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In Sections 1-3, the classical theory of the comparison of two experi· 

ments is reviewed with particular reference to the comparison of two location 

experiments. It is shown that the requirement of domination of one experi· 

ment by another for all decision problems is too strong to provide a 

reasonable basis for comparison. For one-parameter problems with monotone 

likelihood ratio, it is therefore proposed to restrict the comparison to decision 

problems that are monotone in the sense of Karlin and Rubin (1956). 

Application of this weaker definition to the location problem is shown to give 

satisfactory results. A scale-free comparison of this type leads to a new 

tail-ordering of distributions, and this is explored in Section 6. 

1. Introduction. An experiment E is a random quantity X and a family 
P = {P0 , 0 E 0} of possible distributions of X. Let F = (Y, Q = {Q0 , 8 E 0}) be 

another experiment, with the distributions P0 and Q0 corresponding to the same 

state of nature 8. The idea of patterning the definition of one experiment being 

more informative than another on the concept of sufficiency was initiated in an 
unpublished memorandum by Bohnenblust, Shapley and Sherman and devel
oped into a theory by Blackwell (1951, 1953). 

DEFINITION (1.1). The experiment F is more informative than (or sufficient 
for) E if there exists a random quantity Z with known distribution and a 
function h such that for all 8 E 0, 

Y is distributed as Q0 ==> h(Y, Z) is distributed as P8 • 

An immediate consequence of (1.1)is: 

For any decision procedure 8 based on X and any loss 

(1.2) function L(8, d) there exists a (possibly randomized) proce
dure 8' based on Y such that R(8, 8') = R(8, 8) for all 0. 

It was shown by Blackwell, and under more general conditions by Le Cam 

(1964) and Feldman and Ramamoorthi (1986) that typically not only does (1.1) 
imply (1.2) but the inverse implication also holds. In fact, in the same papers it is 
shown that (1.1) is implied by the following apparently even weaker statement: 

(1.3) 
Statement (1.2) with the conclusion R(8, 8') = R(O, 8) for all 
0 replaced by R(8, 8') ~ R(8, 8) for all 8. 
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A fourth condition, which typically is equivalent to (1.1)-(1.3), is the Bayes 
condition that given any prior distribution A for 8, the Bayes risk is no larger 
when the experiment is based on Y than when it is based on X. 

If Y is more informative in the sense of these definitions, which are equivalent 
in the situations to be considered in this paper, we shall write Y ~ X. If Y ~ X 

and X~ Y, the experiments X andY will be said to be equivalent (Y- X). The 
experiment Y is strictly more informative than X (Y >X) if it is more informa

tive than X but not equivalent to it. 
The various possibilities are illustrated by the following example. 

EXAMPLE 1.1 (Normal). Let X= (X1, • • • , Xn), Y = (Y1, ••• , Yn), where the 
Xi and Yi are independently normally distributed as Na, o2 ) and Na, p2o2 ), 

respectively, with p known and 0 < p < 1. 

(i) 0 = Oo known. Here y ~ X since Yi + zi has the same distribution as xi 
when Zi is N(O, (1 - p 2 )o~). That Y is strictly more informative than X is seen 
by noting that the UMV unbiased estimators of ~ based on X and Y are, 

respectively, X with variance o~jn and Y with variance p 2 o~jn. The latter 

variance cannot be matched by an unbiased estimator based on X, so that by 
Definition (1.1) X is not as informative as Y. 

(ii) ~ = ~ 0 known. Assuming without loss of generality that ~ 0 = 0, one sees 
that Y- X since the variables Yvfp have the same distribution as the Xi, and 

the variables pXi the same distribution as the Yi· 
(iii) ~ and o both unknown. The surprising fact [see Hansen and Torgersen 

(1974)] is that in this case X andY are not comparable. 

This example illustrates the three possibilities: strict comparability, equiv
alence and noncomparability, and the two principal methods used to determine 
comparability. If Y is more informative than X, it is typically easy to determine 

the function h(Y, Z) required in (1.1). To prove that Y is not more informative 

than X, one attempts to construct a statistical task that can be performed on 

the basis of X, but that either cannot be performed, or at least not as well, on 
the basis of Y. For this latter purpose it is often most convenient to find a 
function a( 8) that has an unbiased estimator based on X but not on Y. One 
reason for looking at this particular kind of task is that unbiasedness of an 
estimator requires only the calculation of first moments. Another reason is a 
result of DeGroot (1966), Theorem 4.1, which states essentially that if P is 
complete, then Y is more informative than X if and only if for each set B for 
which probability is defined a(8) = P11(X E B) has a nonnegative unbiased 
estimator based on Y. 

2. Comparing two location experiments. 

PROBLEM 1. In most of this paper, we shall be concerned with the case that 
P and Q are location families, i.e., they are given by 

(2.1) P11(X ~ x) = F(x- 8) and Q11 (Y ~ y) = G(y- 8). 
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For this case it was shown by Boll (1955) and independently by Stone (1961) 
that condition (1.1) greatly simplifies in that the function h(Y, Z) can always be 
taken to be of the fonn h(Y, Z) = Y + Z, i.e., Y ~ X if and only if there exists a 
random variable Z independent of Y such that 

(2.2) Y has distribution Q8 ~ Y + Z has distribution P8 • 

As an example, suppose that G is the unifonn distribution on ( - t, t) and F 

the triangular distribution on ( -1, 1). Then Y ~X since (2.2) holds with Z 

unifonnly distributed on (- ! , ! ). 
If f/>x and f/>y denote the characteristic functions of the distributions F and G, 

respectively, (2.2) is equivalent to the condition that 

(2.3) 1/1( t) = f/>x( t)/f/>y{ t) is a characteristic function. 

As an example, suppose that F is the double exponential distribution with 
density te-l.rl and G the exponential distribution with density e-.r, x > 0. Then 

1 1 

4>x(t) = 1 + t2 and f/>y(t) = 1- it' 

so that 1/J(t) = 1/(1 + it), which is the characteristic function of - Y. Thus Y is 
more informative than X. 

An immediate consequence of (2.3) is the surprising fact that if X is nonnally 

distributed, then Y cannot be more infonnative than X unless Y is also nonnal. 
This follows immediately from Cramer's theorem that if X is normal and X is 

the sum of two independent random variables Y and Z, then Y and Z must be 

normal. It is however disconcerting to learn that a nonnal location family 

F(x- 8) = ~~( x: 8 ) 

even for every large o is never less infonnative than a nonnormal G(y- 8) even 
if the latter distribution is very tightly concentrated about () . Of course, if 

G(y-8)= ~~(y~fJ). 

with 7' < o, then Y is more infonnative than X by Example 1.1(i). 
Given any Y with distribution G(y- 8), it is trivial to construct a less 

informative X simply by taking F( x - ()) to be the distribution of Y + Z for any 
independent Z. On the other hand, any particular given F and G will be 
comparable only in very exceptional cases since this would require one of the 
characteristic functions f/>x, f/>y to be a factor of the other. 

The normal example suggests the possibility that such comparisons may be 

more readily available when G differs from F only by a scale factor, say. 

PROBLEM 2. P and Q are given by (2.1) with 

(2.4) ( y-8) 
G(y-fJ)=F -P-, O<p<l. 
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This problem has been considered by Stone (1961) and Goel and DeGroot 
(1979). A necessary and sufficient condition for Y given by (2.4) to be more 
informative than X for all p, 0 < p < 1, is that 

( 2.5) 1/1 ( t) = q, x/ t \ is a characteristic function for aU 0 < p < 1. 
.Px pt 

As was pointed out by Goel and DeGroot, the distributions F whose characteris
tic functions q, x satisfy (2.5) were investigated by Levy in a quite different 
context, and are called self-decomposable or belonging to class L. In particular, it 
follows from Levy's work that all stable laws are self-decomposable and that, on 
the other hand, all self-decomposable distributions are infinitely divisible. 

EXAMPLE 2.1 (Double exponential). As a simple example of a self-decom
posable distribution that is not stable, consider the double exponential distribu
tion with density f(x) = ~e-1x1 and characteristic function .p(t) = 1/(1 + t 2 ). To 

see that this is self-decomposable, note that 

1 + p2t 2 1 
1/l(t) = = p2 • 1 + (1- p2). -- . 

1 + t 2 1 + t 2 

Thus, 1/l{t) is the characteristic function of a variable which is equal to 0 with 
probability p2 and has density f(x) with probability 1 - p2• 

On the other hand, let F(x) be any distribution whose support is a finite 
interval such as the uniform or triangular distribution. Then F cannot be 
self-decomposable since it is not infinitely divisible. 

3. The uniform case. It follows from the discussion of the preceding section 
that if X and Y are uniformly distributed as 

(3.1) x: u(o- t,o + t). Y: u( o- ~.o + ~). 

then very surprisingly Y is not more informative than X for all 0 < p < 1. This 
does not rule out the possibility that it may be more informative for some p, and 
this is in fact the case. 

THEOREM 3.1. Under (3.1), Y is more informative than X if and only if 

p = 1/k for some positive integer k. 

PRooF. (i) If p = 1/k, then (2.2) holds with Z being uniformly distributed 
over the points 

(k- 1) 

2k 

(k- 3) k- 3 k- 1 

2k ·····--v;-·--v;- · 
This is easily checked and well known. That Y in this case is strictly more 
informative than X can be seen, for example, by considering the problem of 
testing H: fJ = 0 against the simple alternative (J = 01, where 1/2k < 01 < t. 
Then there exists a test with power 1 based on Y but not on X. 
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(ii) To prove that Y is not more informative than X for p :F 1/k, we shall 

exhibit a statistical task which X can perform in this case but Y cannot. For this 

purpose, consider the estimation of 

(3.2) 

The estimator 

a(8)=P9(X < 0) = 1, if 8 < - ~. 

=0, ifO>t. 

80( X) = 1, if X < 0, 

= 0, otherwise, 

has the following two properties: 

(a) 80(X) is unbiased; 

(b) Var9[80(X)] = 0 when 8 < -1 and when (J > 1. 

We shall now show that an estimator based on Y that shares these properties 
can exist only if p = 1jk. Here attention can be restricted to nonrandomized 
estimators 8(Y) since if 8'(Y, Z) has properties (a) and (b), where Z has a known 

distribution, so does 8(Y) = E[8'(Y, Z)IY]. 

Suppose now that 8(Y) satisfies (b). Then 8(Y) must be constant (a.e.) for 

y > 1 - tP and for y < -1 + tP, and these constants must be 0 and 1, respec
tively, if 8(Y) is to be unbiased. By differentiating the unbiasedness condition 

p- 1 1e+p/28(y) dy = a(fJ), for all 8, 
fJ-p/2 

one finds further that 8(y) must satisfy (a.e.) 

(3.3) 
8( y- i) - 8( y + i) = p if-l<y<l 

2 2' 

= 0, otherwise. 

For almost all sequences 8( y ± jp ), j = 0, 1, 2, ... , 8 must therefore decrease 
from its value 1 near j = - oo to its value 0 near j = + oo by steps the sizes of 

which are restricted to 0 and p. This is possible only when p = 1/k for some 
positive integer k. 0 

It seems plausible that the difficulty in this example is caused by the 
insistence on 8 being unbiased, and that an estimator 8(Y) with risk uniformly 

smaller than that of 80(X) does exist for most reasonable loss functions. It will 
be seen at the end of Section 4 that this is indeed the case. 

4. Monotone decision problems. The examples discussed in the preceding 
sections make it clear that condition (1.1) for comparability is too strong to hold 

in many situations in which intuition suggests that one experiment is more 
informative than another. 

Three approaches to weakening the requirements for comparability have been 
proposed. 
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(i) Le Cam (1964) replaces condition (1.2) by the approximate condition that 

each risk function based on X can be matched within E by one based on Y. 

(ii) Several authors suggest that comparisons should be made in terms of 
some measure(s) of information such as Fisher, Shannon or Kullback-Leibler 
information. 

(iii) Throughout the literature on the comparison of experiments, the sugges

tion occurs of comparing two experiments not for all decision problems but only 
for some family C of problems. For such restricted comparisons, (1.3) is the 
relevant determining condition. So as to distinguish this approach from the 
classical one, we shall say that Y is more effective than X with respect to 
the class C of decision problems concerning 8 if for any problem in C (specified 
by a set of possible decisions and a loss function) and any decision procedure for 
this problem based on X, there exists a procedure 8' based on Y such that 

R(8,8') ~ R(8,8) for all 0. It is this last approach with which we shall be 

concerned in the remainder of this paper. More particularly, we shall be inter
ested in defining a class C that is large enough to include most of the statistical 
problems of interest, but not so large that comparability becomes practically 
impossible. 

A suitable such class was introduced by Karlin and Rubin (1956) [see also 
Brown, Cohen and Strawderman (1976)] for the case that 0 is a real-valued 
parameter. This class, the class of monotone procedures, which we shall denote 
by M, is defined in terms of the action space and the permissible loss functions. 
For each 8 it is assumed that there is a "correct" action a(O), and the function 
a(8) is assumed to be real-valued and nondecreasing. The set of values taken on 
by a( 0) as 0 ranges over 0 is the action space A. The loss function is assumed to 
satisfy L(O, a(O)) = 0 for all 0, with L(8, d) nondecreasing as a function of d as 
d moves away from a(O) on either side. 

The basic result of Karlin and Rubin (KR) is concerned not with a compari
son problem but with a single family of densities p9(x) with monotone likelihood 
ratio in T(x), which without loss of generality we shall take to be x. It then 
states that for any monotone decision problem for such a family p9 , the class M 
of monotone procedures is essentially complete. Here a nonrandomized proce
dure 8( x) is monotone if 

x < x' ~ 8(x) ~ 8(x'). 

A randomized procedure 8 is monotone if for any x < x', 

(4.1) 
8(x) assigns positive probablity to [a , oo) implies that 8(x') 

assigns probability 1 to [a , oo ). 

[Under slightly stronger assumptions, Brown, Cohen and Strawderman (1976) 
show M to be complete rather than only essentially complete.] 

For the case of a finite number of actions (or decisions) a 1, ••• , ak, a decision 
procedure can be described by k functions cf> = ( cp 1, ••• , cf>k) with 

k 

0 ~ cf>i ~ 1 and L ct>i(x) = 1. 
i=l 
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It follows from (4.1) that such a procedure cp is monotone provided there exist 
k+lpointsx1 = -oo~x 2 ;:5; ··· ~xk+ 1 = +oosuchthat<Pi{x)=lorOasx 
lies in or outside the interval (xi, xi+ 1) with possible randomization on the end 
points. An example is provided by the case of two decisions corresponding to 
testing a hypothesis H: 8 ~ 80 against the alternatives 8 > 80; or the three-deci
sion problem in which the hypothesis H: 80 ~ 8 ~ 81, 80 ~ 81, is to be accepted 
(decision d 0 ) or rejected in favor either of the alternatives 8 < 80 (decision d 1) or 
8 > 81 (decision d 2 ) with suitable losses for wrong decisions. [This case is treated 
in some detail in Ferguson (1967), Section 6.1.] The infinite action case is 
illustrated by the estimation of a function a( 8 ), for example, the estimation of a 
continuous parameter 8 with squared error loss, or the situation described by 
(3.2). 

5. Relative e:ffectiveness of location families. The aim of the present 
section is to provide necessary and sufficient conditions for Y to be more effective 
than X in problems 1 and 2 with respect to the class M. However, we begin by 
presenting the result in its natural, somewhat more general setting. 

Let P and Q consist of the families 

(5.1) P0(X;:5;x)=Fo(x) and Qo(Y~y)=G 0 (y). 

THEOREM 5.1. Let F0 and G0 have densities fo and g0 with respect to a 
comnwn a-finite measure f.L, and suppose that the families f0(x) and g0(x) have 
nwrwtone likelihood ratio in x. Then a necessary and sufficient condition for Y to 
be nwre effective than X with respect to M is that the function 

(5.2) h 0(x) = Gi 1[F0(x)] isanondecreasingfunctionof 8 foreachx . 

PRooF. By the KR theorem, attention can be restricted to the ability of Y 
to dominate any monotone procedure 8 based on X, i.e., to prove the existence of 
a procedure 8' based on Y with risk uniformly no greater than that of 8. 
Although this is not required for the proof, the construction will produce a 
monotone 8'. 

Assuming (5.2), we begin by showing that for any 80 and any 0 < a < 1, given 
any level a test of H: 8 ~ 80 against 8 > 80 based on X, there exists a test for 
the same problem based on Y that is uniformly at least as powerful for 8 > 80 

and uniformly at most as powerful for 8 < 80 • 

Since there exist tests based on X andY, respectively, that are simultaneously 
uniformly most powerful against 8 > 80 and uniformly least powerful against 
8 < 80 , it is enough to show that the claimed relationship holds for these two 
tests. For this purpose, we shall assume without loss of generality that F00 and 
G00 are continuous. This can always be achieved by the following construction. 
Suppose X has a discontinuity at x 0 , with P(X = x 0 ) = p when 8 = 80 • Define 
a new variable X* by 

X* = X, if X< x 0 , 

= X + pU, if X = x 0 , 

=X+ p, if X> x 0 , 
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where u is uniformly distributed on (0, 1). Then the distribution of x· is 

continuous when fJ = 80 and the family of distributions of x• has monotone 

likelihood ratio. Furthermore, the experiments X and x• are equivalent. This is 

seen from the fact that clearly x• is equivalent to the pair (X, U), for which X 

is a sufficient statistic. 

Assume therefore that F90 and G90 are both continuous. Then the optimal test 

based on X is given by the rejection region X > a and that based on Y by 

Y > b. Then a and b satisfy F8 (a)= G8 (b)= 1 -a and are therefore related 
0 0 

by 

(5.3) b = Gi,; 1[FoJa)]. 
The power of the two tests against any fJ > 80 is 1 - F9( a) and 1 - G8( b), 

respectively, so that domination of X by Y requires 

Go( b) ~ Fs( a), for all fJ > 80 , 

and analogously 

G8 ( b) ~ Fg( a), for all fJ < 80 • 

Substitution from (5.3) shows the inequality to be equivalent to 

Gi,; 1[F90(a)] ~ Gi 1 [F9(a)], for all fJ > 80 , 

with the inequality being reversed for fJ < 80• Since this must hold for all a, it is 

seen that (5.2) is a necessary condition for Y to be more effective than X for all 

one-sided testing problems. 

To complete the proof of sufficiency, one can now plug into the proof of the 

KR theorem. The result established so far corresponds exactly to Lemma 3 of 

Karlin and Rubin. To construct a procedure based on Y to dominate any given 

monotone procedure with finite decision space based on X, one now simply 

applies the arguments of their Lemma 4 and Theorem 1. Having established Y 's 

dominance for all finite problems in M, one then passes to the limit as in Section 

7 of Karlin and Rubin to establish the result for the infinite case. o 

We next specialize Theorem 5.1 to Problem 1. 

THEOREM 5.2. Let the distributions of X and Y be given by (2.1) and suppose 

that F(x- fJ) and G(x- fJ) have densities (with respect to Lebesgue measure) 

that are strongly unimodal. (A density f is strongly unimodal if -log f is 

convex.) Then a necessary and sufficient condition for Y to be more effective than 

X with respect to M is that 

G- 1[F(b)] - G- 1[F(a)] 
(5.4) ~ 1, for aU a< b. 

b-a 

PRooF. Iff and g are strongly unimodal, the families f(x- 8) and g(x- fJ) 

have monotone likelihood ratio in x. The function h defined by (5.2) in the 

present case reduces to 

hg{x) = G- 1[F(x- 8)] + 8 

and hence the inequality h 9(x) ;:5; h 9,(x) to (5.4) with a = x - 8' and b = x - 8. 

0 



787

COMPARING LOCATION EXPERIMENTS 

Putting F(a) = u, F(b) = Jl, we can rewrite (5.4) as 

(5.5) a- 1(J1)- a- 1(u} ~ F- 1(J1)- F- 1(u}, forallO < u < J1 < 1. 

Condition (5.5) states that F is more spread out than G in the sense that any 
two quantiles are at least as far apart under F than they are under G. These are 
just the circumstances under which one would expect inferences about the 
location of F to be more difficult than those about the location of G. Restriction 
to monotone problems has thus replaced the original rather strange and-as it 
turned out-not very useful condition (2.2) with one that nicely quantifies our 
intuition. 

Condition (5.5) was discussed in Bickel and Lehmann (1979) as the definition 
of F being more spread out than G. It was also pointed out there that if p- 1 

and G - 1 are differentiable, (5.5) is equivalent to 

(5.6) 
f [ p-1( y )] 

g [ G _ 1( y)] ~ 1, for all 0 < y < 1. 

Still another equivalent condition is given in Theorem 1 of Bickel and Lehmann. 
Let us finally specialize the preceding results to Problem 2, defined by (2.4). 

Since in that case G(y) = F(yjp), 0 < p < 1, we have G- 1(y) = pF- 1(y), and it 
is seen that (5.5) holds for all F. We have thus proved 

THEOREM 5.3. Let the distributions of X andY be given by (2.4) and suppose 
that F has a density f which is strongly unimodal. Then Y is more effective than 
X relative to M for aU 0 < p < 1. 

Since the uniform distribution is strongly unimodal, this establishes in par
ticular the conjecture expressed at the end of Section 3 for any loss function 
meeting the KR conditions of case 1 of Section 4. 

6. Scale-free comparisons and a tail-ordering. Conditions (5.4)-(5.6) 
make it possible for any particular F and G to decide on the comparability of 
the two families (2.1) with respect toM. We shall in the present section consider 
a scale-free version of this comparison. 

PRoBLEM 3. Given F and G, does there exist p sufficiently small so that 
G((y- 8)/p) is more effective than F(x- 8) with respect toM? 

When such a p exists, we shall say that G has a more effective shape than F 
with respect toM. 

It follows from (5.5) that G has a more effective shape than F if and only if 
there exists p such that 

a- 1(J1)- a- 1(u) 

F- 1( J1) - F - 1( u} 

1 
~ -, 

p 
for all 0 < u < Jl < 1, 
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i.e., if and only if 

(6.1) 

If F- 1 and G- 1 are differentiable, this reduces to 

f [ F- 1(y )} . 
( 6.2) g ( G _ 1( Y)] 1s bounded. 

The function f(F- 1(y)] is studied in a different context by Parzen (1979) who 

calls it the density-quantile function, and considers its limiting behavior as 

y -+ 0 or 1 a measure of tail weight. He also evaluates this function for a number 

of important distributions. Condition (6.2) is also closely related to the s-order

ing of symmetric distributions introduced by van Zwet (1964), who requires that 

f [F- 1(y)} decreasing for y > ~. 
(6.3) be 

g [ G- 1( y)] increasing for y < ~. 

The ratio therefore attains its maximum at y = ~ and if f is bounded, (6.3) 

implies (6.2). 

As discussed by Loh (1984b), van Zwet's s-ordering and some related orderings 

(including Lob's t-ordering) take into account not only the heaviness of the tail 

but also the behavior of f (its "peakedness") at the center. In contrast, condition 

(6.2) provides a definition of pure tail-ordering, provided attention is restricted 

to densities f, g such that f is bounded and g[G- 1(y)] is bounded away from 0 
in any interval 0 < a < y < b < 1. As an example, if G is double exponential and 

F Cauchy, then F is not tail-heavier according to the s-ordering, but it is strictly 

tail-heavier according to the ordering (6.2) since [see Parzen (1979)] 

f [F- 1(u)] = 1- u, for u > t, 

= u, for u < ~. 

when F is standard double exponential and 

1 
f [F- 1(u)} = -sin2(1ru)- 1ru 2 , as u-+ 0 

1T 

- 1r(1- u) 2, as u-+ 1, 

when F is standard Cauchy, where - means that the ratio tends to 1. As 
another example, note that according to the s-ordering, the double exponential is 

heavier-tailed than the logistic, whereas the two are equivalent according to the 

ordering (6.3). This is seen from the fact that for the logistic distribution 

f [F- 1(u)] = u(1- u). 

Let us now return to Problem 3 and provide examples of some situations in 

which G has a more effective shape than F by being lighter-tailed according to 

Definition (6.2). Suppose, for example, that G is uniform (or has any other 

distribution whose density g is bounded away from 0 and oo on its support). It 
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then follows from (6.2) that the shape of G is more effective than that of any 
distribution F with bounded density, and that it is strictly more effective if the 
bounded density of F is not bounded away from 0, e.g., if F is triangular, 
normal, etc. · 

As another example, suppose that G is the triangular distribution with 
density 

g(x) = 1- !xl, -1<x<l. 

Then g[G- 1(y)] = J2(1- y), and G is lighter-tailed than the logistic and 
double exponential distributions but heavier-tailed than the extreme value 
distribution for which f[F- 1(y)] = -(1- y)log(1- y) (see Parzen, l.c.) 

7. The case of n observations. So far, attention has been restricted to a 
single observation from model (2.1) or (2.4). We shall now generalize Theorem 5.1 
to the case that X1, • • ·, Xn; ¥1, ••• , Yn are i.i.d. with distributions F9 and G9, 

respectively, where 8 continues to be real-valued. The definition of the class M 
does not require any modification since it concerns only the parameter and 
decision space but not the sample space. 

THEOREM 7.1. Under the assumptions of Theorem 5.1, condition (5.2) is 
necessary and sufficient for Y = (Y1, ••• , Yn) to be rrwre effective than X= 
(X1, . • • , Xn) with respect toM. 

PRooF. A decision procedure l>(x1, ••• , xn) is said to be monotone if 

(7 .1) xi~ x[, for all i = 1, ... , n implies that l>(x) ~ l>(x'). 

The KR theorem discussed in Section 4 was generalized to n i.i.d. variables from 
a MLR family by Oosterhoff (1969), Brown, Cohen and Strawderman (1976) and 
Van Houwelingen and Verbeek (1985), who state that as in the one-dimensional 
case the class of monotone procedures is essentially complete. We can therefore 
as in the proof of Theorem 5.1 restrict attention to the problem of dominating 
any monotone procedure based on X. 

In analogy to the proof of Theorem 5.1, we begin by showing that for any D0 

and 0 < a < 1, given any monotone level a test cf> of H: 0 ~ D0 against D > D0 

based on X = (X 1, ••• , X n ), there exists a test for the same problem based on 
Y = (Y1, ••• , Yn), which is uniformly at least as powerful for 8 > 80 and uni
formly at most as powerful for 8 < 00• Note, however, that there is now no longer 
a unique monotone level a test (which is uniformly most powerful) but a large 
class of such tests. 

To establish a test dominating cf>, let us denote the distributions F90 and G90 

by F and G, respectively, and as in the proof of Theorem 5.1, assume without 
loss of generality that F90 and G90 are continuous. Let Zi = h('Y;), where 
h = F- 1G. We shall show in the following discussion that for any monotone test 
cf> based on X there exists a uniformly better test based on Z. Since Y is at least 
as informative as Z, this will prove the existence of a test based on Y, which is 
uniformly better than cf>. 
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Note that Xi and Zi have the same distribution F = F90 when fJ = 80• We 
shall now show that the distribution H9 of Zi satisfies 

H9(z) ~ F9(z) when 8 > 00 , 

~ when 8 < 80 • 

(7.2) 

To see this, note that 

H9(z) = P9 [F- 1G(Yi) ~ z] = G9{G- 1 [F(z)]}. 

Therefore H9( z) ~ F9( z) provided 

G9;,1 [F9o(z)) ~ Gi 1 [F9(z)], 

which by (5.2) is the case when 80 < 8 with the opposite inequality holding when 
8 < 80 • 

Condition (7 .2) states that Z; is stochastically larger or smaller than Xi as 
8 > 80 or < 80 • 

Let cp(X) be any monotone test based on X= (X1, ••. , Xn) and let cf>*(Y) = 

cp(Z) be the same test based on Z = (Z1, · • ·, Zn). Then it follows from the basic 
property of stochastically ordered random variables, given for example in Chapter 
3, Lemma 1 of Lehmann (1986), that 

E9ct>(X) ~ E9ct>(Z) for 8 > 80 , 

as was to be proved. 

For more general decision procedures, we can proceed as in Brown, Cohen and 
Strawderman (1976) or Van Houwelingen and Verbeek (1985) to complete the 
proof of the theorem. D 

It is an immediate consequence of Theorem 7.1 that not only Theorem 5.1 but 
also Theorems 5.2 and 5.3 and the results of Section 6 remain valid when the 
single variable X is replaced by a sample X1, ••• , Xn. 
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