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Abstract 

This paper presents the comparison of two hybrid methodologies for the two-objective (cost 

and resilience) design of water distribution systems. The first of them is a low level hybrid 

algorithm (LLHA), in which a main controller (the non-dominated genetic algorithm II, 

NSGA-II) coordinates various subordinate algorithms. The second methodology is a high 

level hybrid algorithm (HLHA), in which various sub-algorithms collaborate in parallel. 

Applications to four case studies of increasing complexity enable the performances of the 

hybrid algorithms to be compared with each other and with the performance of the 

benchmark NSGA-II. In the case study featuring low/intermediate complexity, the hybrid 

algorithms (especially the HLHA) successfully capture a more diversified Pareto front, 

although the NSGA-II shows the best convergence. When network complexity increases, 

instead, the hybrid algorithms (especially the LLHA) turn out to be superior in terms of both 

convergence and Pareto front diversification. With respect to both the HLHA and the NSGA-

II, the LLHA is capable of detecting the final front in a single run with a small computation 

burden; the HLHA and the NSGA-II, which are more affected by the initial random seed, 

require, instead, numerous runs with an attempt to reach the definitive Pareto front, as the 

envelope/tangle of the Pareto fronts obtained at the end of the various runs. On the other hand, 

a drawback of the LLHA lies in its reduced ability to deal with general problem formulations, 

i.e., those not relating to water distribution optimal design). 
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1. Introduction 

The optimal design of a Water Distribution System (WDS) is a difficult problem to solve as it 

represents a discontinuous, highly nonlinear, constrained and multi-modal combinatorial 

optimisation problem (di Pierro et al., 2009; Sedki and Ouazar, 2012) featuring non-

deterministic polynomial-time hard (NP-hard) characteristics (Papadimitriou and Steiglitz, 

1998). In the context of network design, the multi-objective approach (Cheung et al., 2003; 

Farmani et al., 2003; 2004; 2005; Fu et al., 2012; Halhal et al., 1997; McClymont, 2012; 

Perelman et al., 2008) has recently been gaining more and more favour than the single-

objective approach (Babayan et al., 2005; Cisty, 2010; Savic and Walters, 1997), which may 

lead to network solutions featuring poor hydraulic performance since it is only based on 

economic concerns (Walski, 2001; Fu et al., 2012). Various multi-objective evolutionary 

algorithms (MOEAs), which are capable of approximating the trade-off among different 

objectives  (Pareto front-PF) in a single run (Zitzler and Thiele, 1999), have then been 

applied to solve small-to-medium sized benchmark problems and some large problems based 

on the real-world networks. Among these algorithms, it is worth mentioning the NSGA-II 

(Deb et al., 2002), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 

2002), the cross entropy (Perelman et al., 2008), the multi-objective particle swarm 

optimisation (PSO) (Montalvoa et al., 2010), and the multi-objective cuckoo search (Wang et 

al., 2012). 

Among the various MOEAs, the NSGA-II is that which is more often used by researchers and 

engineers in order to solve optimization problems of different kinds and involving complex 
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water distribution network configurations (for instance, it was adopted by most teams in The 

Battle of the Water Networks II – Marchi et al., 2013). 

Despite the features of flexibility and robustness, the MOGAs algorithms are often (Kollat 

and Reed, 2006; Hadka and Reed, 2012; Creaco and Franchini, 2013a) criticised due to the 

issue of parameterisation and extensive function evaluations to reach a near-optimal PF (Fu et 

al., 2012). In order to overcome their limits and then to obtain a better numerical performance, 

hybrid algorithms that combine different components and strategies have then been proposed 

in the scientific literature of water supply systems (Jourdan et al., 2004; Olsson et al., 2009; 

Raad et al. 2009; Raad et al. 2011; Creaco and Franchini; 2012; 2013a; Wang et al., in press). 

According to Talbi’s (2002) classification, these algorithms can be subdivided into two 

categories: the low-level hybrid algorithms (LLHA), in which the component metaheuristics 

are embedded in other metaheuristics as functional parts, and the high-level hybrid 

algorithms (HLHA), in which the component metaheuristics work on their own without 

mutual dependence. In particular, Jourdan et al. (2004) presented a LLHA by integrating a 

Learnable Evolution Model (Michalski, 2000; Michalski et al., 2000), which was based on 

Quinlan’s (1993) C4.5 program for machine learning, with NSGA-II. They compared this 

LLHA with NSGA-II on the two-objective design of three benchmark problems, concluding 

that the proposed LLHA was superior to NSGA-II by finding better solutions in reliably 

fewer evaluations. Olsson et al. (2009) tested three probabilistic methods within the structure 

of NSGA-II and compared their performance with NSGA-II on three design and 

rehabilitation problems, including one large problem based on a real-world system. Although 

the PFs obtained by these LLHAs suffer from the problem of satisfactory diversity, they 

offered significantly better solutions than NSGA-II in terms of convergence for the case of 

large systems. Raad et al. (2009) addressed three benchmark problems as well as a real case 

in South Africa using a HLHA for the first time. This HLHA was based on the framework of 
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a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) (Vrugt and 

Robinson, 2007) and introduced two new sub-algorithms which differed from those within 

the original AMALGAM. They also conducted a comparative study extensively by testing up 

to 23 alternative algorithms for the multi-objective design of 9 small-to-large sized WDS 

benchmarks (Raad et al., 2011). Three novel variants based on the structure of AMALGAM 

and NSGA-II turned out to be the four top-performing algorithms according to various 

metrics. Wang et al. (in press) compared two HLHAs (including the original AMALGAM) 

with NSGA-II on a wide range of benchmark problems and found that AMALGAM 

outperformed its competitor for small-to-medium sized cases. However, both HLHAs 

deteriorated for larger problems due to the loss of their adaptive capabilities. Creaco and 

Franchini (2012) proposed a LLHA as a fast tool dedicated for the multi-objective design of 

large WDSs. This method embedded a Linear Programming in the NSGA-II. Unlike the 

traditional definition of decision variables (the diameter option for each single pipe), only 

three genes were considered for individuals of a population (independent from the number of 

pipes), thus yielding significant computational efficiency especially on larger networks. 

When compared with the traditional approach (i.e., NSGA-II), the hybrid approach 

demonstrated convincing benefits in terms of quality of solutions and CPU time. In a more 

recent work, Creaco and Franchini (2013a) presented an upgraded version of LLHA (with 

number of individual genes extended to five), able to consider more complex objective 

functions (network resilience) and constraints (maximum flow velocity) within the WDS 

design. 

The aforementioned studies only compared the performance of hybrid algorithms with other 

popular MOEAs (like NSGA-II). Therefore, there is a lack of comparative studies in the 

literature between LLHAs and HLHAs, which motivated the work carried out in this paper. 

The LLHA developed by Creaco and Franchini (2013a) and the original AMALGAM (Vrugt 
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and Robinson, 2007) were tested and compared between each other and with the NSGA-II 

benchmark on four medium-to-large sized design problems based on the real-world networks 

in Italy.  

The remainder of this paper is arranged as follows. Section 2 provides the two-objective 

formulation of a WDS and the concise introduction to the LLHA and the HLHA considered. 

Section 3 briefly describes the cases used for the comparative study. The results and 

discussion is given in Section 4. Section 5 concludes the whole paper. 

 

2. Methodology 

2.1. Two-Objective Design of a WDS 

The optimal WDS design is aimed at determining the size and location of different 

components (e.g., pipes, pumps and tanks) in order to convey the treated water in a safe and 

efficient manner, with respect to a number of constraints, such as conservation of mass and 

energy as well as other service standards (e.g., quantity and quality). More often, only the 

size of pipes is considered under a single demand loading condition given the configuration 

of the network system. This is also known as a pipe sizing problem (Kahler et al., 2003). The 

task is to choose the best combination of pipe diameters from within a number of discrete 

options, which are available in the market or from the manufacturers. Minimising the cost 

(mainly the capital cost) is one of the main concerns during the process as the design and 

construction of a WDS usually require a great amount of expenditure. The capital cost is, 

then, the first objective function (to minimise) in the WDS design. In the present work, it 

takes on the following form: 

 min� =� ��(��) × �������  (1) 

Where C=total cost (monetary units problem dependant); ci=unit cost of pipe i depending on 

the specific diameter; np=number of pipes; Di=diameter of pipe i; Li=length of pipe i. 
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Besides the economic considerations, hydraulic performance should also be well addressed to 

ensure the reliability and service standard of a WDS. A compact measure of the hydraulic 

performance has then to be considered as the second objective of the WDS design. In this 

context, variants of pressure surplus to maximise (Gessler and Walski, 1985) or pressure 

deficit to minimise (Cheung et al., 2003; Farmani et al., 2005; Olsson et al., 2009) were 

initially used. However, these aforementioned formulations did not necessarily lead to looped 

networks, which are reliable configurations under abnormal conditions (e.g., pipe burst). On 

the other hand, Todini (2000) introduced a resilience index formulation as a surrogate 

measure for hydraulic benefits. The index is based on the concept that the total input power 

into a network consists of the power dissipated in the network and the power delivered at 

demand nodes. A high value of the index, which takes place in the case of low power 

consumed internally to overcome the friction, thus results in more surplus power at demand 

nodes, which will then be less affected by the lowering of network service pressure during 

such critical network operation scenarios, as those related to segment isolation or hydrant 

service. Later on, an improved version of resilience indicator, called network resilience, was 

proposed by Prasad and Park (2004) in order to take also the uniformity of pipes around each 

demand node into account and thus to better characterise the redundancy of a network. Since 

various studies (Prasad and Park, 2004; Raad et al., 2010; Creaco et al., 2013b) proved that a 

network featuring a high value of the network resilience is robust under pipe failure 

conditions, this index is considered in the present work as the second objective (to maximise) 

during the WDS design problem: 

 max �� = ∑ ����(�� − �����)�����∑ ��������� − ∑ ������������  (2) 

 �� = ∑ ����������� × max	{��} (3) 
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Where In=network resilience; nn=number of demand nodes; Cj, Qj, Hj and Hj
req=uniformity 

coefficient, demand, actual head (evaluate by means of a hydraulic simulator, e.g. EPANET 

software, Rossman 2000) and minimum head of node j; nr=number of reservoirs; Qk and 

Hk=discharge and actual head of reservoir k; npj=number of pipes connected to node j; 

Di=diameter of pipe i connected to demand node j. 

EPANET software (Rossman, 2000) is taken to run the hydraulic simulation, in which the 

variables required for the evaluation of network resilience are obtained. 

 

2.2. Hybrid Optimisation Algorithms 

Low-level Hybrid Algorithm 

Creaco and Franchini (2013a) proposed an efficient LLHA dedicated for the two-objective 

design of a WDS considering the cost and network resilience. This LLHA is made up of two 

blocks (see Figure 1) and based on the combination of various algorithms. The first 

preliminary block makes it possible to detect one or more decompositions of the looped 

network each one generating a set of single source branched networks. The second main 

block encompasses a cascade of four different algorithms for the network multi-objective 

design. The first and main algorithm (A1) is the NSGA-II multi-objective genetic algorithm. 

The individuals of the population of this algorithm are made up of only five genes: the first 

makes it possible to detect time by time which of the decompositions detected in the 

preliminary block has to be applied to the looped network; the second and third genes are 

parameters that have to be supplied to the second algorithm, i.e. to the linear programming 

(A2) for the branched network design, and relate to the minimum pressure head and 

resilience constraints respectively; the fourth and fifth genes are parameters that have to be 

supplied to the third algorithm (heuristic algorithm A3), which re-closes network loops with 

the smallest diameter considered in the design phase and then improves the uniformity of the 
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diameters of the pipes connected to each network node; the fourth algorithm (heuristic 

algorithm A4) modifies some pipe diameters in order that maximum flow velocity constraints 

are respected all over the network. The final network configuration is assessed in terms of 

cost (Eq. 1) and network resilience (Eq. 2), which are the objective functions of A1. 

In this context, it is worth highlighting that, naturally, the rationale behind the procedure 

herein presented (based on the design of the branched networks concealed inside the looped 

network, loop re-closure and diameter modification) comes from a significant simplification 

of the design problem, which entails that the design of a looped network comes from the 

design of a system of branched networks concealed inside the network itself and from the 

correction of the generic network solution by the application of two heuristic algorithms. This 

significant simplification may then result in a reduction in the research space. However, this 

weakness is balanced by its simplicity, which leads to the procedure easily converging and 

finding good solutions, as will be shown in the next sections. 

More details about this low-level hybrid algorithm can be found in Creaco and Franchini 

(2013a).  

 

High-level Hybrid Algorithm: AMALGAM 

AMALGAM is a high-level hybrid optimisation framework which employs simultaneously 

four sub-algorithms within its structure, including NSGA-II, adaptive metropolis search 

(Haario et al., 2001), particle swarm optimisation (Kennedy and Eberhart, 2001) and 

differential evolution (Storn and Price, 1997). It is designed to overcome the drawbacks of 

using an individual algorithm and to be suitable for a wide range of problems. The strategies 

of global information sharing and genetically adaptive offspring creation are implemented in 

the process of population evolution. Each sub-algorithm is allowed to produce a specific 

number of offspring based on the survival history of its solutions in the previous generation. 
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The pool of current best solutions is shared among sub-algorithms for reproduction. Figure 2 

illustrates the general process of AMALGAM and a brief description of this algorithm is 

provided as follows. Firstly, an initial population P0 of individuals ,with a number N of genes 

equal to the number of pipes to be designed, is generated using Latin hypercube sampling 

(LHS). Then, P0 is ranked via the fast non-dominated sorting (FNS) procedure (Deb et al., 

2002). The offspring Q0 of size N is yielded from P0 using four sub-algorithms 

simultaneously, with each algorithm contributing the same number of individuals (i.e., N/4). 

Next, a combination of the parents (P0) and the offspring (Q0), namely R0 (size 2N), is 

produced and ranked via the FNS. A number of N members from R0 are selected based on 

their rank and crowding distance (CR), forming the population in the next generation. The 

latest population is then taken to create the offspring using the adaptive multi-method search 

technique, which is detailed in the subsequent paragraph. The aforementioned procedure is 

repeated until the stopping criteria are met (e.g., number of function evaluations and/or 

prescribed precision). 

The basic idea of adaptive multi-method search is to take full advantage of the most efficient 

sub-algorithm and to keep a balance in using diverse methods. That is, each algorithm is 

allowed to produce a number of children according to the reproductive rate (ratio of the 

children alive to the children created) in the previous generation. However, if one fails to 

contribute even a single individual in the latest population, a minimum number of individuals 

(5 here as the bottom line) are consistently maintained for it to generate the offspring. 

Therefore, the most successful algorithm (with highest reproductive rate) is favored by giving 

more slots in the process of reproduction, but no one is completely discarded even though it 

exhibits the worst performance. 

In addition, AMALGAM provides a general template which is flexible and extensible, and 

can easily accommodate any other population-based algorithm (Raad et al. 2009; 2011). 
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3. Applications 

3.1 Case Studies  

Four WDS design problems were used to compare the performance of the aforementioned 

hybrid optimisation algorithms. These problems are based on different WDSs in Italy with 

varied complexity in terms of the size of search space. The first three cases were originally 

introduced in Bragalli et al., (2008), while the last case was taken from a WDS of a city in 

Northern Italy. A brief summary of these WDSs is provided subsequently. 

The first, Fossolo network includes 58 pipes, 36 demand nodes, and 1 reservoir with a fixed 

head of 121 m, while the average ground elevation for the nodes is 64.2 m. The material for 

all the pipes is polyethylene. There are 22 pipe sizes in total to choose from, hence, the search 

space is as big as 2258≈7.25x1077. Due to the feature of polyethylene, a relatively high Hazen-

Williams roughness coefficient of 150 is applied to all the pipes. The minimum pressure of 

all the demand nodes should be maintained at 40 m, while the maximum allowed pressure of 

each node is specified individually. In addition, the flow velocity in each pipe is enforced to 

be less than or equal to 1 m/s.  

The second, Pescara network includes 99 pipes, 68 demand nodes, and 3 reservoirs with fixed 

head within 53.08 m to 57.00 m, while the average ground elevation for the nodes is 5.0 m. 

The pipe material is cast iron. There are 13 pipe sizes and thus the extent of search space is as 

big as 1399≈1.91x10110. A uniform Hazen-Williams roughness coefficient of 130 is applied to 

all pipes. The minimum pressure of all the demand nodes should be maintained at 20 m, 

while the maximum allowed pressure of each node is specified individually. In addition, the 

flow velocity in each pipe is enforced to be less than or equal to 2 m/s. 

The third, Modena network includes 317 pipes, 268 demand nodes, and 4 reservoirs with 

fixed head within 72.0 m to 74.5 m, while the average ground elevation for the nodes is 35.4 
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m. The pipe material is the same as Pescara network. There are 13 pipe sizes and thus the 

extent of search space is as big as 13317≈1.32x10353. A uniform Hazen-Williams roughness 

coefficient of 130 is applied to all pipes. The minimum pressure of all the demand nodes and 

the upper bound of flow velocity in each pipe are the same as those specified for Pescara 

network. 

For more details about the aforementioned networks, readers can refer to Bragalli et al. 

(2008), including available pipe diameters, unit price of pipes and maximum pressure 

requirement of each demand node.  

Finally, the fourth, Town X network has 825 pipes, 536 demand nodes and 2 reservoirs with 

fixed head at 30 m, while the average ground elevation for the nodes is 0 m. The pipe 

material is the same as Pescara network. A uniform Hazen-Williams roughness coefficient of 

130 is applied to all pipes. There are 13 pipe sizes and thus the extent of search space is as 

big as 13825≈1.01x10919. The pressure head of all the demand nodes should be maintained 

within 25 m and 30 m. In addition, the flow velocity in each pipe is enforced to be less than 

or equal to 2 m/s. Due to the issue of authorisation, the data of this network is not available in 

the public domain. 

 

3.2. Benchmarking Setup 

The LLHA, HLHA and the NSGA-II were run on a 2.70 GHz CPU. In the experiments, no 

parallel computing was used and thus each optimisation run was executed on a single core. 

In order to investigate the performance of the hybrid algorithms and compare it with that of 

the NSGA-II under low and high computational burdens, short and long runs on each 

benchmark problem were applied concurrently. To this end, the general optimisation 

parameter settings in the algorithms were set in such a way as to keep the execution of the 

single optimization run performed by the LLHA and the HLHA as close as possible. The 
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details of the computational budgets in terms of CPU time for each design problem and single 

run are given in Table 1. Table 2 and Table 3 show, instead, the general parameter settings, 

i.e., population size (PS) and number of function evaluations (NFE), of the LLHA and the 

HLHA, respectively for the low and high computational burdens. 

The analysis of Table 2 shows that in the LLHA the population size (PS) is always the same 

(equal to 50 individuals) and number of function evaluations (NFE) does not vary 

significantly as the network complexity increases (from case study 1 to case study 4). This is 

a direct consequence of the fact that the number of individual genes used in the LLHA (equal 

to 5 – see section 2.2) does not depend on the network size. Furthermore, the simple genetic 

structure entails that the Pareto front obtained in a single optimization run is definitive. 

In the HLHA, instead, the influence of the initial random seed is much stronger. In order to 

obtain a definitive Pareto front, each problem was then solved independently 30 times using 

three varied population sizes (see Table 3) (10 times for ach population size). The idea of 

such a plan for the HLHA is to capture a Pareto front as widespread as possible in the 

objective space of Cost against In. In this context, it is worth stressing that the computation 

time indicated in Table 2 for the HLHA refers to the single of the 30 optimization runs. 

A comparison between Tables 2 and 3 proves that the PS and NFE required by the LLHA are 

smaller than those featured by the HLHA for pre-fixed computation time (of a single run). 

This is due to the fact that in the LLHA each objective function evaluation requires linear 

programming and various hydraulic simulations to be performed (see algorithms A2, A3, A4 

and A5 in section 2.2); in the AMALGAM HLHA, instead, each objective function 

evaluation simply requires a single hydraulic simulation to be performed. 
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4. Results & Discussion 

The results of the optimisations carried out by means of the LLHA and the HLHA and of the 

NSGA-II as benchmark are reported in Figures 3 and 4. The first analysis was made for pre-

fixed computational burden. In Figure 3, graphs on the left and right correspond to the small 

and large computational burdens respectively. 

For the Fossolo problem (low complexity case study) the positions of the Pareto fronts 

obtained by the LLHA and the HLHA, considering both the small and large computational 

burden, are close. The Pareto fronts are slightly dominated by those obtained by the NSGA-II, 

which shows a higher convergence performance on a reduced front length. The only 

remarkable difference between the LLHA and the HLHA lies in the fact that the LLHA lends 

itself better to detect the solutions featuring both low cost and resilience (left side of the 

front). The fact that the LLHA procedure performs better for low cost solutions and worse for 

high cost solutions than the HLHA can be ascribed to its basic assumptions: the design based 

on the looped network decomposition (basic assumption of the LLHA) is more effective to 

yield solutions featuring low cost and resilience rather than solutions featuring high cost and 

resilience. In the case of high cost and resilience solutions, the simplifications contained in 

the LLHA structure can, instead, endanger its performance. Results in graph (a) on the left of 

Figure 3, obtained considering a small computational burden, indicate a slight predominance 

of the HLHA in detecting solutions featuring high cost and resilience. 

The better performance of the LLHA in detecting low cost solutions seems to vanish for the 

Pescara problem of intermediate complexity (above all in the case of large computational 

burden). On the other hand, in the latter case study, the superiority of the HLHA in the case 

of high cost and resilience solutions is highlighted; the HLHA seems to be capable of 

detecting the right part of the front much better than the LLHA. In the second case study, the 

comparison with the Pareto front of the NSGA-II shows that the latter yields very close 
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results to the LLHA, with a slightly higher convergence performance for the high 

computation burden. 

The applications to the Modena problem of intermediate complexity yield similar 

interpretations to the Pescara problem as regards both the comparison of the hybrid 

procedures and the comparison between the hybrid procedures and the NSGA-II. The 

incapacity of the LLHA to detect high cost and resilience solutions in these two cases is due 

to the fact that when large pipes are yielded by the genes of the LLHA in the case of multi-

source networks, some water transfers may take place between the various sources. These 

transfers lead to a decrease in the network resilience index (see Eq. 2), because of the 

increase in the denominator of the formula. In the LLHA, no expedients are taken in order to 

prevent these transfers from occurring and then, high cost solutions, which entail large size 

pipes in the network and are eventually born inside the LLHA, are discarded being dominated 

in terms of resilience by the low cost solutions of the Pareto front. On the other hand, within 

the HLHA the genes of the high cost solutions naturally evolve in order to prevent inter-

source water transfer from taking place by means, for instance, of the local installation of 

small size pipes. The incapacity of the NSGA-II to detect high cost and resilience solutions, 

instead, has to be ascribed to the fact that it is generally able to yield high convergence 

performance in a reduced front length (see also case study 1). 

For the Town X problem of high complexity, the LLHA yields better results than HLHA in 

the case of both low and high computational burden and for either side of the Pareto front 

(low cost and resilience solutions on the left and high cost and resilience solutions on the 

right). This better performance is ascribed to the fact that, when network topology complexity 

increases, the reduction in the search space due to the many assumptions made inside LLHA, 

is counterbalanced by the easiness to find the best solution in this context; on the other hand, 

the HLHA, though potentially more suitable to reach the real optimal solution due to the 
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absence of research space limitations, has the drawback of the complexity in the search space, 

which is made up of numerous possibilities which are “scanned” by the procedure with 

difficulty. Unlike case studies 2 and 3, in case study 4 high cost and resilience solutions are 

also present in the Pareto fronts yielded by the LLHA; this happens because the elevation of 

the two sources and their mutual distance spontaneously hinder the formation of inter-source 

water transfer. The comparison between the hybrid algorithms and the NSGA-II in case study 

4 highlights that, for high network complexity, the hybrid procedures turn out to have a much 

better performance in terms of both convergence and front diversification. 

In Figure 4, another viewpoint of the optimisation results, which is different from the one 

showed in Figure 3, is reported. In particular, graphs on the left report the Pareto fronts 

obtained by the LLHA considering small and large computational burdens; those on the right 

report, instead, the results obtained by the HLHA considering small and large computational 

burdens. The comparison of the results obtained by the LLHA with small and large 

computational burden in each case study showed that the fronts obtained with the small 

computational burden are almost coincident with those obtained with the large computational 

burden. This means that only a small computational burden is needed to obtain the best 

results achievable by means of the procedure. In the case of the HLHA, instead, the increase 

in computational burden improves the effectiveness of the results significantly since the 

fronts obtained using the large computational burden dominate those obtained using the small 

computational burden; the latter effect becomes more and more evident when network 

complexity increases, i.e. moving from graph (a) to graph (d) in Figure 4. 

 

5. Conclusions 

The comparison of two different types of hybrid procedures was presented in this paper. The 

comparison was made under the framework of water distribution network multi-objective 
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design, aimed at simultaneously minimising cost and maximising network resilience. The 

first type of hybrid procedure considered was a low-level hybrid algorithm, where various 

inner algorithms are embedded within a coordinating multi-objective genetic algorithm. The 

second type of hybrid procedure was a high-level hybrid algorithm, where various multi-

objective algorithms co-operate in parallel. 

Applications to case studies of increasing complexity showed that performances of the LLHA 

and HLHA are complementary. As a matter of fact, due to the fact that optimizations with 

LLHA are not significantly affected by the initial random seed and they are computationally 

efficient in obtaining the best Pareto front; the LLHA can be successful used when limited 

computation capabilities are available. Furthermore, as the size of the search space of LLHA 

does not increase with the growth in network complexity, selecting LLHA is recommended 

for the case of high complexity networks. On the other hand, when computation efficiency is 

not a concern (i.e., it is possible to consider a large number of individuals as well as to repeat 

optimization several times in order to eliminate the influence of the initial random seed), 

selecting HLHA improves the accuracy of the results as much as required under the various 

circumstances. However, this approach may not always be possible in practice. Overall, the 

comparison between the hybrid algorithms and the NSGA-II demonstrates the advantage of 

using the hybrid algorithms in order to obtain a more diversified Pareto front. considered as 

the benchmark algorithm for optimization problems, points out a certain convenience, in 

terms of front diversification, of making use of the hybrid algorithms. Their superiority in 

terms of convergence also emerges when network complexity increases. 

In the future, more objectives should be taken into account for the optimal design of a WDS, 

transforming the task from two-objective to many-objective (four or more) optimisation. As 

indicated by Fu et al. (2012), the optimal solutions obtained in a lower dimensional 

formulation often tend to have a worse performance in other objectives considered in a higher 
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dimensional formulation. Although it supports more informed and transparent decision 

making in the design stage, the many-objective formulation will greatly challenge the 

capabilities of the current algorithms, including both LLHAs and HLHAs, in approximating 

the Pareto front in higher (thus more complex) dimensional space. Furthermore, more 

complex benchmark problems, not only based on large networks with/without multiple 

loading conditions, but also the ones associated with operational cost (typically requiring 

extended period simulation), should also be considered for the comparison. 
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Figure 1 Flowchart of the LLHA 
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Figure 2 Flowchart of AMALGAM 
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(a) Fossolo problem under low computational burden (left) and high computational burden (right) 

 

(b) Pescara problem under low computational burden (left) and high computational burden (right) 

 

(c) Modena problem under low computational burden (left) and high computational burden (right) 

 

(d) Town X problem under low computational burden (left) and high computational burden (right) 
 

Figure 3 Comparison of LLHA, HLHA and NSGA-II using low and high computational 
burdens (Cost axis in logarithmic scale) 
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(a) Fossolo problem by LLHA (left) and HLHA (right) using low and high computational burden 

 

(b) Pescara problem by LLHA (left) and HLHA (right) using low and high computational burden 

 

(a) Modena problem by LLHA (left) and HLHA (right) using low and high computational burden 

 

(a) Town X problem by LLHA (left) and HLHA (right) using low and high computational burden 
 

Figure 4 Comparison of low burden with high burden for LLHA and HLHA (Cost axis in 
logarithmic scale) 
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Tables 
 

Table 1 Computational times Used in Analyses 
 

Case Study 
 Computational Budget (minutes)  

Short Run Long Run 
LLHA HLHA NSGA-II LLHA HLHA NSGA-II 

Fossolo 0.7 0.8 0.8 3 3 3 
Pescara 0.7 0.7 0.7 5 7 7 
Modena 9 9 9 55 58 58 
Town X 17 18 18 100 90 90 
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Table 2 Parameter settings of LLHA 
 

Case study Population Size 
PS 

Computational Budget in Terms of NFE 
Low Burden High Burden 

Fossolo 50 500 2000 
Pescara 50 500 3000 
Modena 50 800 3000 
Town X 50 500 3000 
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Table 3 Parameter settings of HLHA and NSGA-II 
 

Case Study Population Size (PS) Computational Budget in Terms of NFE 
Group1 Group2 Group3 Low Burden High Burden 

Fossolo 100 200 400 50,000 80,000 
Pescara 100 200 400 40,000 150,000 
Modena 200 400 800 200,000 800,000 
Town X 400 800 1600 113,600 454,400 

 

 


