, instantiation uses, for
example, the type class system.

Suppose now that we want to instantiate equality to lists. Since
a generic function can only be instantiated to types inside the
universe, we need to extend our universe to lists. There are two
ways to do this. The first is non-generic extension, we extend our
case analysis on types so that lists are handled by equality. In
LIGD, this translates into the following: extend Rep with an R List
constructor that represents lists, and extend equality with a case for
RList:

geq (RList 13) zs ys = ...

The second way to implement extension is generic extension:
we describe the structure of the list datatype in terms of types inside
the universe. The consequence is that instantiation to lists does not
need a special case for lists, but reuses the existing cases for sums,
products and units. To make the idea more concrete let us have a
look at how type structure is represented in LIGD.

In LIGD, the structure of a datatype b is represented by the
following Rep constructor.

RType :: Repc — EPbc— Repb

The type c is the structure representation type of b, where c is a
type isomorphic to b. The isomorphism is witnessed by an em-
bedding projection pair, which is a pair of functions that convert b
values to ¢ values and back.

data EP b c = EP{from:: (b —c),to:: (c = b)}

In LIGD, constructors are represented by nested sum types and
constructor arguments are represented by nested product types. The
structure representation type for lists is Sum Unit (Prod a [a]),
and the embedding projection for lists is as follows:

fromList :: [a] — Sum Unit (Prod a [a])
fromList [] = Inl Unit
fromList (a: as) = Inr (Prod a as)
toList :: Sum Unit (Prod a [a]) — [a]
toList (Inl Unit) =]

toList (Inr (Prod a as)) = a: as

To extend the universe to lists, we write a type representation using
RType:

rList ::Rep a — Rep [a]
rList ra = RType (RSum RUnit (RProd 1, (rList 12)))
(EP fromList toList)

Generic equality is still missing a case to handle datatypes that are
represented by RType. The definition of this case is given below. It
takes two values, transforms them to their structure representations
and recursively applies equality.

geq (RType 12 ep) t1 ta = geq ra (from ep t1) (from ep t2)

In summary, there are two ways to extend a universe to a type T.
Non-generic extension requires type-specific, ad-hoc cases for T in
type-indexed functions, and generic-extension requires a structure
representation of T but no additional function cases. This is a
distinguishing feature between type-indexed functions and generic
functions. The latter include a case for RType, which allows them
to exploit the structure of a datatype in order to apply generic
uniform behaviour to values of that datatype; while the former do
not have a case for RType, and therefore rely exclusively on non-
generic extension.

In LIGD, sums, products, and units are used to represent the
structure of a datatype. Certainly, other choices are possible. For
example, PolyLib includes the datatype Fix in the universe, in or-
der to represent the recursive structure of datatypes. We refer to
these representation choices as generic views [Holdermans et al.,
2006]. Informally, a view consists of base (or view) types for the
universe (for example Sum and Prod) and a convention to represent
structure, for example, the fact that constructors are represented by
nested sums. The choice of a view will often impact the expres-
siveness of a library, that is, which generic function definitions are
supported and what are the set of datatypes on which generic ex-
tension is possible.

3. Design of the benchmark suite

Most previous work on datatype-generic programming focuses on
either increasing the number of scenarios in which generic pro-

2008/4/24

gramming can be applied, or on obtaining the same number of sce-
narios using fewer or no programming language extensions. For
example, Hinze’s work on “Polytypic values possess polykinded
types” [Hinze, 2002] shows how to define generic functions that
work on types of arbitrary kinds, instead of on types of a particular
kind, and “Generics for the Masses” [Hinze, 2006] shows how to
do a lot of generic programming without using Haskell extensions.
Both goals are achieved by either inventing a new generic program-
ming approach altogether, or by extending an existing approach.
We have collected a number of typical generic programming
scenarios from the literature. These are used as a guide to design
our benchmark suite. The intuition is that the evaluation of a library
should give an accurate idea of how well the library supports the
generic programming scenarios. We list the scenarios below:

e Generic versions of Haskell type class functionality such as
equality (Fq), comparison (Ord) and enumeration (Enum)
[Jansson and Jeuring, 1998].

e Serialisation and deserialisation functions such as read and
show in Haskell [Jansson and Jeuring, 2002].

e Traversals to query and modify information in datatypes [Lammel

and Peyton Jones, 2003].

e Functions like map, crush, and transpose, which manipulate
elements of a parametrised datatype such as lists [Jansson and
Jeuring, 1998, Norell and Jansson, 2004].

e Data conversion [Jansson and Jeuring, 2002, Atanassow and
Jeuring, 2004].

e Test data generation [Koopman et al., 2003, Lammel and Pey-
ton Jones, 2005].

We have identified the features that are needed from a generic
library to implement the scenarios above. These features are used as
criteria to characterise generic programming from a user’s point of
view, where a user is a programmer who writes generic programs.
There are also users who only use generic programs (such as people
that use deriving in Haskell), but the set of features needed by the
latter kind of users is a subset of that needed by the former. Generic
programming scenarios are not the only source of criteria, we also
use the following sources:

e new features introduced by existing approaches such as Hinze
[2002],

e Comparing approaches to generic programming in Haskell
[Hinze et al., 2007],

e the Haskell generics wiki page [Haskell Generic Library list,
2008],

e our own ideas, based on several years experience with different
approaches to generic programming.

We test whether the criteria are fulfilled with a benchmark suite.
Each function in the suite tests whether or not an approach satisfies
a particular criterion. For example, generic map cannot be imple-
mented if the “abstraction over type constructors” criterion is not
supported by the library. Hence, if a library cannot be used to im-
plement a function, it means that it does not support the criterion
that the function is testing. Each function in the benchmark suite
can be regarded as a simplified version of one of the above pro-
gramming scenarios.

Before introducing the functions used in the benchmark suite,
we describe the datatypes on which they are used, and the related
structure representation machinery.

data Rep t where

RUnit ::Rep Unit

RSum ::Repa — Repb — Rep (Sum ab)
RProd ::Repa— Repb — Rep (Prod ab)
RType :Repa— EPba—Repb

RSalary :: Rep Salary
RWTree :: Rep a — Rep w — Rep (WTree a w)

Figure 3. Definition of Rep. The two last constructors are not part
of the LIGD library.

rCompany :: Rep Company
rDept :: Rep Dept
rBinTree ::Rep a — Rep (BinTree a)
rWTree ::Repa— Repw — Rep (WTree a w)
rGRose ::(Va.Repa — Rep (f a)) —
Rep a — Rep (GRose f a)

Figure 4. Type signatures of some type representations.

3.1 Datatypes

The datatype construct in Haskell combines many aspects: type ab-
straction and application, recursion, records, local polymorphism,
etc. In this section we introduce a number of datatypes, that cover
many of these aspects. A generic programming library that can ap-
ply generic functions to one of these datatypes is said to support the
aspects that the datatype requires in its definition.

The aspects that we test for are: parametrised types (type con-
structors, which use type abstraction and type application), both
simple and nested recursion, higher-kinded datatypes (which have
a parameter of kind x — x) and constructor name information (in
order to implement generic show).

The aspects that we do not test in this paper are higher-rank
constructors (explicit forall in the datatype declaration), existential
types, GADTs, and parsing related information, namely record
label names, constructor fixity, and precedence. The three first
aspects are not tested because they are hardly supported by any
of the libraries that we evaluate. The last aspect, parsing-related
information, can be incorporated using the same mechanisms as for
providing constructor names, and therefore we do not add datatypes
that test for this aspect.

Following each datatype definition we must also provide the
machinery that allows universe extension for the particular library
we are using. For LIGD each datatype T must map to a structure
representation type T’ and back, with functions fromT and toT.
The type representation for T is 7T, it is written using RType like
the list representation (rList) in Section 2. However, two of the
datatypes presented below, namely Salary and WTree, are used in
non-generic extension tests. For this reason the definition of Rep in
Figure 3 includes the constructors RSalary and RW Tree.

The company datatype. The Company datatype represents the
organisational structure of a company. It was introduced in the first
SYB paper.

data Company = C [Dept]

data Dept = D Name Manager [DUnit]
data DUnit = PU Employee | DU Dept
data Employee = F Person Salary

data Person = P Name Address

data Salary = S Float

2008/4/24

type Manager = Employee
type Name = String
type Address = String

To define the representation of Company we must also define
the representation of the supporting datatype Dept. The same holds
for the other company datatypes.

rCompany = RType (rList rDept)
(EP fromCompany toCompany)
rDept = ...

Because Salary is used with non-generic extension, the representa-
tion uses RSalary directly:

rSalary = RSalary

Binary trees. The recursive BinTree datatype abstracts over the
type of its elements stored in the leaves.

data BinTree a = Leaf a | Bin (BinTree a) (BinTree a)

Like lists, the representation of a binary tree is a function on
representations that depends on the representation of a:

rBinTree ry = let r = rBinTree r, in
RType (RSum 12 (RProd r 1))
(EP fromBinTree toBinTree)

Trees with weights. We adapt the type of binary trees such that
we can assign a weight, whose type is abstracted, to a (sub)tree.

data WTree aw = Wleaf a
| WBin (WTree aw) (WTree a w)
| WithWeight (WTree a w) w

Some of the generic function tests treat weights differently from
elements, even if their types are the same.

The representation of WTree and the remaining datatypes are
omitted because they follow they same pattern as rBinTree de-
fined just above. However, Section 3.2.3 uses a different structure
representation of WTree to define specialised behaviour for con-
structors.

Generalised rose trees. Rose trees are (non-empty) trees whose
internal nodes have a list of children instead of just two.

data Rose a = Node a [Rose a]
We can generalise Rose by abstracting from the list datatype:
data GRose f a = GNode a (f (GRose f a))

The interesting aspect that GRose tests is higher-kindedness: it
takes a type constructor argument f of kind x — .

Perfect trees. The datatype Perfect is used to model perfect bi-
nary trees: binary trees that have exactly 2" elements, where 7 is
the depth of the binary tree.

data Perfect a = Zero a | Succ (Perfect (Fork a))
data Forka = Forkaa

The depth of a perfect binary tree is the Peano number represented
by its constructors. The datatype Perfect is a so-called nested
datatype [Bird and Meertens, 1998], because the type argument
changes from a to Fork a in the recursion.

Nested generalised rose trees. The NGRose datatype is a vari-
ation on GRose that combines nesting with higher-kinded argu-
ments: at every recursive call f is passed composed with itself:
data NGRose f a
= NGNode a (f (NGRose (Comp f f) a))
newtype Comp f ga = Comp (f (g a))

Non-generic representations for Salary and WTree. Two of the
datatypes introduced above are used in tests that check whether
a library supports non-generic extension. Because non-generic ex-
tension is not supported by LIGD, we assume that Rep includes
representation constructors for those datatypes in order to be able
to describe the extension tests. The full definition of Rep and the
signatures of some representations are shown in Figures 3 and 4.
Note that post-hoc addition of constructors to the Rep datatype is a
suboptimal idea that will break existing code. Concretely, the defi-
nition of geq in this paper is for the first four constructors (R Unit,
RSum, RProd, RType) of Rep, thus any use of geq on RSalary
or RWTree will fail. We return to this problem in Section 5 where
we discuss support for ad-hoc definitions in LIGD.

3.2 Functions

Inspired by the generic programming scenarios given at the begin-
ning of this section, we describe a number of generic functions for
our benchmark suite.

It is not necessary to include all functions arising from the
generic programming scenarios. If two functions use the same set
of features from a generic programming library, it follows that if
one of them can be implemented, the other can be implemented
too. For example, the test case generator, generic read, and generic
enumeration functions rely on library support for writing producer
functions. So, it is enough to test that feature with only one func-
tion, and hence we omit the last two functions from the benchmark
suite.

3.2.1 Generic variants of type class functionality: Equality

Generic equality takes a type representation argument Rep a and
produces the equality function for a-values.

geq :: Repa — a — a — Bool

On most datatypes we assume that two values are equal if and
only if they have the same constructor and if the arguments of the
constructors are pairwise equal. In LIGD, constructors are encoded
as nested sum types. It follows that two values are equal only if
they have the same constructor (Inl or Inr) and the constructor
arguments are equal too. The constructor arguments are encoded as
nested products, hence product equality must require the equality
of corresponding components. The implementation in Fig. 1 shows
the sum and product cases. Constructor names are ignored — only
positions of constructors in the “constructor list” and positions of
arguments in the “argument list” are taken into account.

The generic version of the Ord method, compare, would have
type Rep a — a — a — Ordering. Like equality it takes two
arguments and consumes them (as opposed to producing a value
of that type). Approaches that can implement equality can also
implement comparison.

3.2.2 Serialisation and deserialisation: Show

The show function takes a value of a datatype as input and returns
its representation as a string. It can be viewed as the implementation
of deriving Show in Haskell. Its type is as follows:

gshow :: Rep a — a — String

The function gshow is used to test the ability of generic libraries to
provide constructor names for arbitrary datatypes. For the sake of
simplicity this function is not a full replacement of Haskell’s show:

e The generic show function treats lists in the same way as other
algebraic datatypes. (Note that in the examples that follow we
use ~~ to indicate reductions of expressions.)

gshow [1,2] ~ "(:) 1 ((:) 2 [DH"

2008/4/24

Note, however, that gshow is extended in one of the tests to
print lists using Haskell notation. This is a separate test that is
called gshowFuxt.

e [t also treats strings just as lists of characters:
gshow "GH" ~~ "(:) °G”> ((:) *H> [D"

e Other features that are not supported are constructor fixity,
precedence and record labels.

3.2.3 Querying and transformation traversals

A typical use of generic functions is to collect all occurrences of
elements of a particular constant type in a datatype. For example,
we might want to collect all Salary values that appear in a datatype:

selectSalary :: Rep a — a — [Salary]
We can instantiate this function to Company:
selectSalary rCompany :: Company — [Salary]

Collecting values is an instance of a more general pattern: querying
traversals. The function above can be implemented using (1) a
general function (which happens to be generic) that performs the
traversal of a datatype, and (2) a specific case that actually collects
the Salary values.

Querying traversals are interesting because they require two
features from a generic programming library:

e The ability to define a generic function that has an ad-hoc (non-
uniform) definition for some type. For example, salaryCase
returns a singleton list of its argument if applied to a Salary
value. Otherwise it returns the empty list.

salaryCase :: Rep a — a — [Salary]
salaryCase RSalary sal = [sal]
salaryCase rep -

The LIGD library does not support this feature, but we extended
the Rep type in Fig. 3 to be able to show what it would look like.

The ability to define a generic function that takes another
generic function as argument. Consider for example (the LIGD
version of) the gmap (@ function from the first SYB paper,

gmap@ :: (Va.Repa—a—r) > Repb — b — [r]
such that
gmapQ f rT (K a1 ...an) ~ [f rTh a1, ..., [7Ty an]

This function takes three arguments: a generic function f, a
type representation and a value of that type. If the value is
a constructor K applied to a number of arguments, gmapQ
returns a list of f applied to each of the arguments.

Using salaryCase as argument it gives:

gmap@Q salaryCase (rList rSalary) (S 1.0: [S 2.0])
~ [salaryCase rSalary (S 1.0)
, salaryCase (rList rSalary) [S 2.0]]
~ [[$ 1.0}, 1]

It is not a good idea to test for both features with one single
test case in our suite: if a library does not support one of them
the other will remain untested. For this reason we test these two
features separately, using the functions selectSalary and gmap@Q:

selectSalary :: Rep a — a — [Salary]
gmap@ :: (Va.Repa—a—r) - Repa —a—|[r]

Transformation traversals. An obvious variation on queries are
transformation traversals. A typical example of such a traversal
consists of transforming some nodes while performing a bottom-
up traversal. Function updateSalary increases all occurrences of
Salary by some factor in a value of an arbitrary datatype.

updateSalary :: Float — Repa — a — a

updateSalary 0.1 (rList rSalary) [S 1000.0, S 2000.0]
« [S 1100.0,2200.0]

Transformations on constructors. The updateSalary function
traverses datatypes other than Salary generically, in other words
the traversal is performed on the structure representation using the
cases for products, sums and units. It follows that it is unnecessary
to supply ad-hoc traversal cases for such datatypes.

In updateSalary, the ad-hoc behaviour targets a particular
datatype. Constructor cases [Clarke and Loh, 2003] are a refine-
ment of this idea. They let us introduce ad-hoc behaviour that
instead targets a particular constructor, and handles the rest generi-
cally.

Suppose that we want to apply the optimisation rule

z+0—2x

to values of a datatype which consists of a large number of con-
structors. Ideally we would like constructors other than sum to be
traversed generically, and only an ad-hoc case for sums, implement-
ing the rewrite rule.

The benchmark suite includes the function rm Weights to
test ad-hoc behaviour for constructors. This function removes the
weight constructors from a WTree

rmWeights (RWTree RInt RInt)
(WBin (WithWeight (WLeaf 42) 1)
(WithWeight (WLeaf 88) 2))
~> (WBin (WLeaf 42) (WLeaf 88))

The definition of the transformation handles the With Weight con-
structor and lets the remaining constructors be handled by the
generic machinery.

rmWeights :: Repa — a — a
rmWeights rQ(RWTree ra rw) t =
case t of
WithWeight t' w — rmWeights r t'
t/ — ...handle generically ...
... rest of definition omitted ...

The second arm of the case traverses the structure representation of
t' generically rather than matching WBin and WLeaf explicitly.
The full code of the function is shown in Fig. 5.

The last line of the definition uses 7WTree to traverse the
structure representation of ¢'. Because it is essential that remain-
ing WithWeight constructors in ¢’ are removed, the definition of
rWTree has to be altered for this function. The recursive occur-
rences of WTree have to be represented by RWTree rather than
rWTree as is usually done in other structure representations. In
this way traversals of the subtrees will again be handled by the ad-
hoc case (see Fig. 5).

3.2.4 Abstraction over type constructors: crush and map

The function crushRight [Meertens, 1996] is a generic fold-like
function. Typical instances are summing all integers in a list, or
flattening a tree into a list of elements.

sumList :: [Int] — Int
sumList [2,3,5,7] ~ 17
flattenBinTree :: BinTree a — [a]

2008/4/24

rmWeights :: Rep a — a —a
rm Weights RUnit Unit = Unit
rmWeights (RSum 12 1) (Inl x)
= Inl (rmWeights ra x)
rmWeights (RSum 12 1) (Inr)
= Inr (rmWeights n, x)
rmWeights (RProd v, 1) (Prod a b)

= Prod (rmWeights ra a) (rmWeights r, b)
rmWeights (RType ra ep) t

= to ep (rmWeights ra (from ep t))
rmWeights (RWTree 1a 1) t

= case t of
WithWeight t' w — rmWeights (RWTree ra 1) t’
t — rmWeights (rWTree s) t'

rWTree :: Rep a — Rep w — Rep (WTree a w)
rWTree rs rw = let r = RWTree 73 1w in
RType (RSum 1, (RSum (RProd v r) (RProd r 1w)))
(EP fromWTree toWTree)

Figure 5. Generically remove weights from a WTree.

flattenBinTree (Bin (Leaf 2) (Leaf 1)) ~ [2,1]

The generic version of these functions abstracts over the type of the
structure:

crushRight ::Rep' f - (a—b—b) —-fa—b—b

The function crushRight traverses the f a structure right to left
accumulating a value of type b, which is updated by combining it
with every a-value that is encountered during the traversal.

So far, generic functions have been using a type representation
that encodes types of kind . Lists are not an exception: rList 7,
represents fully applied list types. In order to define crushRight we
switch to a type representation that encodes types of kind x — .
This is why we use Rep’ instead of Rep (and below rList’ instead
of rList). This is a common situation: to increase expressiveness
of a generic library the type representation is adjusted. This is
also an unfortunate situation because, in general, different type and
structure representations are mutually incompatible.

Function crushRight can be instantiated on lists or trees, and
given the right arguments, we obtain the definitions of sumList
and flattenBinTree:

sumList zs = crushRight rList’ (+) zs 0
flattenBinTree bt = crushRight rTree’ (:) bt []

How are generic queries different from crushRight? We could for
example define a function selectInt to flatten a BinTree Int into a
list of Int values. There are two differences. First, if the BinTree
elements were booleans instead of integers, we would need a dif-
ferent querying function: selectBool. With flattenBinTree we do
not have these problems because it is parametrically polymorphic
in the elements of the datatype.

The second difference is about the type signature of the query-
ing function. Suppose now that we want to flatten WTree Int Int
into a list of weights.

flatten WT Weights :: WTree a w — [w]

flatten WT Weights (WBin (WithWeight (WLeaf 1) 2)
(WithWeight (WLeaf 3) 4))
~ [2,4]

This is just an instance of crushRight:

flattenWT Weights tree = crushRight rWTree' (:) tree []

where rWTree’ represents WTree a for any a. With queries, it is
not at all obvious how to implement this. For selectInt there is no
difference between Int-weights and Int-elements in the tree. So it
gives the following incorrect result:

selectInt (WBin (WithWeight (WLeaf 1) 2)
(WithWeight (WLeaf 3) 4))
~ [17 2’ 37 4]

To sum up, the difference with queries is that crushRight views the
datatype as an application of a type constructor f to an element type
a, and processes only a-values. In contrast, traversal queries do not
make such element discrimination based on the type structure of
the datatype.

Map. Generic map is to transformation traversals what crushRight
is to query traversals. The gmap function takes a function and a
structure of elements, and applies the function argument to all ele-
ments in that structure. The type signature of gmap uses the same
representation as crushRight:

gmap ::Rep’ f — (a—b) -fa—fb

The best known instance is the map function on lists, but we also
have instances like

gmap rBinTree’ :: (a — b) — BinTree a — BinTree b

In general, gmap can be viewed as the implementation of deriving
for the Functor type class in Haskell.

Another function, generic transpose, is representative not only
of abstraction over type constructors but also of data conversion
functions. We discuss it next.

3.3 Data conversion: transpose

Data conversion functions have type T — T’: they convert T val-
ues into T’ values. Generic approaches to build conversion func-
tions are discussed in the work of Jansson and Jeuring [2002] and
Atanassow and Jeuring [2004]. It turns out that there is no need
to include the conversion functions from these sources, because
the conversion functions are built out of simpler generic functions
which are already accounted for in our scenarios. The former paper
uses a combination of serialisation, deserialisation, and abstraction
over type constructors. The latter paper composes serialisation and
deserialisation functions that exploit isomorphisms in the interme-
diate structures.

A more sophisticated version of data conversion is the generic
transpose function, described in Norell and Jansson [2004]. Al-
though this function can be implemented using a combination of
serialisation, deserialisation, and abstraction over type construc-
tors, it is an interesting challenge for library approaches because
it abstracts over two type constructors.

The generic transpose function is a generalisation of the func-
tion transpose that is defined in the Haskell standard library. Since
this function abstracts over two type constructors it takes two type
representations:

gtranspose :: Rep’ f — Rep’ g — f (ga) — g (f a)

Instantiating both f and g on the list datatype we obtain transpose
again.

transpose = gtranspose rList’ rList’
transpose [[1,2,3],[4,5,6]] ~ [[1,4],[2,5],[3,6]]
It can also be instantiated to other datatypes:

gtranspose rList’ rBinTree' [Leaf 1, Leaf 2, Leaf 3]
~ Leaf [1,2,3]

2008/4/24

3.3.1 Test data generation: Fulltree

Testing is used to gain confidence in a program. QuickCheck
[Claessen and Hughes, 2000] is a popular tool that supports au-
tomatic testing of properties of programs. A user-defined datatype
can be used in an automated test, provided it is an instance of the
Arbitrary class.

To implement the test data generation scenario, a library should
be able to produce values. The test data generation scenario is
represented by the gfulltree function.

The gfulltree function takes a representation of a container
datatype as input and returns a value of the represented datatype.
An additional integer parameter is used to constrain the size of
the value. The actual size of the value depends on the type itself
and its representation. In the case of LIGD and a binary tree, the
size determines the depth of the tree. Here are the type signature of
gfulltree and some examples of its usage:

gfulltree :: Repa — Int — a

gfulltree (rList rint) 6 ~ [0,0,0,0,0,0]
gfulltree (rBinTree rint) 2
~» Bin (Bin (Leaf 0) (Leaf 0)) (Bin (Leaf 0) (Leaf 0))

Function gfulltree can also be used to generate large values that are
used in performance tests.

3.3.2 More general representations of type constructors

The generic functions above use type representations over types of
kind *:

geq :: Repa — a — a — Bool
and over types of kind x — *
gmap ::Rep’ f — (a—b) -fa—fb

What if we want to apply gmap to transform both the payload
and weights of a WTree? Should we define Rep” to represent
types of kind x — x — x? It is not good practice to define a
new representation every time we come across a kind that was not
previously representable.

Below we discuss briefly how some libraries generalise over
types of arbitrary kinds. While those solutions are more general
(and maybe more useful) than having one representation per kind,
the full discussion of these solutions would complicate the presen-
tation. We continue to use Rep and Rep’ in this paper to keep the
presentation of gmap and crushRight simple.

Representations and arities. The work of Hinze [2002] intro-
duces a technique to allow generic functions to be applied to type
constructors of arbitrary kinds. The technique consists in general-
izing the type signature of a generic function so that it becomes
generic in more than one type variable. Let us examine this tech-
nique in a library setting, here we use the representations intro-
duced by the GM approach [Hinze, 2006].

The idea is that GM type representations, in addition to abstract
over a type a:

data Repa = ...
they also abstract over the signature of a generic function:
data Repl (sig::x — %) (a1 %) = ...

Here sig could be used, for example, with the signature of equality
(newtype Eq a = Eq (a — a — Bool)) or generic show
(newtype Show a = Show (a — String)). Generic map,
however, cannot be defined using Repl because it needs to change
the type of its argument. So the type signature needs to abstract over
two types rather than one: newtype Map a b = Map (a — b).
This prompts for a new representation:

data Rep2 sig a b where
RUnit2 :: Rep2 sig Unit Unit
RSum2 :: Rep2sigab — Rep2sigcd
— Rep2 sig (Sum a c) (Sum b d)
RProd2 :: Rep2sigab — Rep2sigcd
— Rep2 sig (Prod a ¢) (Prod b d)

RType2 :: Rep2sigad — EPba—EPed
— Rep2sigbe
RVar2 :: sigab— Rep2sigab

rWTree2 :: Rep2sigab — Rep2sigcd
— Rep2 sig (WTree a c) (WTree b d)

Figure 6. Type representation for generic functions of arity two

data Rep2 (sig::x —x — %) (a: %) (bux) = ...
and a new definition:

gmap :: Rep2 Mapab —a—b
gmap = ...
Now, what happens if we want to define generic zip? The signature

abstracts over three variables: newtype Zip a b c = Zip (a —
b — c), which needs a new representation:

data Rep3 (sig::x = +x — * — %) (au*) (bux) (cu%) = ...

The number of variables over which a generic function signature
abstracts is called the arity of the function. Generic equality has ar-
ity one, while generic map has arity two. Unfortunately, arities are
a source of redundancy: every arity requires a new representation.
It is possible to define generic functions of arity one and two using
Rep3, but that solution is rather inelegant.

Let us examine the increased generality of these new represen-
tations. The definition of Rep2, which is given in Figure 6, reveals
strong similarities to Rep: there are representations for units, sums
and products. The novelty lies in the Var2 constructor. This con-
structor stores a function having type sig a b. This is the key
that enables abstraction over type constructors of arbitrary kind.
To see why, let us try to specialize gmap to WTree, which has kind
* — ok — Kk,

mapWTree :: (a —b) - (w—1t) > WTreeaw — WTree b t

mapWTree f g = let mkR x = RVar2 (Map x)
in gmap (rWTree2 (mkR f) (mkR g))

The functional arguments which perform the transformation on the
tree data are stored inside the representation, so that gmap can
apply them when handling the RVar2 case.

New representations for differently-kinded types are not re-
quired, because the instantiation looks very similar to what we saw
above in map WTree. Hence it is more general than kind-specific
representations like Rep’.

4. Criteria

In this section we describe the criteria used to evaluate the generic
programming libraries. We have grouped criteria around three as-
pects:

e Types: To which datatypes generic functions can be applied,
and the signatures of generic functions.

e Expressiveness: The kind of generic programs that can be writ-
ten.

e Usability: How convenient a library is to use, efficiency, quality
of library distribution, portability.

2008/4/24

Types Expressiveness (continued) Usability

® Universe Size ® Ad-hoc definitions for ® Performance

datatypes

® Subuniverses ® Portability

® Ad-hoc definitions for e Overhead of

Expressiveness

constructors library use

® First-class ® Extensibility -

generic ' ® Practical aspects

functions ® Multiple arguments e Ease of use and
e Abstraction ® Multiple type learning

over type representation arguments

constructors e Constructor names
o Separ'ate. ® Consumers, transformers,

compilation and producers

Figure 7. Criteria overview

Figure 7 summarizes the criteria and the organization. In this sec-
tion, we describe the evaluation criteria and, when possible, we il-
lustrate them with code.

Types

e Universe Size. What are the types that a generic function can be
used on? The more types a generic function can be used on, the
bigger the universe size for that library. Different approaches
implement generic universe extension in different ways, hence
the sizes of their universes can differ.

Ideally, we would like to know whether a given library supports
generic extension to nested and higher-kinded datatypes. But
the claim that universe extension applies to, for example, nested
datatypes is impractical to verify. It would require a rigorous
proof that covers all nested datatypes.

Instead, we take a less ambitious alternative to estimate the
size of the universe. We test whether a given approach sup-
ports extension to a number of datatypes, each of which demon-
strates a particular datatype property. We test universe exten-
sion on lists and BinTree (regular datatypes), GRose (higher-
kinded), Perfect (nested), NGRose (higher-kinded and nested),
and Company datatypes and WTree (other Haskell 98, that is,
none of the previous categories).

Subuniverses. Is it possible to restrict the use of a generic
function on a particular set of datatypes, or on a subset of all
datatypes? Will the compiler flag uses on datatypes outside that
subuniverse as a type error?

Expressiveness

e First-class generic functions. Can a generic function take a
generic function as an argument? This is tested by gmap(@,
the function that applies a generic function argument to all
constructor arguments:

gmap@ (rList RInt) gshow (1:[2])
~ [gshow RInt 1, gshow (rList RInt) [2]]
~ [nlll7 u(:) 2 [] ll}
Here gshow is applied to the two fields of the list constructor

(:), each having a different type, hence gshow must be instan-
tiated to different types.

Abstraction over type constructors. The equality function can
usually be defined in an approach to generic programming, but a
generalisation of the map function on lists to arbitrary container
types cannot be defined in all proposals. This criterion is tested
by the gmap and crushRight generic functions.

e Separate compilation. Is generic universe extension modular?
That is, can a datatype defined in one module be used with

a generic function and type representation defined in other
modules without the need to modify or recompile them? This
criterion is tested by applying generic equality to BinTree,
which is defined in a different module than equality and the
library itself.

module BinTreeEq where
import LIGD -- import LIGD representations
import GEq --and geq
data BinTree a = ...
rBinTree ra = RType (...)
(EP fromBinTree toBinTree)

eqBinTree = geq (rBinTree RInt)
(Leaf 2)
(Bin (Leaf 1) (Leaf 3))

Ad-hoc definitions for datatypes. Can a generic function con-
tain specific behaviour for a particular datatype, and let the re-
maining datatypes be handled generically? In this situation, ad-
hoc, datatype-specific definitions are used instead of uniformly
generic behaviour. This is tested by the selectSalary function,
which consists of cases that perform a traversal over a datatype,
accumulating the values collected by the Salary ad-hoc case
(traversal code omitted for brevity):

selectSalary :: Rep a — a — [Salary]
selectSalary RSalary (S z) =[S z]

Ad-hoc definitions for constructors. Can we give an ad-hoc
definition for a particular constructor, and let the remaining
constructors be handled generically? This is tested by the
rm Weights function, which should have an explicit case to
remove WithWeight constructors and the remaining construc-
tors should be handled generically.

Extensibility. Can the programmer non-generically extend the
universe of a generic function in a different module? Because
the extension meant here is non-generic, this criterion makes
sense only if ad-hoc cases are possible. This criterion is tested
by extending gshow with an ad-hoc case that prints lists using
Haskell notation:

module Eztended GShow where
import GShow -- import definition of gshow

-- ad-hoc extension
geq (RList ;) Ts = ...

Multiple arguments. Consumer functions such as gshow and
selectSalary have one argument that is generic. Can the ap-
proach define a function that consumes more than one generic
argument, such as the generic equality function?

Multiple type representation arguments. Can a function be
generic in more than one type? That is, can a generic function,
such as the generic transpose function, receive two or more type
representations?

The evaluation of this criterion is work in progress, so we do
not include it in this paper.

Constructor names. Can the approach provide the names of
the constructors to which a generic function is applied? This is
tested by the gshow generic function.

Consumers, transformers, and producers. Is the approach
capable of defining generic functions that are:

= consumers (a — T): gshow and selectSalary

2008/4/24

= transformers (a — a or a — b): updateSalary and gmap

» producers (T — a): gfulltree

Usability

e Performance. Some proposals use many higher-order func-
tions to implement generic functions, others use conversions be-
tween datatypes and structure types. We have compared running
times for some of the test functions for the different libraries.

Portability. Few proposals use only the Haskell98 standard for
implementing generic functions, most use all kinds of (some-
times unimplemented) extensions to Haskell98, such as recur-
sive type synonyms, multi-parameter type classes with func-
tional dependencies, GADTs, etc. A proposal that uses few or
no extensions is easier to port across different Haskell compil-
ers.

Overhead of library use. How much overhead (additional pro-
gramming effort) is imposed on the programmer for the use of
a generic programming library? We are interested in (1) sup-
port for automatic generation of structure representations, (2)
number of structure representations needed per datatype, (3)
the amount of work to instantiate a generic function, and (4)
the amount of work to define a generic function.

Practical aspects. Does there exist an implementation? Is it
maintained? Is it documented?

Ease of learning and use. Some generic programming libraries
use implementation mechanisms that make their use or learning
more difficult.

4.1 Coverage of testable criteria

Criteria can be divided into testable and non-testable groups.
Testable criteria are the ones that can be tested by means of a
generic function in the benchmark suite. Figure 8 shows the cov-
erage of testable criteria. The rows represent testable criteria and
the columns represent the means of testing them. The first group
of columns stand for the testing functions introduced in Section 3.
The criteria that a generic function tests are marked with @.

The second group of columns stand for datatypes that test
generic universe extension. These tests check whether generic
equality can be instantiated and applied to values of those types.
This explains that these columns test for the same criteria that the
geq column does.

Some testing functions unavoidably require support of two cri-
teria from a library. For example, the generic extension test on the
GRose datatype requires separate compilation and higher-kinded
datatypes. This brings up the problem that lack of support for the
first criterion will cause failure of the test, which, according to our
procedure (described in Section 3), means failure for the second
criterion too. As a result, despite the fact that the second criterion
remains untested, the criterion will be assumed non-supported by
the library. This test would fail on Spine because it does not sup-
port separate compilation, but from the failure of the test it can
erroneously be concluded that higher-kinded datatypes are not sup-
ported by Spine.

For this reason we have avoided requiring more than one crite-
rion to implement a testing function, but this is not always possible.
In such a situation we cheat a little: we ignore the issue of separate
compilation and test it separately. This is shown in Figure 8. The
criteria that are normally needed but are ignored for the particu-
lar test (because of the more than one criterion per test issue) are
marked with O.

4.2 Design choices

The criteria that we have seen so far are interesting from a user’s
point of view. They inform the user on what generic programs
can and cannot be written using the libraries. However, it is also
illustrative to see the design choices that have been taken by the
designers of these libraries, because a particular design choice may
improve or hinder the support of an expressiveness criterion. For
example, the use of type classes is essential to libraries that support
extensibility, but they can also make the use of generic functions as
first-class values more difficult.
In this paper, we look at two design choices:

¢ Implementation mechanisms. How are types and their struc-
ture represented at runtime? Are these representations handled
explicitly (as arguments that can be pattern matched) or implic-
itly (as type class contexts)? Are they abstract (higher order,
including functions) or concrete (first order syntax for types).

e Views. What are the views that the generic library supports?
Examples of views are the sum of products view, the fixed point
view, and the spine view. A library typically includes a type
representation per view.

A third possible design choice is whether generic functions
are instantiated by compile time specialisation or by interpreta-
tion of type representations at runtime. Here we do not include
this design choice, because all evaluated libraries use interpreta-
tion. Approaches that encode type and structure representations as
datatypes are clearly doing interpretation of the representation val-
ues. Type class based approaches also perform interpretation: dic-
tionary values are used at runtime. Of course, some specialisation
may take place if the compiler performs inlining in the generic pro-
gram.

Why is this design decision important? If an approach would
implement instantiation by compile-time specialisation, that ap-
proach would most likely not support higher-order generic func-
tions. This is because higher-orderness requires specialising the
generic function argument at runtime, as opposed to compiled time.
Yet, it is interesting to see that some type class based libraries,
namely EMGM, have difficulties supporting higher order functions.

5. Evaluation summary

We have tried to implement the benchmark in each of the generic
programming libraries. This section gives a summary of the results.
Figure 9 presents the results in a table. The criteria that a generic
programming library supports are marked with @. The ones that
are not supported are marked with O. If a criterion is partially
supported, or if it requires unusual programming effort, it is marked
with ©. A more detailed evaluation and a discussion on the design
choices can be found in Section 5. That section also discusses the
design choices behind each of the evaluated libraries.

Universe Size. The PolyLib library is limited to regular datatypes
(with one parameter). In RepLib, the datatypes with higher-kinded
arguments (GRose and NGRose) are not supported. Approaches
such as SYB, SYB3, Uniplate, and EMGM, which are based on
type classes, have trouble supporting NGRose; the three first do
not support it at all, while EMGM supports it but loses some func-
tionality. Furthermore, the SYB3 library does not support Perfect
and it has an additional complication: BinTree is supported only
if the instance is manually written, but not with the generated in-
stance; we return to this problem when evaluating the generation
of representations. LIGD and Spine have the advantage of a large
universe size: they support all datatypes in this test. Smash also
supports all datatypes, but there are datatypes that require unusual
effort to allow generic extension: Perfect, NGRose, and Company.

2008/4/24

= 2
3 S| 2 5| 2 >
ST |F SHE-NI-N - R A
SIS |58 |8|s|s|e|g &|2|¢
SIS |E|&|es|E2|e|s |5 |8 |&|E|&|58|9|3
S| % | S| 3 N S| S| ||| ||| ~|Zz|Q
Universe Size
Regular datatypes @ [] [[[
Higher-kinded datatypes (] [J
Nested datatypes o O
Nested & higher-kinded [)
Other Haskell 98 [o e o (K []
First-class generic functions (]
Abstraction over type constructors o o
Separate compilation [J O] 0|0 O OO0 O]10O0] 0O
Ad-hoc definitions for datatypes [® | O ®
Ad-hoc definitions for constructors o
Extensibility (]
Multiple arguments [] e & o o o
Multiple type representation arguments ®
Constructor names o o
Consumers o 0 | O [] o O o & e o o
Transformers [2N) [J []
Producers [
@® The criterion is tested by the example: the criterion is needed to implement test.
O The criterion is normally needed by test, but it is circumvented to test other criteria.
Figure 8. Functions and datatypes set out against criteria.
Subuniverses. The PolyLib, EMGM, and RepLib libraries sup- Extensibility. This criterion is supported by SYB3, EMGM, and

port subuniverses.

First-class generic functions. InLIGD, SYB, and Spine a generic
function is a polymorphic Haskell function, so they are first-class
values. The PolyLib and Uniplate libraries do not support this cri-
terion. The SYB3, EMGM, and RepLib libraries support this cri-
terion, but in the second there is additional complexity so it only
scores sufficient. Smash requires a new structure representation for
this test so it only scores sufficient.

Abstraction over type constructors. The LIGD, PolyLib, EMGM,
RepLib, Spine, and Smash libraries support abstraction over type
constructors. However, PolyLib, and Spine only support abstrac-
tion over type constructors of kind x — x, so the support of these
approaches for this criterion is only sufficient. The SYB, SYB3,
and Uniplate libraries do not support this criterion.

Separate compilation. The libraries that support separate compi-
lation are LIGD, PolyLib, SYB, SYB3, EMGM, RepLib, Smash,
and Uniplate. The only evaluated approach that does not support
this criterion is Spine: generic universe extension requires recom-
pilation.

Ad-hoc definitions for datatypes. This criterion is supported
by SYB, SYB3, EMGM, RepLib, Smash, and Uniplate, but not
by LIGD and Spine. PolyLib supports ad-hoc cases for regular
datatypes, but it cannot be applied to Company values, so it fails
the test.

Ad-hoc definitions for constructors. Ad-hoc definitions for con-
structors are supported by LIGD, SYB, SYB3, Spine, EMGM,
RepLib, Smash, and Uniplate. However, in LIGD the structure rep-
resentation has to be adapted for this criterion to work. Because of
this additional complication this approach scores sufficient.

RepLib. It is only partially supported by PolyLib, because it works
only for regular datatypes, and hence it fails for this test.

Multiple arguments. Multiple argument functions are supported
by almost all approaches, however, in some approaches, such as
SYB and SYB3, the definitions can be rather complex, and there-
fore they score sufficient. In Smash the definition is not complex,
but it requires a separate structure representation. The only library
that fails to support equality is Uniplate.

Constructor names. Constructor names are supported by all eval-
uated approaches except Uniplate.

Consumers, transformers, and producers. Almost all libraries
support definitions of functions in the three categories. However,
there are libraries that use different structure representations for
consumers and producers such as SYB, SYB3, Spine, and Smash.
Smash in addition uses a different structure representation for trans-
formations. Uniplate does not support producer functions.

Performance. We have used some of the test functions for a per-
formance benchmark comparing running times for larger inputs.
The results are very sensitive to small code differences and com-
piler optimizations so firm conclusions are difficult to draw, but the
best overall performance score is shared between EMGM, Smash,
and Uniplate.

Portability. The three most portable approaches are LIGD, EMGM,
and Uniplate. The first approach relies on existential types and the
other two on multi-parameter type classes, both extensions are very
likely to be included in the next Haskell standard. Furthermore,
multi-parameter type classes in EMGM are used in a non-essential
way: the functionality of EMGM would only be slightly affected in
their absence. The other approaches rely on non-portable Haskell
extensions.

2008/4/24

E
Q
S

PolyLib

SYB

Spine EMGM RepLib Smash Uniplate

Universe Size
Regular datatypes
Higher-kinded datatypes
Nested datatypes
Nested & higher-kinded
Other Haskell 98
Subuniverses

First-class generic functions
Abstraction over type constructors
Separate compilation

Ad-hoc definitions for datatypes
Ad-hoc definitions for constructors
Extensibility

Multiple arguments

Constructor names

Consumers

Transformers

Producers

Performance

Portability

Overhead of library use
Automatic generation of representations
Number of structure representations
Work to instantiate a generic function
Work to define a generic function

Practical aspects

Ease of learning and use

eO0®®e+~0 020000002 C0000C00O0OCOCS
0200~ 0O O®00000202020/00000CO

cCeee>e OOcee0=2Co0000000000CS

cCecee™>® OOce000c0000000C00C0O0O0 :
jov}
w

0000 O®sc00000000c0 00000
c00®+~0 000000000000~ 00~000
ceeses+~8 000000000000 00C 000
OXON X R ICEENON JIAN N ECEON N N N EJOA-AVA-N N J
00000 0000000000000 COOS

Figure 9. Evaluation of generic programming approaches

Overhead of library use. The SYB, SYB3, RepLib, and Uniplate
libraries are equipped with automatic generation of representations.
However, automatic generation in RepLib fails for type synonyms.
In SYB3, the generated Data instance for BinTree causes non-
termination when used with generic equality.

The number of structure representations is high for libraries
such as LIGD, EMGM, and RepLib. The reason is that type con-
structor abstraction in these approaches requires one representa-
tion per generic function arity. The number of representations in
Smash is even higher due to the amount of relatively specialized
representations. More information can be found in Section 5. The
SYB, SYB3, and Spine approaches have one representation for
consumers and another for producers. In addition, Spine has a rep-
resentation to abstract over type constructors. PolyLib and Uniplate
have only one representation.

The instantiation of a generic function is easier (for the pro-
grammer) in libraries that support implicit type representations,
such as PolyLib, SYB, SYB3, Uniplate, Smash, EMGM, and
RepLib. However, the last two libraries require additional effort to
enable instantiation. Therefore PolyLib, SYB, SYB3, Smash, and
Uniplate are the libraries that require the least effort to instantiate a
generic function.

The work required to define a generic function is higher, in the
sense that more implementation machinery is required, in LIGD,
SYB3, and RepLib.

Practical aspects. The SYB, RepLib, and Uniplate libraries have
well-maintained and documented distributions. PolyLib has an of-
ficial distribution, but it is not maintained anymore. The SYB3 li-
brary has two distributions: one does not compile under some ver-
sions of GHC (6.6, 6.8.1, 6.8.2) and the other does not have a
number of useful combinators. Smash has an online distribution,
but its interface is not as structured as, for example, SYB3. The

remaining approaches, LIGD, Spine, and EMGM, do not have a
well-maintained distribution.

Ease of learning and use. 1t is hard to determine how easy it is to
learn how to use a library. We approximate this criterion by looking
at the mechanisms used in the implementation of the libraries. We
consider an approach easier if its implementation mechanisms are
relatively simple such as for PolyLib and Uniplate (type classes),
and Spine (GADTs). An approach is relatively difficult if it uses so-
phisticated implementation mechanisms, for example rank-2 typed
combinators and abstraction over type classes as in SYB3. Interme-
diate approaches use advanced mechanisms only occasionally. One
such approach is EMGM, which uses arity-based representations.
More information can be found in Section 5.

6. Evaluation

A generic programming library provides an interface to achieve
generic programming behaviour and uses certain mechanisms to
implement it. These interfaces and mechanisms correspond to the
concepts that we introduced in Section 2. In particular we can
usually identify mechanisms corresponding to type representations,
structure representations and functions that act on them. So two
libraries may implement generic behaviour in very different ways,
by providing different ways to encode structure representations, for
example.

Before proceeding with the detailed evaluation we introduce
below each of the compared libraries and relate them against the
concepts introduced in Section 2. We focus in particular on how
they implement case analysis on types and structure representation
of datatypes.

2008/4/24

6.1 Lightweight implementation of Generics and Dynamics

The Lightweight implementation of Generics and Dynamics (LIGD)
library was introduced by Cheney and Hinze [2002]. The presen-
tation in the current paper largely follows the original presentation
of LIGD. The difference is that the original Rep is not a GADT but
a normal datatype. This datatype encodes the GADT by including
conversion functions in the datatype constructors and by the use of
existential types.

The generic view that LIGD uses is the sum of products view.
The original LIGD paper does not include a view to abstract over
type constructors, but it is well known how to do so: Hinze and Loh
[2007] present a variant of LIGD called dictionary-passing style
that abstracts over type constructors.

In this library case analysis on types is performed by means of
pattern matching. The type structure of datatypes is represented by
the RType constructor.

6.2 PolyLib

The pre-processor-based language extension PolyP [Jansson and
Jeuring, 1997, 1998] was later packaged up as a more lightweight
library [Norell and Jansson, 2004] and this library is what we
compare in this paper. The library is limited to regular datatypes
(with one parameter) so the supported universe is relatively small.
But the smaller universe makes it possible to express a wider range
of generic functions — the library contains definitions of folds
and unfolds, traversals and even functions generic in two type
parameters such as transpose :: ... = d (e a) — e (d a).

The limited universe means that PolyLib is not suitable as a
general generic library — it is included here as a “classic reference”
and because of its expressiveness.

PolyLib uses a combination of the fixed-point view and the
sum of products view. Each TIF is defined as a type (constructor)
class with one instance for each universe building block (unit, sum,
product, composition, function, const, parameter, and recursion).

6.3 Scrap your boilerplate

In the Scrap your boilerplate (SYB) library [Ldmmel and Pey-
ton Jones, 2003, 2004] generic functions are not programmed by
pattern matching on the structural representation of a value, but
rather by means of combinators. There are combinators for doing
case analysis on types and for inspecting the structure of values.

Case analysis combinators exist in several variants: query com-
binators, transformation combinators, and monadic tranformations
combinators amongst others. Let us consider the combinators for
queries: mk@ and ext@.

mkQ@ :: (Typeable a, Typeable b)
=r—(b—r)—a—r

ext@ :: (Typeable a, Typeable b)
=(@—>r)—=(b—or)—(a—r)

The mk() combinator takes an ad-hoc case specific to b values and
creates a polymorphic function that can be applied to any value a
that is an instance of Typeable. If it is applied to a b value —that is,
if at runtime it is determined that a and b are the same type— the
function with type b — r is applied to it, otherwise the argument
of type r is returned. The ext() combinator extends a polymorphic
query built with mkQ with yet another ad-hoc case.

These combinators are implemented by means of type-safe cast-
ing, which ultimately relies on the function unsafeCoerce, an un-
safe Haskell extension that converts a value from one type to any
other type. They also rely on the Typeable type class, which pro-
vides runtime representations of types, so that the equality of two
types can be established at runtime.

The structure of datatypes is represented by the higher-order
combinators gfoldl and gunfoldl. These are used to write con-

sumer and producer functions respectively. Datatypes whose struc-
ture is represented are instances of the Data type class.

class Typeable a = Data a where
gfoldl :: Data a = (Vab.Datab = w (a — b)
—a—whb)
— (Va.a—wa)
—a—wa

The instance for lists below makes gfoldl clearer.

instance Data a = Data [a] where
gfoldl k z [] =2z]]
gfoldl k z (z :xzs) = (2 (:) ‘k‘ z) ‘k* s

The gfoldl function applies z to the constructor and applies the
result to the arguments of the constructor using k. In essence, gfoldl
exposes the constructor and the arguments to the &k and z functions.
Further explanations can be found in the original SYB paper and in
the description of the Spine approach below.

The SYB library provides two structure representations of data,
one through gfoldl for consumer functions, and another through
gunfoldl for producer functions. Because of their types these func-
tions need support for rank-2 polymorphism.

As an example, this is how selectSalary is implemented in
SYB:

selectSalary :: Data a = a — [Salary]|
selectSalary z = ([] ‘mkQ° salaryCase) x :
concat (gmap@ selectSalary x))
where salaryCase (sal :: Salary) = [sal]

The mk(Q expression performs case analysis on types, = is added
to the result if it is a Salary but not otherwise. Then gmap @ applies
selectSalary to the children of z.

gmap(@ :: Data a = (Va.Dataa = a — u) — a — [u]

6.4 Scrap your boilerplate, extensible with typeclasses

A serious drawback of Scrap your boilerplate is that it is not
extensible: once a function (such as selectSalary) is defined, it
cannot be extended with an ad-hoc case. This problem is solved by
the extensible variant of Scrap your boilerplate (SYB3) [Lammel
and Peyton Jones, 2005]. The extended approach is still combinator
based, indeed generic functions are written using combinators such
as gfoldl and gmapQ@.

class (Typeable a, Sat (ctx a)) = Data ctx a where
gfoldl :: Proxy ctx
— (Ybc.Datactxb=w(b—c) —b—wc)
— (Vg.g = wg)
—a—wa
gmap@ :: Proxy ctx
— (Va.Datactxa=a—r) —a—|[r]

There is an additional type argument ctx to Data. This is the
essential ingredient that allows extension. Both functions also take
an additional Proxy argument, which is merely a way to inform the
type checker what ctx type is used and the actual argument value is
not important. We shall explain more about ctx shortly.

However, case analysis on types is no longer based on combina-
tors such as mk@ and ext@. Instead, generic functions are defined
as a type class and ad-hoc cases are given as instances. Consider
selectSalary, for example:

class SelectSalary a where
selectSalary :: a — [Salary]

2008/4/24

The generic function is the method of a type class. It follows that
case analysis on types is performed by the type class system. We
show below how to write the generic and the Salary-specific cases:

-- case for Salary
instance SelectSalary Salary where
selectSalary sal = [sal]

-- generic case, not complete yet
instance Data SelectSalary a = SelectSalary a where
selectSalary x = gmap@Q someProzy

The idea of the generic case is that we want to apply selectSalary
recursively to the top-level sub-trees in z. Since gmap () abstracts
over the generic function that is applied, it follows that it has to
abstract over the type class as well. However, Haskell does not sup-
port abstraction over type classes, so in this approach abstraction
over type classes is emulated by means of dictionaries.

The first step is to define a dictionary datatype that represents
SelectSalary instances.

data SelectSalaryD a
= SelectSalaryD{ selectSalaryD :: a — [Salary]}

Next, every generic function definition must include a Sat instance
declaration. The Sat type class is used to enable SYB3 combinators
to construct dictionaries of generic functions.

class Sat a where {dict :: a}

instance SelectSalary a = Sat (SelectSalaryD a) where
dict = SelectSalaryD selectSalary

Finally, combinators that take generic functions as arguments, such
as gmap @, include Sat in their context to abstract over the dictio-
nary argument. This becomes clearer in the definition of gmap@
for lists:

instance (Sat (ctx [a]), Data ctx a) = Data ctx [a] where
gmapQ — f [] =1
gmapQ _f (z:zs) = [f =, ws]

The generic case of selectSalary looks as follows:

instance Data SelectSalaryD a = SelectSalary a where
selectSalary © = concat (gmapQ selectSalaryProzy
(selectSalaryD dict) x)

selectSalaryProxy :: Proxy SelectSalaryD
selectSalaryProzy = undefined

This approach uses the same structure representation as SYB.
However case analysis on types is implemented using the type class
system, and hence it no longer uses type safe casts. However, casts
are still used in the library, for example in the definition of the
generic equality function.

6.5 Scrap your boilerplate, spine view variant

The Scrap your Boilerplate variant introduced in Hinze et al. [2006]
replaces the combinator based approach of SYB by a tangible
representation of the structure of values, which is embodied by the
Spine datatype:
data Spine :: x — * where
Con :: a — Spine a
(:$) :: Spine (a — b) — Typed a — Spine b
where the Typed representation is given by:
data Typed a = (:>){ typeOf :: Type a,val ::a}

data Type:: x — % where

IntR :: Type Int
ListR :: Type a — Type [a]

This approach represents the structure of datatype values by mak-
ing the application of a constructor to its arguments explicit. For
example, the list [1, 2] can be represented by Con (:) :$ (IntR :>
1) :$ (ListR IntR :> [2]).

Unlike in LIGD, there is no general purpose constructor like
RType to support generic universe extension. Generic universe
extension is achieved as follows: (1) the datatype must have a Type
constructor that represents it, e.g. the ListR constructor for lists,
and (2) the function toSpine that transforms a value to its structure
representation must be extended to cover that type.

toSpine :: Type a — a — Spine a
toSpine (ListR t) [] = Con []
toSpine (ListR t) (z : zs) = Con (:) :$ (¢ :> z)

:$ (ListR ¢ :> xs)

In Spine, case analysis on types is done as in LIGD, by pattern
matching on Type values.

Generic and non-generic universe extension in Spine require
recompilation of type representations and generic functions. For
this reason Spine cannot be used as a library, and so it is a design
pattern rather than a library. The authors of Spine also describe
an extensible variant of Spine that is based on type classes (and
therefore can be used as a library), but we do not evaluate it in this
paper. This variant uses techniques similar to those in SYB3, so we
expect that both libraries have similar expressiveness.

Producer generic functions cannot be defined using Spine. To
solve this deficiency the authors introduced a “type spine view”
in Hinze and Loh [2006]. In the evaluation we refer to both ap-
proaches as Spine. Both views, spine and the type spine view, cor-
respond to gfoldl and gunfoldl in SYB. As the authors of Spine
note, gfoldl is a fold over Spine values.

6.6 Extensible and modular Generics for the masses

The EMGM library [Hinze, 2006, Oliveira et al., 2006] does not
use a datatype like Rep to represent types. Instead the type repre-
sentations are encoded in the type class Generic, where every rep-
resented type has a corresponding method:

class Generic g where
unit :: g Unit
bool :: g Bool
plus ::ga— gb— g (Sum ab)
prod ::ga — gb — g (Prod ab)
view:: EPba—ga—ghb

The type class abstracts over the signature of a generic function,
here represented by g. To define a generic function, the programmer
defines a type for the signature and then the definition is given in
the instance declaration for that type. Consider, for example, the
equality function. The signature type is defined as follows:

newtype Geq a = Gegq{geq::a — a — Bool}

The definition of the generic function resides in the Geq instance
declaration.

instance Generic Geq where

unit = Geq (A\Unit Unit — True)
bool = Geq (A\z y — eqBool z y)
plus a b = Geq (Ax y — case (z,y) of

(Inl zl, Inl yl) — geq a =l yl
(Inr zr, Inr yr) — geq b axr yr

2008/4/24

_ — False)
prod a b = Geq (A(Prod a; b1) (Prod az b2) —
geq a a1 az N\ geq b by ba)

view ep a = Geq (Az y — geq a (from ep z) (from ep y))

The equality function is now defined for the universe of types
comprising units, sums, products, and datatypes that have their
structure represented by view, which is similar to the use of the
RType constructor in LIGD. It follows that in EMGM case analysis
on types is encoded using the methods of Generic. This is how the
structure of lists is represented in EMGM.

rList :: Genericg = ga — g [a]
rList a = view listEP (unit ‘plus‘ (a ‘prod‘ rList a))

Extensibility of generic functions is achieved by means of defin-
ing sub-classes of Generic. For example, we define GenericList to
enable ad-hoc definitions for lists:

class Generic g = GenericList g where
list::ga— gla]
list = rList

The default implementation of GenericList uses the structure repre-
sentation for lists. Therefore we can request generic behaviour for
list equality with an empty instance declaration:

instance GenericList Geq
But we can also give a definition of equality specific to lists:

instance GenericList Geq where
list geqa = Geq (M\z y — ...)

Now let us see how to apply generic equality:
geq (list bool) [True, False] [True, True] ~ False

It is possible to make the use of generic functions easier by making
the type representations implicit. This is achieved by means of a
type class:

class GRep g a where
over:: ga
instance Generic g = GRep g Unit where
over = unit
instance (Generic g, GRep g a, GRep g b)
= GRep g (Prod a b) where
over = prod over over
instance (GenericList g, GRep g a) = GRep g [a] where
over = list over

Now, generic equality can be defined as follows:

gequal :: GRep Geq a = a — a — Bool
gequal = y = geq over

6.7 RepLib

The RepLib library [Weirich, 2006] uses an ingenious combination
of GADTs and type classes to implement generic functions. A
generic function in this approach is implemented as a type class.
Ad-hoc cases are given as an instance of this class. We use the
gsum function from the original paper as an example.

instance GSum IntSet where
gsum (IntSet zs) = gsum (nub xs)

Here we give an ad-hoc case for sets of integers. This case elimi-
nates duplicate elements and calls generic sum on the resulting list.

What makes gsum a generic function, and not-merely type-
indexed, is the default implementation, which exploits the structure
of datatypes:

class Repl GSumD a = GSum a where
gsum ::a — Int
gsum = gsumR1 repl

The structure representation for a is generated by rep!, a method
of the Repl type class.

class Rep a = Repl c a where
repl 2Rl ca

Now, gsumR1 can use the representation produced by repl to
process its argument of type a.

But what happens if gsumR 1 needs to recursively apply gsum
to a substructure inside a? In RepLib such recursive calls are al-
lowed by parametrising Repl over a dictionary type. In our exam-
ple the dictionary is GSumD, which is defined as follows:

data GSumD a = GSumD{ gsumD ::a — Int}

The representation produced by rep! contains GSumD dictionar-
ies. These dictionaries package sum instances for a values. These
instances are used when sum is applied recursively to the argument
of a constructor, for example. To produce such dictionaries, the pro-
grammer defining the generic function is required to define a Sat
instance for GSumD, it suffices to say that Sat is used in Rep1 in-
stances to produce dictionaries. We give the instance definition for
GSumD below:

class Sat a where dict :: a
instance GSum a = Sat (GSumD a) where
dict = GSumD gsum

Note that this instance uses GSum to produce dictionaries. This
means that even GSum instances defined in other modules are used.
This is what allows RepLib generic functions to be extensible. The
technique of explicit dictionaries to abstract over type classes is the
same as in “Scrap your boilerplate with class”.

The gsumR1 function is the structure-based definition of
generic sum.

gsumR1 :: R1 GSumD a — a — Int
gsumR1 Int1 T =..
gsumR1 (Arrow ri r2) f=..
gsumR1 (Datal dt cons) x
= case (findCon cons z) of
Val emb rec kids

— foldl_l (Aca a b — (gsumD ca b) + a) 0 rec kids

gsumR1 _ =0

The two first cases and the last one correspond to integers, functions
and all other cases respectively. Without going into detail, the
third case uses the structure representation of the datatype (stored
in Datal) to (1) find the representation for the constructor at
hand (using findCon), (2) convert the constructor arguments into
a heterogenous list, and (3) fold over this list applying generic sum
to the constructor arguments (using foldl_l). Note that the last step
involves a recursive application of the function. Remember that
the representation stores GSumD dictionaries for the constructor
arguments. Suppose that b (a constructor argument) has type c and
ca has type GSumD c, then we can apply the dictionary function
using gsumD.

In this approach the structure of datatypes is represented by
GADTs such as R1. Case analysis over types is performed by the
type class system, because generic functions are implemented as
type classes (for example, GSum).

The RepLib library has an alternative way to implement case
analysis on types. It provides SYB-style combinators such as mkQ
and ext(), these are implemented using type safe casts like in SYB.

2008/4/24

But these combinators use RepLib representations, rather than the
Typeable class.

6.8 Smash your boilerplate

The ‘Smash’ approach is conceptually closely related to SYB.
The latter uses a ‘typecase’ operation based on the run-time type
representation (Typeable). The Smash approach uses a compile-
time typecase operation. In both approaches, the structure of a
new datatype is presented to the library (added to the universe)
by declaring an instance of a special class: Data in SYB, LDat
in Smash. A generic function is made of two parts. First, there is a
term traversal strategy, identified by a label. One strategy may be to
‘reduce’ a term using a supplied reducing function (cf. fold over a
tree). Another strategy may rebuild a term. The second component
of a generic function is spec, the list of ‘exceptions’, or ad-hoc
redefinitions. Each component of spec is a function that tells how to
transform a term of a specific type. Exceptions override the generic
traversal.

As an example, consider how selectSalary is defined in Smash:

selectSalary :: Company — [Salary]
selectSalary © =
gapp (TL_red concat) (salaryCase :+: HNil) x
where
salaryCase :: Salary — [Salary]
salaryCase s = [s]

Here the library function gapp is applied to T'L_red concat, which
selects a bottom-up traversal (parametrised with concat) on z.
This traversal applies one of the ad-hoc cases (second argument of
gapp) to the nodes of z being traversed. When traversing a node,
the results of traversing the children are merged using the concat
function. Note that ad-hoc cases are encoded as a heterogeneous
list of functions. In the above example the list contains only one
element.

This library implements case analysis using extensible record
operations [Kiselyov et al., 2004], due to the way that ad-hoc cases
are encoded. The structure representation is given once per datatype
and per traversal strategy. To implement the functions in the test
suite the following strategies are used:

e A rewriting strategy (7'L_recon) that is used to implement
functions such as gmap and updateSalary.

e A reduction strategy (7'L_red) that is used to implement
selectSalary.

e A reduction strategy that also provides access to construc-
tor names (1'L_red_con). This strategy is used to implement
gshow.

e A twin traversal strategy (1'L_red_lockstep) that is used to
implement functions with multiple arguments such as equality.

e A shallow reduction traversal (T'L_red _shallow) that is used to
implement gmap@.

e A couple of reduction traversals that abstract over x — x-types
(TL_red_cr1) and * — x — *-types (T'L_red_cr2).

e a traversal strategy for producer functions.

6.9 Uniplate

The Uniplate library provides a form of generic programming
based on traversal combinators. There are two sorts of traversals:
single type and multi-type traversals. Unlike SYB, Uniplate com-
binators do not require a type system that supports rank-2 types.
This is because traversals are customized by functions that are
monomorphic rather than polymorphic, as in SYB. An example of

a Uniplate combinator is the bottom-up transformation traversal
(transform).

transform :: Uniplatea = (a — a) —a — a

The transform traversal applies the function argument to every a-
value that is contained within the a argument. The Uniplate type
class is the analog of Data in SYB, it provides a set of common
traversals on top of which more sophisticated traversals are defined.
The Uniplate type class is equipped with 10 traversal methods.
However, all of them can be defined in terms of the fundamental
uniplate operation (the analog in SYB is gfoldl):

uniplate :: Uniplate a = a — ([a],[a] — a)

This function takes an argument of type a and returns a pair of
(1) a list of maximal substructures with type a, and (2) a function
that rebuilds the argument using new values for those substruc-
tures. For example, uniplate (Bin (Leaf 1) (Leaf 2)) yields
([Leaf 1, Leaf 2], Bin). The uniplate function can be seen as the
structure representation of a-values, because all combinator defini-
tions ultimately rely on it.

In Uniplate, the arguments of traversals cannot perform case
analysis on types, because they are monomorphic functions. Inter-
estingly, this is not a limitation in practice, because in general the
interesting case of a traversal is restricted to one type. This is also
the case of functions selectSalary and updateSalary in our suite.

Uniplate also provides multi-type traversals using multi-parameter
type classes. Consider the multi-type variant of transform:

transformBi :: Biplateba = (a —a) - b —b

This combinator applies the function argument to all a-values that
are contained in the b argument. For example, this is how Uniplate
implements updateSalary:

increase :: Float — Company — Company
increase k = transformBi (incS k)

incS :: Float — Salary — Salary
incSk(Ss)=8(sx(1+k))

Multi-type traversals are more flexible than single-type traversals,
in that they allow the specification of an ad-hoc case on one type
while doing the traversal on another.

6.10 Detailed evaluation

The evaluation is described criterion by criterion below and sum-
marised in Fig. 9.

Universe Size. 'What are the types that a generic function can be
used on? That is, what are the datatypes to which generic universe
extension is possible? This question is answered separately for each
of the sub-criteria of universe size.

A library scores good on regular, higher-kinded datatypes,
nested datatypes, higher-kinded and nested datatypes, and other
Haskell 98 datatypes, if it can generically extend the universe to
BinTree, GRose, Perfect, NGRose, and Company respectively,
and apply generic equality to them. The library scores bad other-
wise.

The LIGD approach can represent the structure of all datatypes
in the universe size test, therefore it scores good on this cri-
terion. The structure of a datatype T of kind x is represented
as a Rep T value constructed with RType. For instance, the
datatype Company is represented by rCompany, which has type
Rep Company. Type constructors are represented by functions on
representations. For instance, lists are represented by rList which
has type Rep a — Rep [a]. The encoding can be generalised
to higher-kinded parameters and nested datatypes: they are repre-
sented by higher-order functions with rank-2 types.

2008/4/24

The PolyLib library is limited to regular datatypes (with one
parameter) and cannot handle mutually recursive datatypes, so the
set of datatypes (the universe) supported is relatively small.

The SYB library scores well on the universe size criteria, even
for the Perfect datatype, which is nested. The GRose datatype
presents difficulties because it has an type argument of kind x — *,
and so instances for Data and Typeable cannot be automatically
derived. However, these instances can be written by the program-
mer, therefore generic universe extension to GRose is supported.
Note that in the instance for GRose

instance (Typeablel f, Typeable a, Data a
,Data (f (GRose f a)))
= Data (GRose f a) where ...

the instance head (GRose f a) reappears in the context. This implies
that cycle-aware constraint resolution [Limmel and Peyton Jones,
2005] is required to type this program. In contrast, SYB does not
support generic extension to NGRose. The reason is that in the
NGRose instance

instance (Typeablel f, Typeable a, Data a
,Data (f (NGRose (Comp f f) a)))
= Data (NGRose f a) where ...

the head (NGRose f a) becomes bigger in the context, namely f
becomes Comp f f, and therefore cycle-aware resolution is not
enough to type check programs using this instance.

The universe of SYB3 is even smaller than that of SYB: Perfect
is not supported. The instance that is automatically derived looks as
follows:

instance (Data ctx (Perfect (Fork a))),...) =
Data ctx (Perfect a) where

Note that this instance has the same problems as the NGRose in-
stance in SYB. Programs that use it, will not type check. The
NGRose datatype is not supported for the same reason. Universe
extension for the BinTree datatype is supported, but we surpris-
ingly have to manually write a Data instance for it. The reason is
that Derive, the module that automatically generates representa-
tions, produces an erroneous Data instance. Indeed, the generated
instance causes non-termination at runtime. The reason, we believe,
is an erroneous Typeable dictionary at runtime, which causes loop-
ing when it is used to cast inside generic equality. We give BinTree
a good score anyway, because this is a problem of Derive, rather
than of support for regular datatypes.

The Spine approach has the advantage of a large universe size:
it can handle all datatypes in the universe size test.

In EMGM, the structure of a datatype T is represented by
a value of type Generic g = g T, which is built using the
view method. Like in LIGD, type constructors are encoded as
functions over representations, for example the type constructor
list is encoded as Generic g = g a — g [a]. Higher-kinded
datatypes such as GRose and even NGRose can also be encoded in
EMGM. But NGRose cannot be used with implicit representations,
because the type class that implements them (GRep), would need
an instance that raises the same issues as the Data instance above.
In summary, generic extension to NGRose is supported but at the
cost of reduced functionality. Therefore EMGM scores good for
all criteria, except for nested and higher kinded datatypes where it
scores sufficient.

The RepLib library cannot represent datatypes with higher-
kinded arguments. It follows that it satisfies the tests for regular
and other Haskell 98 datatypes only.

The Smash library represents the structure of all datatypes in the
universe size test. Nested datatypes such as Perfect and NGRose
present problems similar to those in other type class based ap-

proaches. However, it is possible to represent them with some ef-
fort. The Company datatype caused looping during type checking.
A workaround is possible, but at the moment we have not identi-
fied the exact cause of the problem. Because of the difficulties men-
tioned, Smash scores sufficient on the problematic sub-criteria.

The Uniplate library scores well on universe size, it can han-
dle all datatypes except nested generalised rose trees. To support
higher-kinded datatypes, the same instances for Data and Typeable
are used as for SYB.

Subuniverses. s it possible to restrict the use of a generic func-
tion on a particular set of datatypes? An approach scores good if
uses of the generic function on datatypes outside of the set are
flagged as compile-time errors.

The RepLib and EMGM approaches score good on this crite-
rion. In both approaches the set of types to which a generic func-
tion can be instantiated is controlled by instance declarations. For
example, if generic equality is to be used on lists, the programmer is
expected to write the following instance (or an instance containing
an ad-hoc definition):

instance GenericList Geq

otherwise compilation fails with a type checking error when apply-
ing equality to lists.

PolyLib also supports subuniverses - a TIF is limited to the
instances defined and this is compiler checked.

First-class generic functions. Can a generic function take a
generic function as an argument? If gmap(@ can be implemented
in a library such that it can be passed a generic function (for ex-
ample, gshow) as argument, the library scores good. If gmap@
can be written but at the price of additional complexity the library
scores sufficient. Otherwise, if gmap @) cannot be implemented, the
library scores bad.

In LIGD, SYB, and Spine, a generic function is a polymorphic
Haskell function, so it is a first-class value in Haskell implemen-
tations that support rank-2 polymorphism. Consider for example
gmap @ in LIGD:

gmap@ :: (Va.Repa—a—r) > Repb — b — [r]

Here the function argument is polymorphic, which allows gmapQ
to instantiate it to different types. In short, in LIGD, SYB, and
Spine the generic function argument is just a normal functional
argument, albeit a polymorphic one. It follows that LIGD, SYB,
and Spine score good on this criterion.

EMGM scores sufficient because although EMGM supports
first-class generic functions, they are implemented in a rather com-
plicated way. The reason is that the type class system needs to track
calls to generic functions. So we are forced to go from a relatively
simple (but wrong) signature for GMapQ:

data GMapQ a = GMapQ{
gmap@ :: (... = r) —a—[r]}
to a type signature that allows to track calls to the generic function
argument. The new signature below abstracts over a type g, the
signature of the function argument, and garg, which is the generic
function argument itself.

data GMapQ g a = GMapQ{
garg :ga,
gmap@ :: (Va.ga—a—r) —a—|[r]}
This makes the definition of gmap(@, significantly more complex
than other functions, such as generic equality.
The test function gmap(@ can be defined with no difficulties in
SYB3 and RepLib, which therefore score good.
Like in SYB, generic programming in Uniplate is combinator
based. However, combinators are parametrised over monomorphic

2008/4/24

functions and not over other generic functions, as is the case in
SYB. It is not evident how gmap@ would be implemented in
Uniplate, hence it scores bad.

In Smash, gmap(@ is implemented using the T'L_red_shallow
reduction strategy. However, having a new strategy altogether, in
place of using an existing one, imposes the burden of one more
structure representation for the user. Therefore this library only
scores sufficient.

Abstraction over type constructors. Is a generic library able
to define the generic functions gmap and crushRight? If a li-
brary can define both functions which can then be instantiated to
mapBinTree and flatten WTree, which have types:

mapBinTree :: (a — b) — BinTree a — BinTree b
flattenWTree :: WTree aw — [a]

then the approach scores good. If the library can only support the
definition of one of the functions or none, it scores sufficient or bad,
respectively.

The LIGD, EMGM, and RepLib libraries support the defini-
tions of gmap and crushRight by means of arity-based type rep-
resentations (Section 3.3.2), and their instantiations yield functions
mapBinTree and flatten WTree as required. Hence these libraries
score good.

PolyLib includes the definition of gmap and crushRight. How-
ever these functions can be instantiated only to regular datatypes,
which have kind * — *. If follows that flatten W Tree cannot be
obtained from crushRight because WTree has kind * — x — *.
Therefore PolyLib scores sufficient.

In Smash, the definition of gmap and crushRight are sup-
ported. Generic map is implemented by means of the rewriting
traversal strategy T'L_recon. This strategy supports ad-hoc cases
that can change the type of elements, so gmap can be instantiated
to mapBinTree. The definition of crushRight uses two special
purpose reduction strategies, one for x — x-types and the other for
* — % — x-types.

The SYB, Uniplate, and SYB3 libraries represent types with
kind x but they do not represent type constructors. It follows that
they are unable to support the definitions of gmap and crushRight.

Separate compilation. 1s generic universe extension modular?
Approaches that can instantiate generic equality to BinTree without
recompiling the function definition or the type/structure represen-
tation score good.

The LIGD, EMGM, and RepLib libraries score good on this
criterion. In LIGD and RepLib, representation types have a con-
structor to represent the structure of datatypes, namely R7Type and
Datal. It follows that generic universe extension requires no ex-
tension of the representation datatypes and therefore no recompi-
lation. In EMGM, datatype structure is represented by view, so a
similar argument applies.

PolyLib uses instance declarations (of the FunctorOf class) for
universe extension, so the score is good.

The SYB, Uniplate, and SYB3 libraries score good on this crite-
rion. Generic universe extension is achieved by defining Data and
Typeable instances for BinTree, which does not require recompi-
lation of existing code in other modules. In Smash, the universe is
likewise extended by defining instances (of LDat).

The Spine library scores bad on this criterion. The reason is that
universe extension requires that the datatype, in this case BinTree,
is represented by a constructor in the GADT that encodes types.
Because this datatype is defined in a separate module, recompila-
tion is required.

Ad-hoc definitions for datatypes. Can a generic function contain
specific behaviour for a particular datatype, and let the remain-
ing datatypes be handled generically? Moreover, the use of ad-hoc

cases should not require recompilation of existing code (for in-
stance the type representations). If the function selectSalary can
be implemented by a library using an ad-hoc case for the Salary
datatype, it scores good. Otherwise, it scores bad.

In LIGD and Spine, the ad-hoc case in the selectSalary func-
tion would have to be given by pattern matching on the type repre-
sentation constructor that encodes Salary, namely RSalary. How-
ever, this requires the type representation datatype to be extended,
and hence the recompilation of the module that contains it. For this
reason both approaches score bad.

In PolyLib, the Company datatypes cannot be represented (only
regular datatypes are supported), so the selectSalary test cannot be
compiled. But ad-hoc cases is supported for regular datatypes, so
PolyLib scores sufficient.

In SYB, ad-hoc cases for queries are supported by means of the
mk(@) and ext() combinators. Such combinators are also available
for other traversals, for example transformations. The only require-
ment for ad-hoc cases is that the type being case-analysed should
be an instance of the Typeable type class. The new instance does
not require recompilation of other modules, so SYB scores good on
this criterion.

The SYB3, EMGM, and RepL.ib libraries score good on this cri-
terion. In SYB3 and RepLib, ad-hoc cases are given as an instance
of the type class that implements the generic function. In EMGM,
ad-hoc cases are given as an instance of Generic (or a subclass cor-
responding to the represented datatype). Because ad-hoc cases are
given as type class instances, recompilation is not needed.

In Uniplate, it is possible to define datatype specific behaviour
for a multi-type traversal. This is usually achieved by using a
traversal combinator that is parametrised over (1) the type on which
the traversal is performed, (2) the type for which the ad-hoc case is
given, and (3) the ad-hoc case function. Function transformBi is
such a combinator.

In Smash, a monomorphic ad-hoc definition is given as an ele-
ment in the list of ad-hoc cases (a function of type ad_hoc_type —
String in case of gshow). Smash performs case analysis on types
using a type equality operation implemented as a type class, which
was originally used to implement extensible records [Kiselyov
et al., 2004]. Because no recompilation of the library modules is
needed to allow case analysis over a new type, this library scores
good on this criterion.

Ad-hoc definitions for constructors. Can we give an ad-hoc def-
inition for a particular constructor, and let the remaining construc-
tors be handled generically? We take the function rm Weights as
our test. If a library allows the implementation of this function such
that an explicit case for the With Weight constructor is given and
the remaining constructors are handled generically, then that library
scores good on this criterion.

The LIGD and Spine libraries do not support ad-hoc definitions
for datatypes. It follows that trying to implement such definitions
for constructors would require recompilation (because ad-hoc def-
initions would be needed). Should we then declare that this crite-
rion is unsupported? We do not think so. The user might be in-
terested in providing an ad-hoc constructor definition, and still be
willing to pay the price of lack of support for ad-hoc definitions for
datatypes. We make this explicit in Figure 8: it is allowed to cheat
in the rm Weights test for the ad-hoc definitions for datatypes cri-
terion.

The LIGD and Spine libraries are able to support the defini-
tion of rm Weights as required. The Spine library scores good, but
LIGD scores sufficient because of additional complications. As ex-
plained in Section 3.2.3, LIGD needs a modified datatype repre-
sentation that allows ad-hoc definitions. This gives a total of two
representations for WTree, one for generic extension and the other
for non-generic extension.

2008/4/24

PolyLib does not support ad hoc definitions for constructors.

The six approaches that support ad-hoc definitions for datatypes,
also support ad-hoc definitions for constructors, hence SYB, SYB3,
Uniplate, EMGM, Smash, and RepLib score good on this criterion.

Extensibility. Can a programmer extend the universe of a generic
function in a different module without the need for recompilation?
Libraries that allow the extension of the generic gshow function
with a case for printing lists score good. As mentioned before,
extensibility is not possible for approaches that do not support ad-
hoc cases. For this reason the LIGD and Spine approaches score
bad.

Before proceeding to the evaluation, let us remark that a library
that supports ad-hoc cases can be made extensible. The trick is to
extend the generic function with an argument that receives the ad-
hoc case (or cases) with which the generic function is extended.
Such a trick would be possible with SYB and Smash, for example.
However, this is unacceptable for two reasons. First, this would im-
pose a burden on the user: the generic function has to be “closed”
by the programmer before use. Second, functionality that is imple-
mented on top of such an extensible generic function would have to
expose the extension argument in its interface. An example of such
functionality is discussed by Ldmmel and Peyton Jones [2005] in
their QuickCheck case study. QuickCheck implements shrinking
of test data by using a shrink generic function, which should be
extensible. If function extensibility would be implemented as pro-
posed in this paragraph, the high-level quickCheck function would
have to include extension arguments for shrink. For this reason,
we do not accept such implementations of extensibility in our eval-
uation.

PolyLib is extensible because it uses class instances to extend
the universe. However, it scores sufficient because Company, the
datatype that is used in this test, is not supported by PolyLib.

The SYB, Smash, and Uniplate libraries support ad-hoc defi-
nitions, but do not support extensible generic functions. Therefore
they score bad on this criterion.

In SYB3, EMGM, and RepLib, ad-hoc cases are given in in-
stance declarations, which can reside in separate modules. There-
fore these libraries support extensible generic functions.

Multiple arguments. Can a generic programming library support
a generic function definition that consumes more than one generic
argument, such as the generic equality function? If generic equality
is definable then the approach scores good. If the definition is more
involved than those of other consumer functions such as gshow and
selectSalary, then the approach scores sufficient.

The LIGD, PolyLib, EMGM, and RepLib approaches support
the definition of generic equality. Furthermore, equality is not more
difficult to define than other consumer functions. For example, in
LIGD, every case of equality matches a type representation and two
structurally represented values that are to be compared. Because
these two values have the same type, usual pattern matching is
enough to give the definition. Defining generic equality is not any
more difficult than defining gshow. Therefore, these approaches
score good on this criterion.

In Spine, the generic equality function is defined as follows:

equal :: Typed a — Typed b — Bool
equal 11 12 = equalSpines (toSpine z1) (toSpine x2)

It converts both values to their Spine representation and the real
comparison is performed on the spine itself:

equalSpines :: Spine a — Spine b — Bool

equalSpines (Con c1) (Con c2) = name c¢1 == name ¢

equalSpines (fi :$ z1) (fo :$ 22) = equalSpines fi fo A
equal o1 T2

equalSpines _ _ False

20

This function is not more complicated than other consumer func-
tions in this approach. Therefore Spine scores good. It can be ar-
gued, however, that this function is not entirely satisfactory. Equal-
ity relies ultimately on equality of constructor names, therefore the
user could make a mistake when providing a constructor name in
the representation.

The SYB library only scores sufficient on this criterion. The rea-
son is that the definition is not as direct as for other functions such
as gshow and selectSalary. While the Spine definition equalSpine
can inspect the two arguments to be compared, in SYB the gfoldl
combinator forces to process one argument at a time. For this rea-
son, the definition of generic equality has to perform the traversal of
the arguments in two stages. The definition can be found in Limmel
and Peyton Jones [2004]

Smash supports multiple arguments to a generic function essen-
tially through currying — a special traversal strategy that traverses
several terms in lockstep. However, the fact that a special purpose
traversal must be used for functions on multiple arguments imposes
a burden on the user. The user has to write one more structure rep-
resentation per datatype. Therefore Smash only scores sufficient.

The traversal combinators of the Uniplate library are designed
for single argument consumers. We have not been able to write a
generic equality function for this approach, so Uniplate scores bad.

Constructor names. Is the approach able to provide the names of
the constructors to which the generic function is applied? Library
approaches that support the definition of gshow score good.

With the exception of Uniplate, all generic programming li-
braries discussed in this paper provide support for constructor
names in their structure representations. The Uniplate library it-
self does not provide any means to access constructor names.

Consumers, transformers, and producers. Generic libraries that
can define functions in the three categories: consumers, transform-
ers and producers, score good. This is the case for LIGD, PolyLib,
EMGM, and RepLib.

If a library uses a different structure representation or type rep-
resentation for say consumer and producer functions, that library
scores sufficient. This is the case of SYB, SYB3, Smash, and Spine.
Furthermore, Smash uses a different representation (traversal strat-
egy) for transformers than for consumers, therefore it scores suf-
ficient as well on that criterion. Why is it a disadvantage to have
several structure representations? Because this implies more work
for the programmer when doing generic universe extension: more
representations have to be written per datatype.

The Uniplate library does not contain combinators to write
producer functions, so it scores bad.

Performance. We have used some of the test functions for a
performance benchmark but the results are very sensitive to small
code differences and compiler optimizations so firm conclusions
are difficult to draw. As a sample, Figure 10 shows running times
(in multiples of the running time of a hand-coded monomorphic
version) for the geq, selectInt and rm Weights tests.

For the geq test, the compiler manages to produce very effi-
cient code for EMGM, while the SYB family has problems with the
two-argument traversal. The fact that the overhead for rm Weights
starts around a factor of two is disappointing, but shows the im-
provement potential from using partial evaluation techniques (as
used in C++ STL). The best overall performance score is shared
between EMGM, Smash and Uniplate.

Portability. Figure 11 shows that the majority of approaches rely
on compiler extensions provided by GHC to some extent. Ap-
proaches that are most portable rely on few extensions or on ex-
tensions that are likely to be included in Haskell prime [Haskell
Prime list, 2006].

2008/4/24

Test ‘ LIGD PolyLib SYB SYB3 Spine EMGM RepLib Smash Uniplate
geq 26 8 52 70 13 1.5 8 4 -
selectInt 3 - 5 2 2 3 2 2 0.8
rmWeights 3 - 78 7 2 4 4 2 4

Figure 10. Preliminary performance experiments.

Of all generic programming libraries, LIGD, EMGM, and Uni-
plate are the most portable. The only compiler extension that LIGD
relies on is existential types, and this extension is very likely
to be included in the next Haskell standard [Haskell Prime list,
2006]. However, LIGD needs rank-2 types for the representations
of GRose and NGRose, but not for other representations or func-
tions. Hence rank-2 types are not an essential part of the LIGD
approach.

The EMGM library relies on multi-parameter type classes (also
likely to be included in the next standard) to implement implicit
type representations. This type class makes EMGM more conve-
nient to use, but, even without it, it would still be possible to do
generic programming in EMGM, be in a less convenient way.

In SYB3, overlapping and undecidable instances are needed for
the implementation of extensibility and ad-hoc cases. Overlapping
instances arise because of the overlap between the generic case and
the type-specific cases. Undecidable instances are required for the
Sat type class, which is used to implement abstraction over type
classes

Rank-w polymorphism is required to type the gfoldl and
gunfoldl combinators in SYB and SYB3.

GADTs are used by the Spine and RepLib libraries to represent
types and their structure. Both libraries also use existential types in
their representations.

The unsafeCoerce extension is used to implement type safe
casts in SYB, SYB3, and RepLib.

The RepLib and SYBS3 libraries provide automatic generation
of representations, which is implemented using Template Haskell.
The SYB library, on the other hand, relies on compiler support for
deriving Data and Typeable instances.

Uniplate can be defined in Haskell 98. However, in order to
use multi-type traversals, multi-parameter type classes are needed.
Uniplate can derive representations by either using a tool that uses
Template Haskell, or by relying on compiler support to derive Data
and Typeable. However, the use of these extension is optional,
because structure representations can be written by programmers
directly.

Smash relies on various extensions such as multi-parameter type
classes, undecidable instances, overlapping instances, and func-
tional dependencies. This is needed to implement the techniques
for handling ad-hoc cases and traversal strategies.

Overhead of library use. How much overhead is imposed on the
programmer for the use of a generic programming library? We are
interested in the following aspects:

e Automatic generation of representations. The three libraries
that offer support for automatic generation of representations
are SYB, SYB3, Uniplate, and RepL.ib.

The SYB library relies on GHC to generate Typeable and Data
instances for new datatypes. The SYB library scores good on
this criterion.

The RepLib library includes Template Haskell code to gener-
ate structure representations for new datatypes in its distribu-
tion. However, RepLib does not support the generation of rep-
resentations for arity two generic functions and does not include
the machinery for such representations. Furthermore automatic

21

generation fails when a type synonym is used in a datatype dec-
laration. RepLib scores sufficient because of the problems men-
tioned.

The SYB3 library also uses Template Haskell to generate repre-
sentations. However, the generated representations for BinTree
cause non-termination when type-safe casts are used on a
BinTree value. This is a serious problem: regular datatypes and
type-safe casting are very commonly used. Hence this approach
does not score good but sufficient.

Uniplate can use the Typeable and Data instances of GHC for
automatic generation of representations. Furthermore, a sepa-
rate tool, based on Template Haskell, is provided to derive in-
stances. The Uniplate library scores good on this criterion.

PolyLib used to include support for generation of representa-
tions, but this functionality broke with version 2 of Template
Haskell.

Note that automatic generation of representations in all ap-
proaches is limited to datatypes with no arguments of higher-
kinds, hence GRose and NGRose are not supported.

® Number of structure representations. PolyLib only supports
regular datatypes of arity one, thus it only has one representa-
tion. It would be straightforward to add a new representation for
each arity a, but it would still only support regular datatypes.

The LIGD, EMGM, and RepLib libraries have two sorts of
representations: (1) a representation for x-types (for example
Rep in Section 2), and (2) representations for type construc-
tors, which are arity-based (Section 3.3.2). The latter consists
of a number of arity-specific representations. For example, to
write the gmap function we would have to use a representation
of arity two. Which arities should be supported? Probably the
best answer is to support the arities for which useful generic
functions are known: crush (arity one), gmap (arity two), and
generic zip (arity three). This makes a total of four representa-
tions needed for these libraries, one to represent x-types, and
three for all useful arities.

Note, however, that functions of arity one can be defined us-
ing a representation of arity three. This means that we could
remove representations of arities one and two. So, we could
imagine a library needing only two representations. The next
step is to subsume the representation for x-types with the ar-
ity three representation. Although this makes some approaches
more inconvenient — for instance, the EMGM approach would
lose the generic dispatcher. Although reducing the number of
representations is possible, we do not do so in this comparison,
because it is rather inelegant. Defining generic equality using
a representation of arity three would leave a number of unused
type variables that might make the definition confusing.

When a new datatype is used with SYB/SYB3, the structure
representation is given in a Data instance. This instance has
two methods gfoldl and gunfoldl which are used for consumer
and transformer, and producer generic functions respectively.
Therefore every new datatype needs two representations to be
used with SYB/SYB3 functions.

2008/4/24

The Spine library needs three structure representations per
datatype. The first, the spine representation, is used with con-
sumer and transformer functions. And the second, the type
spine view, is used with producer functions. The third repre-
sentation is used to write generic functions that abstract over
type constructors of kind * — *.

In Uniplate, the number of structure representations that are
needed can range from one Uniplate instance per datatype, to
O(n2) instances for a system of n datatypes, when maximum
performance is wanted. For our comparison, we assume that
one representation is needed.

Smash is specifically designed to allow arbitrary number of
custom traversal strategies. Although three strategies are fun-
damental — reconstruction, reduction, and parallel traversal —
the simplified variations of these turn out more convenient and
frequently used. However, this also means that the programmer
defines more structure representations than in other libraries.
The representations that are used in this evaluation are eight: a
rewriting strategy, a reduction strategy, a reduction strategy with
constructor names, a twin traversal strategy, a shallow reduction
traversal, two traversals for abstracting over type constructors
of kinds * — x and x — * — *, and a traversal strategy for
producer functions.

Work to instantiate a generic function. The instantiation of a
generic function requires a value representing the type to which
it is instantiated. The representation can be explicit (the pro-
grammer has to supply it) or implicit. Approaches that use type
classes can make representations implicit, making instantiation
easier for the user. This is the case of SYB, SYB3, EMGM,
RepLib, and Smash.

However, some type-class based approaches, such as EMGM
and RepLib, require an instance declaration per function per
datatype in order to allow instantiation of the function to that
datatype. This requires additional work from the user, but on
the other hand this enables control over the instantiation of a
function (subuniverses).

The SYB, Smash, Uniplate, and SYB3 libraries have implicit
representation arguments and do not need instance declarations
per function per type, therefore these libraries score good.

Work to define a generic function. Is it possible to quickly write
a simple generic function? A library scores good if it requires
roughly one definition per generic function case, with no need
for additional artefacts.

The LIGD, SYB3, and RepLib libraries score bad on this cri-
terion. In LIGD, the definitions of generic functions become
more verbose because of the emulation of GADTs. However,
this overhead does not arise in implementations of LIGD that
use GADTs directly. In RepLib we need to define a dictionary
datatype, and an instance of the Sat type class, in addition to
the type class definition that implements the generic function.
In SYB3 the definitions needed (besides a type class for the
function) are the dictionary type, a Sat instance for the dic-
tionary, and a dictionary proxy value. Therefore these libraries
only score sufficient. The other libraries score good because
they demand less “encoding work” when defining a generic
function.

Practical aspects. For this criterion we consider aspects such as
e there is a library distribution available online,
e the library interface is well-documented,

e and other aspects such as an interface organized into modules,
and common generic functions.

22

The LIGD, EMGM, and Spine libraries do not have distribu-
tions online. These libraries score bad.

PolyLib has an online distribution (as part of PolyP version 2)
but the library is not maintained anymore.

The SYB library is distributed with the GHC compiler. This dis-
tribution includes a number of traversal combinators for common
generic programming tasks and Haddock documentation. The GHC
compiler supports the automatic generation of Typeable and Data
instances. This library scores good.

The official SYB3 distribution failed to compile with the ver-
sions of GHC that we used in this comparison (6.6, 6.8.1, 6.8.2).
This distribution can be downloaded from: http://homepages.
cwi.nl/~ralf/syb3/code.html. There is an alternative distri-
bution of this library which is available as a Darcs repository
from: http://happs.org/HAppS/syb-with-class. This dis-
tribution is a cabal package that includes Hadock documentation
for the functions that it provides. However, it does not contain many
important combinators such as gmapAccum(@) and gzip WithQ
amongst others.

The RepLib library has an online distribution. The distribution
includes a number of pre-defined generic functions, the structure
representation generation machinery and Haddock documentation.
The score of this library is good.

The Uniplate library and haddock documentation are available
online (also via HackageDB). Just like SYB it can derive represen-
tations. This library scores good.

The Smash library is distributed as a standalone module that
can be downloaded from http://okmij.org/ftp/Haskell/
generics.html#Smash. There are a few example functions in
that module that illustrate the use of the approach. However, the
library is not as organized as SYB3, and therefore it scores bad.

Implementation mechanisms. What are the mechanisms through
which a library encodes a type or its representation? We have the
following options:

e Types and structure represented by GADTs. Types are encoded
by a representation GADT, where each type is represented by
a constructor. The GADT may also have a constructor which
encodes datatypes structurally (like R7Type in this paper).

Types and structure represented by datatypes. When GADTs
are not available, it is still possible to emulate them by embed-
ding conversion functions in the datatype constructors. In this
way a normal datatype can represent types and their structure.

® Rank-2 structure representation combinators. Yet another alter-
native is to represent the structure of a datatype using a rank-2
combinator such as gfoldl in SYB.

Type safe cast. Type safe casts are used to implement type-
specific functionality, or ad-hoc cases. Type safe casting con-
verts a-values into b-values at runtime, where a and b are un-
known statically.

Extensible records and type-level evaluation. The work of Kise-
lyov et al. [2004] introduces various techniques to implement
extensible records in Haskell. The techniques make advanced
use of type classes to perform record lookup statically. This
operation is an instance of a general design pattern: encoding
type-level computations using multi-parameter type classes and
functional dependencies.

e Type classes. Type classes may be used in a variety of ways: to
represent types and their structure and perform case analysis on
them, to overload structure representation combinators, and to
provide extensibility to generic functions.

e Abstraction over type classes. Generic programming libraries
that support extensible generic functions, do so by using type

2008/4/24

LIGD PolyLib SYB SYB3 Spine EMGM RepLib Smash Uniplate

Implementation mechanisms

Type representation is GADT [] []

Type representation is D.T. []

Rank-2 struc. repr. combinator (] []

Type safe cast [] [] L

Extensible rec. and type eval. [] []

Type classes [[J) [([] ([] []

Abstraction over type classes [] [J
Compiler extensions

Undecidable instances [) ([

Overlapping instances [] [J

Multi-parameter typeclasses o o [J []

Functional dependencies [)

Rank-2 polymorphism ([

Existential types [] [[]

GADTs [J ([

unsafeCoerce [) (] ([]

Template Haskell ®) []

Derive Data and Typeable [] [)
Views

Fixed point view [)

Sum of products o [J

Spine ([J [] [J

Lifted spine ([

RepLib []

Uniplate []

Smash []

Figure 11. Implementation mechanisms, required compiler extensions, and views.

classes. Some of this approaches, however, require a form of
abstraction over type classes, which can be encoded by a tech-
nique that uses explicit dictionaries, popularized by Lammel
and Peyton Jones [2005].

The LIGD and Spine libraries represent types and structure as
datatypes and GADTs respectively, while EMGM uses type classes
to do so.

In SYB and SYB3, datatypes are structurally represented by
rank-2 combinators gfoldl and gunfoldl.

Ad-hoc cases in SYB are given using pre-defined combinators
such as ext) and mk(), which are implemented using type safe
casts.

In SYB3, case analysis over types is performed directly by
the type class system, because generic functions are type classes.
However, type safe casts are still important because they are used to
implement functions such as equality. Furthermore, this approach
implements abstraction over type classes to support extensibility.

The RepLib library is an interesting combination. It has a
datatype that represents types and their structure, and so generic
functions are defined by pattern matching on those representation
values. On the other hand, RepLib also uses type classes to allow
the extension of a generic function with a new type-specific case.
To allow extension type classes must encode type class abstrac-
tion using the same technique as in SYB3. Optionally, the RepLib
library allows the programmer to use a programming style remi-
niscent of SYB, where ad-hoc cases are aggregated using functions
such as ezt and mk(Q). These combinators are implemented using
the GADT-based representations and type safe casts.

The Smash library uses an extensible record-like list of func-
tions to encode ad-hoc cases. Case analysis on types is performed
by a lookup operation, which in turn is implemented by type-level
typecase. This library also uses type-level evaluation to determine

23

the argument and return types of method gapp, based on the traver-
sal strategy and the list of ad-hoc cases.

Views. What are the views that the generic library supports? That
is, how are datatypes encoded in structure representations and what
are the view types used in them?

The LIGD and EMGM libraries encode datatypes as sums of
products, where the sums encode the choice of a constructor and
the products encode the fields used in them. This view is usually
referred to as sum of products. The representations for sums of
products that are based on arities (Section 3.3.2) can be used to
abstract over type constructors.

The Spine approach uses the Spine datatype to make the ap-
plication of a constructor to its arguments observable to a generic
function. As observed by the authors of this view, the gfold! com-
binator used in SYB and SYB3 is a catamorphism of a Spine value,
and hence these approaches also use the spine view. The SYB,
SYB3, and Spine approaches also provide a type-spine view that is
used to write producer generic functions. Unlike SYB and SYB3,
Spine supports abstraction over x — x-types due to an additional
view called the lifted Spine view.

The RepLib library also has a different view, datatypes are
represented as a list of constructor representations, which are a
heterogeneous list of constructor arguments. Like in LIGD and
EMGM, the structure representation can be adapted to be arity
based, in order to support abstraction over type constructors.

The Uniplate library also has a view of its own. All traversal
combinators in this library are based on the uniplate operation.
This operation takes an argument of a particular datatype, and
returns its children that have the same type as the argument, and
a function to reconstruct the argument with new children.

It is difficult to point to specific views in the Smash library.
Although there are three basic strategies (rewriting, reduction, and

2008/4/24

lockstep reduction), the rest of the strategies are not defined using
any of the more fundamental ones. Hence every traversal strategy
can be considered as a way to view the structure of a datatype.

Ease of learning and use. 1t is hard to determine how easy it
is to learn how to use a library. We approximate this criterion
by looking at the mechanisms used in the implementation of the
libraries. Below we describe the difficulties that arise with some of
the implementation mechanisms:

® Rank-2 structure representation combinators. There are two
problems with rank-2 structure representation combinators.
First, rank-2 polymorphic types are difficult to understand for
beginning users. This implies that defining a generic function
from scratch — that is, using the type structure directly, by-
passing any pre-defined combinators — presents more difficul-
ties than in other approaches. Second, structure representation
combinators such as those used in SYB can be used directly to
define functions that consume one argument. But if two argu-
ments are to be consumed instead (which is the case in generic
equality), then the definition of the function becomes compli-
cated.

Extensible records and type-level evaluation. The techniques to
encode extensible records make advanced use of type classes
and functional dependencies. This encoding can be troublesome
to the beginning generic programmer in at least one way: type
errors arising from such programs can be very difficult to debug.

Abstraction over type classes. Abstraction over type classes is
emulated by means of explicit dictionaries that represent the
class that is being abstracted. This is an advanced type class
programming technique and it might confuse beginning generic
programmers.

Arity based representations. Arity based representations are
used to represent type constructors. However, it is more diffi-
cult to relate the type signature of an arity-based generic func-
tion to that of an instance. For example, generic map has type
Rep2 a b — a — b, which does not bear a strong resem-
blance to the type of the BinTree instance of map: (a — b) —
BinTree a — BinTree b. For this reason, programming with
arity-based representations might be challenging to a beginner.

The approaches that suffer from the first difficulty are SYB
and SYB3. The second difficulty affects Smash. The third diffi-
culty affects SYB3 and RepLib. The fourth difficulty affects LIGD,
EMGM, and RepLib. However, the first two libraries, need such
arities only occasionally, namely to define functions such as gmap
and crushRight.

Another problem that can impede learning and use of an ap-
proach is the use of a relatively large number of implementation
mechanisms. This is the case of SYB3 and RepLib. While it is pos-
sible to work out how one of the many mechanisms, for example
GADTs in RepLib, is used into writing a generic function, it is
much more difficult to understand the interactions of all the mech-
anisms in the same library. This, we believe, will make it more
difficult for new users to learn and use SYB3 and RepLib.

7. Conclusions

We have introduced a set of criteria to compare libraries for generic
programming in Haskell. These criteria can be viewed as a char-
acterisation of generic programming in Haskell. Furthermore, we
have designed a generic programming benchmark: a set of char-
acteristic examples that check whether or not criteria are supported
by generic programming libraries. Using the criteria and the bench-
mark, we have compared nine approaches to generic programming
in Haskell.

24

Acknowledgements. This research has been partially funded by
the Netherlands Organisation for Scientific Research (NWO), via
the Real-life Datatype-Generic programming project, project nr.
612.063.613. We thank Jeremy Gibbons, Sean Leather and José
Pedro Magalhaes for their thoughtful comments and suggestions.
We also thank the participants of the generics mailing list for the
discussions and the code examples that sparked the work for this

paper.

References

Frank Atanassow and Johan Jeuring. Inferring type isomorphisms
generically. In MPC’04, volume 3125 of LNCS, pages 32-53.
Springer, 2004.

Richard Bird and Lambert Meertens. Nested datatypes. In Johan
Jeuring, editor, MPC’98, volume 1422 of LNCS, pages 52-67.
Springer, 1998.

Bjorn Bringert and Aarne Ranta. A pattern for almost composi-
tional functions. In ICFP’06, pages 216-226. ACM, 2006.

James Cheney and Ralf Hinze. A lightweight implementation
of generics and dynamics. In Manuel Chakravarty, editor,
Haskell’02, pages 90-104. ACM, 2002. doi: 10.1145/581690.
581698.

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs. In ICFP’00, pages
286-279. ACM, 2000.

Dave Clarke and Andres Loh. Generic haskell, specifically. In
Proceedings of the IFIP TC2/WG2.1 Working Conference on
Generic Programming, pages 21-47. Kluwer, B.V., 2003.

John Derrick and Simon Thompson. FORSE: Formally-Based Tool
Support for Erlang Development. Project description, 2005.
URL http://www.cs.kent.ac.uk/projects/forse/.

Ronald Garcia, Jaakko Jdrvi, Andrew Lumsdaine, Jeremy Siek, and
Jeremiah Willcock. An extended comparative study of language
support for generic programming. J. Funct. Program., 17(2):
145-205, 2007. doi: 10.1017/S0956796806006198.

The Haskell Generic Library list. Generic programming criteria
template, 2008. Wiki page at haskell.org/haskellwiki/
Applications_and_libraries/Generic_programming/
Template.

The Haskell Prime list. Haskell prime, 2006. Wiki page at http:
//hackage .haskell.org/trac/haskell-prime.

Ralf Hinze. Generics for the masses. Journal of Functional
Programming, 16:451-482, 2006.

Ralf Hinze. Polytypic values possess polykinded types. Science of
Computer Programming, 43(2-3):129-159, 2002.

Ralf Hinze and Andres Loh. “Scrap Your Boilerplate” revolutions.
In Tarmo Uustalu, editor, MPC’06, volume 4014 of LNCS, pages
180-208. Springer, 2006.

Ralf Hinze and Andres Loh. Generic programming, now! In
Roland Backhouse et al., editors, Datatype-Generic Program-
ming, LNCS, pages 150-208. Springer, 2007.

Ralf Hinze, Andres Loh, and Bruno C. d. S. Oliveira. “Scrap Your
Boilerplate” reloaded. In Philip Wadler and Masimi Hagiya,
editors, FLOPS’06, volume 3945 of LNCS. Springer, 2006.

Ralf Hinze, Johan Jeuring, and Andres Loh. Comparing ap-
proches to generic programming in haskell. In Roland Back-
house et al., editors, Datatype-Generic Programming, volume
4719 of LNCS, pages 72-149. Springer, 2007. doi: 10.1007/
978-3-540-76786-2_2.

2008/4/24

Stefan Holdermans, Johan Jeuring, Andres Loh, and Alexey Ro-
driguez. Generic views on data types. In Tarmo Uustalu, edi-
tor, MPC’06, volume 4014 of LNCS, pages 209-234. Springer,
2006.

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A history of Haskell: being lazy with class. In HOPL III, pages
12-1-12-55. ACM, 2007. doi: 10.1145/1238844.1238856.

Patrik Jansson and Johan Jeuring. PolyP — a polytypic program-
ming language extension. In POPL’97, pages 470-482. ACM,
1997. doi: 10.1145/263699.263763.

Patrik Jansson and Johan Jeuring. Polytypic data conversion pro-
grams. Science of Computer Programming, 43(1):35-75, 2002.

Patrik Jansson and Johan Jeuring. PolyLib — a polytypic function
library. Workshop on Generic Programming, Marstrand, June
1998.

Oleg Kiselyov. Smash your boilerplate without class and ty-
peable. http://article.gmane.org/gmane.comp.lang.
haskell.general/14086, 2006.

Oleg Kiselyov, Ralf Lammel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell '04: Proceedings of
the ACM SIGPLAN workshop on Haskell, pages 96-107, New
York, NY, USA, 2004. ACM Press. ISBN 1581138504. doi:
10.1145/1017472.1017488. URL http://portal.acm.org/
citation.cfm?id=1017488.

Pieter Koopman, Artem Alimarine, Jan Tretmans, and Rinus Plas-
meijer. Gast: Generic automated software testing. In R. Pefia
and T. Arts, editors, IFL’02, volume 2670 of LNCS. Springer,
2003.

Ralf Limmel and Simon Peyton Jones. Scrap your boilerplate: a
practical approach to generic programming. ACM SIGPLAN
Notices, 38(3):26-37, 2003. TLDI’03.

Ralf Lammel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. In ICFP’04, pages 244—
255. ACM, 2004.

Ralf Lidmmel and Simon Peyton Jones. Scrap your boilerplate with
class: extensible generic functions. In /CFP’05, pages 204-215,
2005.

Ralf Lammel and Joost Visser. A Strafunski Application Letter. In
V. Dahl and P. Wadler, editors, PADL’03, volume 2562 of LNCS,
pages 357-375, 2003.

Ralf Lammel and Joost Visser. Typed combinators for generic
traversal. In PADL’02, volume 2257 of LNCS, pages 137-154.
Springer, 2002.

Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for
refactoring functional programs. In Haskell’03, pages 27-38.
ACM, 2003. doi: 10.1145/871895.871899.

Andres Loh, Dave Clarke, and Johan Jeuring. Depency-style
Generic Haskell. In Olin Shivers, editor, /ICFP’03, pages 141—
152, 2003.

Ian Lynagh. Template Haskell: A report from the field. URL:
http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/
papers/, May 2003.

Lambert Meertens. Calculate polytypically! In H. Kuchen and S. D.
Swierstra, editors, Programming Language Implementation and
Logic Programming, volume 1140 of Lecture Notes in Computer
Science, pages 1-16, 1996.

Neil Mitchell and Colin Runciman. A static checker for safe pattern
matching in Haskell. In Trends in Functional Programming,

25

volume 6. Intellect, 2007a. ISBN 9781841501765.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list
processing. In Haskell’07. ACM, 2007b.

Matthew Naylor and Colin Runciman. Finding inputs that reach a
target expression. In SCAM’07, pages 133—142. IEEE Computer
Society, 2007. doi: 10.1109/SCAM.2007.11.

Ulf Norell and Patrik Jansson. Polytypic programming in Haskell.
In Phil Trinder et al., editors, IFL’03, volume 3145 of LNCS,
pages 168—184. Springer, 2004.

Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Loh. Extensible
and modular generics for the masses. In Henrik Nilsson, editor,
Trends in Functional Programming, pages 199-216, 2006.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and

Geoffrey Washburn. Simple unification-based type inference for
GADTs. In ICFP’06, pages 50-61, 2006.

Philip Wadler. Theorems for free! In FPCA’89, pages 347-359.
ACM, 1989.

Stephanie Weirich. RepLib: a library for derivable type classes.
In Haskell’06, pages 1-12. ACM, 2006. doi: 10.1145/1159842.
1159844.

Noel Winstanley and John Meacham. DrIFT user guide, 2006.
http://repetae.net/~john/computer/haskell/DrIFT/.

2008/4/24

