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Abstract: The use of machine learning and computer vision methods for recognizing different plants from images has

attracted lots of attention from the community. This paper aims at comparing local feature descriptors and bags

of visual words with different classifiers to deep convolutional neural networks (CNNs) on three plant datasets;

AgrilPlant, LeafSnap, and Folio. To achieve this, we study the use of both scratch and fine-tuned versions of

the GoogleNet and the AlexNet architectures and compare them to a local feature descriptor with k-nearest

neighbors and the bag of visual words with the histogram of oriented gradients combined with either support

vector machines and multi-layer perceptrons. The results shows that the deep CNN methods outperform the

hand-crafted features. The CNN techniques can also learn well on a relatively small dataset, Folio.

1 INTRODUCTION

The machine learning and computer vision community

aims to construct novel algorithms for object recogni-

tion and classification. Recently, different works have

studied the application of these algorithms on plant

datasets. Plant classification is considered a challeng-

ing problem because of the variety and the similarity

of plants in nature.

Early approaches to plant classification have con-

sidered the use of local descriptors. Nilsback and

Zisserman (2008) used a joint learning approach of

multiple kernels of local feature descriptors, includ-

ing the histogram of oriented gradients (HOG) and

the Scale-invariant feature transform (SIFT), a color

histogram with a support vector machine (SVM) clas-

sifier for the classification of a 103 flower category

dataset. The study showed that the classification per-

formance can be improved by combining multiple fea-

tures in a suitable kernel framework. An extension

on the study of local feature descriptors with the use

of the HOG-based approach (Xiao et al., 2010) for

leaf classification showed a superior performance over

inner-distance shape context (IDSC) features on the

Swedish leaf and ICL datasets. Latte et al. (2015)

worked on crop field recognition using the gray level

co-occurrence matrix (GLCM) and various color fea-

tures with artificial neural networks (ANNs). The per-

formance was significantly increased when combining

both types of features.

Other studies have focused on the use of segmen-

tation and morphological based methods for recogniz-

ing plants using leaf datasets. For instance, Markov

random field segmentation (Nilsback and Zisserman,

2010), which is optimized by using graph cut, has

been used on the 13 classes of flowers. Munisami et al.

(2015) combined several features of convex hull, mor-

phological, distance map, and color histogram with

k-nearest neighbors (KNN) to classify different kinds

of leafs and provided comparable accuracies with less

computational time. Wang et al. (2014) proposed the

combination of texture feature (intersected cortical

model), and shape features (center distance sequence)

with an SVM for classification of leaf images. Fur-

thermore, on the use of segmentation based methods,

Zhao et al. (2015) showed that using learned shape pat-

terns with independent inner-distance shape context

(I-IDSC) features can be adopted for classification of

both local and global information from leaves. The

authors suggested that recognizing leaves by pattern

counting approach is more effective than by matching

their shape features.

Recently, attention has been shifted to the use of

deep convolutional neural networks (CNNs) for plant

classification. Lee et al. (2015) presented a leaf-based

plant classification using CNNs to automatically learn



the discriminative features. Grinblat et al. (2016) em-

ployed a 3-layer CNN for assessing the classification

performance on three different legume species and they

emphasised the relevance of vein patterns. The works

of Mohanty et al. (2016) and Sladojevic et al. (2016)

used the deep CNN architectures to work on plant dis-

ease detection by focusing on leaf image classification.

Mohanty et al. (2016) compared the performance of

two CNN architectures: AlexNet and GoogleNet, with

different sizes of training and test sets. The authors

also worked on three choices of image type - color

images, gray scale images, and leaf segmented images.

The results showed that the GoogleNet architectures

steadily outperform AlexNet. Additionally, with the

train-test set distribution of 80%-20%, the learning

methods obtained the best results.

In this study, we compare the performance of local

descriptors and the bag of visual words with different

classifiers to deep CNN approaches on three datasets:

a novel plant dataset (AgrilPlant) and two already ex-

isting datasets.

Contributions: In this paper, we compare seven dif-

ferent techniques and assess their performance for rec-

ognizing plants from images using three plant datasets;

AgrilPlant, LeafSnap, and Folio. We created a novel

dataset, AgrilPlant, which consists of 10 classes of

agriculture plants. For the comparison study, we make

use of both scratch and fine-tuned versions of the

GoogleNet and AlexNet architectures and compare

them to a local descriptor (HOG) with k-nearest neigh-

bors (KNN) and a bag of visual words with the his-

togram of oriented gradients (HOG-BOW) combined

with either a support vector machine (SVM) and multi-

layer perceptrons (MLP). Using many experiments

with the various techniques, we show that the CNN

based methods outperform the local descriptor and the

bag of visual words techniques. We also show that

the reduction of the number of neurons in the AlexNet

architecture outperforms the original AlexNet archi-

tecture and gives a remarkable improvement in the

computing time.

Paper Outline: The remaining parts of the paper are

organized in the following way. Section 2 explains

the deep CNN architectures and the reduction of the

number of neurons in details. Section 3 entails brief

discussions on the hand-crafted local descriptors. In

section 4, we describe the plant datasets and the ex-

perimental settings. Section 5 presents and discusses

the performance of the various techniques. The last

section concludes and recommends possible areas for

future work.

2 DEEP CONVOLUTIONAL

NEURAL NETWORKS

Deep convolutional neural networks (CNNs) were first

introduced by LeCun et al. (1989) and have become

the most influential machine learning approach in the

computer vision field.

A deep CNN architecture consists of several layers

of various types. Generally, it starts with one or several

convolutional layers, followed by one or more pooling

layers, activation layers, and ends with one or a few

fully connected layers.

There are usually a certain number of kernels in

each convolutional layer which can output the same

number of feature maps by sliding the kernels with a

specific receptive field over the feature map of the pre-

vious layer (or the input image in the case of the first

convolutional layer). Each feature map that is com-

puted is characterized by several hyper-parameters:

the size and depth of the filters, the stride between fil-

ters and the amount of zero-padding around the input

feature map (Castelluccio et al., 2015).

Pooling layers can be applied in order to cope with

translational variances as well as to reduce the size

of feature maps (Sladojevic et al., 2016). They pro-

ceed by sliding a filter along the feature maps and

outputting the maximum or average value, depending

on the choices of pooling, in every sub-region.

A nonlinear layer or activation layer is convention-

ally applied to a feature map after each convolutional

layer to introduce nonlinearity to the network. The

Rectified Linear Unit (ReLU) function is a notable

choice (Glorot et al., 2011; Couchot et al., 2016) be-

cause of the computational efficiency and the allevi-

ation of the vanishing gradient problem. The ReLU

basically converts the input to its positive value or zero

otherwise, i.e.
∫
(x) = max(0,x).

The fully connected layers typically are the last

few layers of the architecture. The drop out technique

can be applied to prevent overfitting (Srivastava et al.,

2014; Yoo, 2015). The final fully connected layer in

the architecture contains the same amount of output

neurons as the number of classes to be recognized.

2.1 AlexNet Architecture

The AlexNet architecture (Krizhevsky et al., 2012)

follows the pattern of the LeNet-5 architecture (LeCun

et al., 1989). The original AlexNet contains eight

weight layers, which consists of five convolutional

layers and three fully connected layers.

The first two convolutional layers (conv{1,2}) are

followed by a normalization and a max pooling layer.

The last convolutional layer (conv5) is followed by the



Figure 1: The AlexNet architecture used in our work. The number w×w×d in each convolutional layer represents the size
of the feature map for each layer. The fc6 and fc7 layers contain 1,024 neurons. R in the fc8 layer is the number of neurons,
which represents the number of classes in each dataset, which are set to 10, 184, and 36 for the AgrilPlant, the LeafSnap, and
the Folio dataset, respectively.

max pooling layer. Each of the sixth and seventh fully

connected layers (fc{6,7}) contain 4,096 neurons. The

final fully connected layer (fc8) contains 1,000 neurons

because the ImageNet dataset has 1,000 classes to be

classified. The ReLU activation function is applied to

each of the first seven layers. A dropout ratio of 0.5 is

applied to the fc6 and fc7 layers. The output from the

fc8 layer is finally fed to a softmax function.

In our study, the original AlexNet architecture is

adapted by reducing the number of neurons in the fc6

and fc7 layer from 4,096 neurons to either 256, 512,

and 1,024 neurons in both layers. The idea behind this

is to increase the computational performance and miti-

gate the risk of overfitting (Xing and Qiao, 2016). We

performed preliminary experiments on the AgrilPlant

dataset to choose the best number of neurons. The re-

sults of this experiment are shown in Table 1. It shows

that 1,024 neurons are the most efficient in terms of

accuracy and it provides 34% improvement in training

time compared to 4,096 neurons. Consequently, we

set the number of neurons in the fc6 and fc7 layers to

1,024 for all datasets. The AlexNet architecture used

in our works is shown in Figure 1.

Table 1: Accuracy comparison among different numbers
of neurons and time improvement compared against 4,096
neurons in the AlexNet architecture on the AgrilPlant dataset.
The results are reported with test accuracies and standard
deviations using five simulations.

Number of neurons Accuracy Time improvement (%)

4,096 88.30 +− 1.34 -

1,024 89.53 +− 0.61 34.06

512 89.13 +− 1.24 39.09

256 88.90 +− 1.35 41.08

2.2 GoogleNet Architecture

GoogleNet, presented in the work of Szegedy et al.

(2015), is among the first architectures that introduced

the inception module that greatly dropped off the large

amount of trainable parameters in the network. The

inception module uses a parallel combination of 1×1,

3× 3, and 5× 5 convolutions along with a pooling

layer. Additionally, the 1× 1 convolutional filter is

added to the network before the 3×3, and 5×5 con-

volutions for dimensionality reduction as shown in

Figure 2. This is called the “network in network” ar-

chitecture (Lin et al., 2013).

The GoogleNet architecture uses 9 inception mod-

ules, containing 22 layers along with four max pooling

layers, and one average pooling layer. The ReLU is

used in all the convolutional layers, including those

inside the inception modules. To deal with the problem

of vanishing gradients in the network, inspired by the

theoretical work by Arora et al. (2014), two auxiliary

classifiers are added to the layers in the middle of the

network during the training process (Yoo, 2015). A

dropout ratio of 0.4 is applied to the softmax classifier.

The illustration of the convolutional layers and the in-

ception modules designed in GoogleNet is shown in

Figure 2. A more detailed explaination along with all

relevant parameters of the GoogleNet architecture can

be found in the original paper (Szegedy et al., 2015).

3 CLASSICAL LOCAL

DESCRIPTORS

3.1 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) was ini-

tially introduced for human detection (Dalal and

Triggs, 2005). The HOG feature extractor represents

objects by counting occurrences of gradient intensi-

ties and orientations in localized portions of an image.

Based on the work of (Bertozzi et al., 2007; Surinta

et al., 2015), the HOG descriptor computes feature

vectors using the following steps:



Figure 2: The illustration of the GoogleNet architecture (Szegedy et al., 2015). All convolutional layers and inception modules
have a depth of two.

1) split the image into small blocks of n×n cells,

2) compute horizontal gradient Hx and vertical gra-

dient Hy of the cells by applying the kernel [-1,0,1] as

gradient detector,

3) compute the magnitude M and the orientation θ

of the gradient as:

M(x,y) =
√

H2
x +H2

y (1)

θ(x,y) = arctan
Hy

Hx

(2)

4) form the histogram by weighing the gradient

orientations of each cell into a specific orientation bin,

5) apply L2 normalization to the bins to reduce

the illumination variability and obtain the final feature

vectors.

In our preliminary experiments, we use 5×5 rect-

angular blocks and 8 orientation bins, thus yielding

a 200-dimensional feature vector. We then feed the

feature vector to the KNN classifier.

3.2 Bags of Visual Words with

Histogram of Oriented Gradients

The idea of the bag of visual words (BOW) model

(Csurka et al., 2004; Tsai, 2012) in computer vision

is to consider an image consisting of different visual

words. The image descriptor can be obtained by clus-

tering features of local regions in the images, which

contain rich local information of the images, such as

color or texture. In the paper, we combine BOW with

the HOG feature descriptor, resulting in HOG-BOW.

The construction of the HOG-BOW feature vectors

involves the following steps:

1) To compute patches, the set of local region

patches P is automatically extracted from the dataset

of images, P = {p1, p2, ..., pn,}, where n is the num-

ber of patches. The size of each patch is a square of

w×w pixels. Each patch is computed by using lo-

cal descriptors, and then used as an input to create a

codebook.

2) The codebook C is obtained by applying the K-

means clustering algorithm over the extracted feature

vectors of each patch based on a number of centroids.

3) Construct the BOW feature by detecting the

occurrences in the image of each cluster. Each image

is split into four quadrants and we compute the feature

activation using sum-pooling (Wang et al., 2013).

In our experiments, based on the work of Surinta

et al. (2015), the HOG descriptor is employed as the lo-

cal descriptor. The number of patches is set to 400,000,

the size of each patch is 15×15 pixels, and the num-

ber of centroids is set to 600. As the image is split

into four quadrants, the HOG-BOW generates 2,400

dimensional feature vectors.

The feature vectors are then fed to the classifiers,

for which we use the L2-SVM (Suykens and Vande-

walle, 1999) and a Multi-Layer Perceptron (MLP).

The process of the HOG-BOW method used in our

experiments is illustrated in Figure 3.

4 EXPERIMENTS

4.1 Plant Datasets

In our experiments, we performed experiments using

three datasets; AgrilPlant, Leafsnap, and Folio.

AgriPlant Dataset: The AgriPlant dataset consists of

3,000 agriculture images that are collected from the

website www.flickr.com. It consists of 10 classes with



Figure 3: Illustration of generating the BOW feature vectors.

the following plants: apple, banana, grape, jackfruit,

orange, papaya, persimmon, pineapple, sunflower, and

tulip. Each class contains exactly 300 images. The

images may have been taken from five different views,

i.e. entire plant, branch, flower, fruit, and leaf. A

sample of the AgrilPlant dataset is shown in Figure 4.

The challenges of classification on the AgriPlant

dataset are (a) the similarity among some classes, i.e.

apple, orange and persimmon have similar shapes and

colors, (b) a diversity of plants within the same class,

for example, there are green and red apples, or there

are varieties of tulips, and (c) the existence of complex

backgrounds or other objects such as human, car, and

house on several images.

LeafSnap Dataset: The Leafsnap dataset (Kumar

et al., 2012) originally contained 185 tree species and

is used for leaf recognition research. The dataset con-

sists of leaf images taken from two different sources;

lab images and field images. In our experiments, we

performed experiments with field images. This con-

sists of 7,719 leaf images and has a coverage of 184

tree species (one class is missing for the field images)

of the Northeastern United States. All the images were

taken in outdoor environments with mobile devices

and might contain some amounts of noise, blur, and

shadows. The number of images in each class vary

from 10 to 183 images. A sample of the LeafSnap

dataset is shown in Figure 5(a).

Folio Dataset: The Folio dataset, introduced in the

work of Munisami et al. (2015), consists of 32 differ-

ent species of leaves which were collected from the

farm at the University of Mauritius. It consists of ap-

proximately 20 images for each species. All images

were taken under daylight on a white background. A

sample of the Folio dataset is shown in Figure 5(b).

4.2 Experimental Settings

We evaluate the deep CNNs architectures and the hand-

crafted local descriptors combined with KNN, SVM,

and MLP for plant classification. In our study, the plant

datasets are split into a training set and test set with

the ratio of 80:20 and 5-fold cross validation is used to

evaluate the performance of the studied methods. The

resolution of plant images is set to 256×256 pixels.

Most parameters for the deep CNN architectures,

for both AlexNet and GoogleNet, are set to the same

values for scratch and fine-tuned versions, except for

max iteration and step size that are set to different

values. The parameters settings are shown in Table 2.

For the hand-crafted local descriptors, we combine

the HOG with the KNN classifier and the HOG-BOW

with MLP and SVM. We select the optimal k for the

KNN classifier in the range of k = {3,5,7,9}.

On each dataset, a grid search is applied to tune

the C parameters for the SVM in the range of C =
{

21
,22

, ...,28
}

and choose the best C parameter that

gives the highest accuracy result. We then perform the

5-fold cross validation using this C parameter.

For the MLP, we use the scaled conjugate gradient

(Møller, 1993) as a training algorithm. The number

of neurons and the learning rate are set to 512 and

0.001, respectively. These values resulted in the best

performance using preliminary experiments.

5 RESULTS AND DISCUSSION

We now report the test accuracies using the deep CNN

methods and hand-crafted local feature descriptors

with different classifiers. The experiments are carried



Figure 4: Sample pictures from the AgrilPlant dataset. Note that, the images on each column represent one class. From left to
right, the class is apple, banana, grape, jackfruit, orange, papaya, persimmon, pineapple, sunflower, and tulip.

(a) (b)

Figure 5: Sample pictures from two datasets (a) LeafSnap,
and (b) Folio.

Table 2: Summary of experimental parameters for the
AlexNet and GoogleNet architectures on the three datasets.

Parameters AgrilPlant LeafSnap Folio

Learning rate 0.001 0.001 0.001

Weight decay 0.0005 0.0005 0.0005

Train batch size 20 20 20

Validation batch size 10 10 10

Max iteration (scratch) 50000 50000 50000

Step size (scratch) 25000 25000 25000

Max iteration (fine-tuned) 20000 20000 20000

Step size (fine-tuned) 10000 10000 10000

Test iterations of solver 30 77 6

Test iterations evaluation 60 154 12

out based on 5-fold cross validation and we report the

top-1 accuracy. The results are shown in Table 3.

5.1 AgrilPlant Dataset Evaluation

Comparing the performance of the deep CNN meth-

ods and the hand-crafted local feature descriptors, the

deep CNN methods consistently outperform the local

descriptors. The fine-tuned approaches of both the

GoogleNet and the AlexNet architectures obtain the

best performance, reaching an accuracy of 98.33% and

96.37%, respectively. This is an improvement of ap-

proximately 5% and 6.8% over the scratch versions of

each architecture. The GoogleNet fine-tuned version

gives approximately 19% better performance than the

HOG-BOW with SVM, which obtains the best per-

formance among the local feature descriptors. The

HOG-BOW with SVM outperforms the HOG-BOW

with MLP with 4.8% difference. The HOG with KNN

obtains the worst performance with an accuracy of

38.13%.

5.2 LeafSnap Dataset Evaluation

For the LeafSnap dataset, the GoogleNet fine-tuned

and scratch versions obtain the best performance with

an accuracy of 97.66%, and 89.62%, respectively. The

AlexNet fine-tuned architecture follows up with an

accuracy of 89.51%. The HOG-BOW with MLP, how-

ever, slightly outperforms the AlexNet scratch archi-

tecture with an accuracy of 79.27%. Comparing this to

previous work on the LeafSnap dataset using curvature

histograms, Kumar et al. (2012) reported a top-5 ac-

curacy of 96.8%. We note that GoogleNet fine-tuned

significantly outperforms that method with a top-1

accuracy of 97.66%. Comparing between the local

feature descriptors, The HOG-BOW with MLP gives

an accuracy of approximately 6.6% and 20.7% higher

than the HOG-BOW with SVM and the HOG with

KNN, respectively.



Table 3: Test Accuracy comparison among all techniques on three plant datasets.

Methods AgrilPlant LeafSnap Folio

HOG with KNN 38.13 +− 0.53 58.51 +− 2.47 84.30 +− 1.62

HOG-BOW with MLP 74.63 +− 2.16 79.27 +− 3.36 92.37 +− 1.78

HOG-BOW with SVM 79.43 +− 1.68 72.63 +− 0.38 92.78 +− 2.17

AlexNet scratch 89.53 +− 0.61 76.67 +− 0.56 84.83 +− 2.85

AlexNet fine-tuned 96.37 +− 0.83 89.51 +− 0.75 97.67 +− 1.60

GoogleNet scratch 93.33 +− 1.24 89.62 +− 0.50 89.75 +− 1.74

GoogleNet fine-tuned 98.33 +− 0.51 97.66 +− 0.34 97.63 +− 1.84

5.3 Folio Dataset Evaluation

For the Folio dataset, Munisami et al. (2015) reported

an accuracy of 87.3% by using shape features and

a color histogram with KNN which outperforms the

AlexNet scratch version on our study with an accuracy

of 84.83%.

In our experiments, the AlexNet fine-tuned and

the GoogleNet fine-tuned architectures obtain the best

results with an accuracy of 97.67% and 97.63%, re-

spectively. The next two techniques with the best

performance are the HOG-BOW with SVM and the

HOG-BOW with MLP classifiers, both of which yield

an accuracy of 92.73% and 92.37%, respectively. The

scratch version of GoogleNet still obtains acceptable

results with an accuracy of 89.75%. Note that on this

dataset, the HOG-BOW with either SVM and MLP

classifiers gives roughly 8% better performance than

the AlexNet scratch version. The HOG with KNN

gives the worst result with an accuracy of 84.30%.

The evaluation on the Folio dataset shows that the

deep CNN architectures also perform well on a small

dataset as this dataset contain only 637 images in total

for 32 classes.

6 CONCLUSIONS

In this paper, we have presented a comparative study

of some classical feature descriptors to deep CNN ap-

proaches on three plant datasets. The HOG feature

descriptor combined with KNN, and HOG-BOW com-

bined with SVM and MLP classifiers are compared

to AlexNet and GoogleNet, both trained from scratch

and using the fine-tuned versions as deep CNN archi-

tectures.

We evaluated all the image recognition techniques

on three plant datasets and achieved notable overall

performances. The fine-tuned versions of the deep

CNNs architectures persistently outperform the classi-

cal feature descriptors techniques on all datasets. The

GoogleNet fine-tuned architecture obtains the best re-

sult with accuracies of 98.33% and 97.66% on the

AgrilPlant dataset and the LeafSnap dataset, respec-

tively. The AlexNet fine-tuned and the GoogleNet

fine-tuned techniques also give the best result on a

relatively small dataset, Folio, with an accuracy of

approximately 97.6%.

Comparing between the HOG-BOW descriptors

on each of the three dataset, on the AgrilPlant dataset,

the HOG-BOW combined with SVM performs 4.8%

better than the HOG-BOW combined with MLP. On

the other hand, the HOG-BOW combined with MLP

works 6.64% better than the HOG-BOW combined

with SVM. On the Folio dataset, however, both HOG-

BOW descriptors give insignificantly different results

with an accuracy of approximately 92%. Among all

studied techniques, the HOG with KNN always yields

the worst accuracy on all datasets.

In further work, we want to study the deployment

of deep learning in an unmanned aerial vehicle system

targeted for precision identification of plant diseases.
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