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Comparing machine learning algorithms for predicting ICU

admission and mortality in COVID-19
Sonu Subudhi 1, Ashish Verma 2,10, Ankit B. Patel 2,10, C. Corey Hardin3, Melin J. Khandekar 4, Hang Lee5, Dustin McEvoy 6,

Triantafyllos Stylianopoulos7, Lance L. Munn 8, Sayon Dutta 6,9✉ and Rakesh K. Jain 8✉

As predicting the trajectory of COVID-19 is challenging, machine learning models could assist physicians in identifying high-risk

individuals. This study compares the performance of 18 machine learning algorithms for predicting ICU admission and mortality

among COVID-19 patients. Using COVID-19 patient data from the Mass General Brigham (MGB) Healthcare database, we developed

and internally validated models using patients presenting to the Emergency Department (ED) between March-April 2020 (n= 3597)

and further validated them using temporally distinct individuals who presented to the ED between May-August 2020 (n= 1711).

We show that ensemble-based models perform better than other model types at predicting both 5-day ICU admission and 28-day

mortality from COVID-19. CRP, LDH, and O2 saturation were important for ICU admission models whereas eGFR <60ml/min/1.73 m2,

and neutrophil and lymphocyte percentages were the most important variables for predicting mortality. Implementing such

models could help in clinical decision-making for future infectious disease outbreaks including COVID-19.
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INTRODUCTION

The COVID-19 pandemic has led to significant morbidity and
mortality throughout the world1. The rapid spread of SARS-CoV-2
has provided limited time to identify factors involved in SARS-CoV-
2 transmission, predictors of COVID-19 severity, and effective
treatments. At the height of the pandemic, areas with high
numbers of SARS-CoV-2 infections were resource-limited and
forced to triage life-saving therapies such as ventilators and
dialysis machines2,3. In this setting, identifying patients requiring
intensive care or at high risk of mortality upon presentation to the
hospital may help providers expedite patients to the most
appropriate care setting. Additionally, novel therapies such as
remdesivir have been shown to decrease the length of
hospitalization when administered early in disease course, while
dexamethasone has been shown to decrease COVID-19 mortality
when administered later in more severe disease4–6. Prediction of
which patients are at high risk of progression and poor outcomes
can guide clinicians in treatment choices during this critical time
in a patient’s disease course.
Model predictions are gaining increased interest in clinical

medicine. Machine learning applications have been used to help
predict acute kidney injury7 and septic shock8, amongst other
outcomes in hospitalized patients. These tools have also been
applied to outpatients to predict outcomes such as heart failure
progression9. Machine learning tools can also be applied to
predict outcomes such as Intensive Care Unit (ICU) admission and
mortality10. Thus far there have been few studies that examined
specific machine learning algorithms in predicting outcomes such
as ICU admission/mortality in COVID-19 patients11–15. Given the
potential utility of machine learning-based decision rules and the

urgency of the pandemic, a concerted effort is being made to
identify which machine learning applications are optimal for given
sets of data and diseases16.
To address this knowledge gap, we conducted a multi-hospital

cohort study to extensively evaluate the performance of 18
different machine learning algorithms in predicting ICU admission
and mortality. Our goal was to identify the best prognostication
algorithm using demographic data, comorbidities, and laboratory
findings of COVID-19 patients who visited emergency depart-
ments (EDs) at Massachusetts General Brigham (MGB) hospitals
between March and April 2020. We validated our models on a
temporally distinct patient cohort that tested positive for COVID-
19 and had an ED encounter between May and August 2020. We
also identified critical variables utilized by the model to predict
ICU admission and mortality.

RESULTS

Patient characteristics

We obtained data from 10,826 patients in the multi-hospital
Massachusetts General Brigham (MGB) Healthcare database,
which consists of patients from academic and community
hospitals, who had COVID-19 infection during the period of
March and April 2020. A total of 3713 out of the 10,826 patients
who tested positive for SARS-CoV-2 visited an ED. We evaluated
patients based on demographics, home medications, past medical
history, clinical features, and laboratory values as described in
Supplementary Table 1. We excluded patients who had one or
more missing dependent (outcome) variables and we imputed
missing data for independent (predictor) variables. After excluding
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patients with missing outcome information (i.e., ICU admission
and mortality information), 3597 patients remained. For temporal
validation, we extracted data from the MGB healthcare database
for patients who tested positive for SARS-CoV-2 between May and
August 2020. During this period, 1754 out of 8013 SARS-CoV-2
positive individuals visited the ED. Similarly, after excluding
patients with missing dependent/outcome variable (Supplemen-
tary Table 1), a total of 1711 patients remained.
After imputing missing independent variable data, the baseline

characteristics of 3597 patients in the training dataset are listed in
Table 1. The overall study population included 48.7% women, and
the median age was 55 years. The number of patients admitted to
the ICU within 5 days and who died within 28 days of the ED visit
were 486 (13.5%) and 344 (9.6%), respectively. The temporal
validation dataset included patients with similar distribution in
age ≥50 years (X2(4, N=3073)= 7.7, p= 0.1), gender (X2(1, N=5308)=
0.63, p= 0.43) and race (X2(1, N=5308)= 2.48, p= 0.11), but BMI was
significantly different (X2(2, N=5308)= 13.8, p= 0.001) (Supplemen-
tary Table 6). Of the 1711 patients who visited the ED, 146 (8.5%)
were admitted to the ICU and 78 (4.5%) died of COVID-19.

Comparing performance of prediction models–cross
validation

We evaluated 18 machine learning algorithms belonging to 9
broad categories, namely ensemble, Gaussian process, linear,
naïve bayes, nearest neighbor, support vector machine, tree-
based, discriminant analysis and neural network models Fig. 1.
Comparing the ICU admission prediction models using cross

validation, we observed that all ensemble-based models had
mean F1 scores ≥0.8 (Table 2; Supplementary Fig. 1A–C).
Specifically, the F1 score for AdaBoostClassifier was 0.80 (95% CI,
0.75–0.85), for BaggingClassifier was 0.81 (95% CI, 0.77–0.85), for
GradientBoostingClassifier was 0.81 (95% CI, 0.77–0.85), for

RandomForestClassifier was 0.81 (95% CI, 0.78–0.84), for XGBClassi-
fier was 0.8 (95% CI, 0.76–0.84), and for ExtraTreesClassifier was [0.8
(95% CI, 0.76–0.84)]. In addition, LogisticRegression [0.77 (95% CI,
0.73–0.81)], DecisionTreeClassifier [0.78 (95% CI, 0.76–0.80)], Linear-
DiscriminantAnalysis [0.77 (95% CI, 0.72–0.82)], QuadraticDiscrimi-
nantAnalysis [0.79 (95% CI, 0.78–0.80)] and MLPClassifier [0.77 (95%
CI, 0.74–0.8)] also had high F1 scores. In contrast, PassiveAggressi-
veClassifier, Perceptron and LinearSVC models had relatively low
F1 scores. Upon performing multiple comparison analysis
between all models (based on PR AUC and F1 scores), the
ensemble-based models, LinearDiscriminantAnalysis, MLPClassifier
and LogisticRegression models had similar performance character-
istics (Supplementary Fig. 1A–C). By grouping the models based
on their broad categories, we found that ensemble and tree-based
models had significantly higher F1 scores than all other model
types (Fig. 2a; details of statistical analysis in Supplementary
Table 7).
We next compared the mortality prediction models using cross

validation and found that all ensemble-based models had mean
F1 scores higher than 0.83 (Table 3; Supplementary Fig. 1D–F). The
F1 score for AdaBoostClassifier was 0.84 (95% CI, 0.81–0.87),
BaggingClassifier was 0.83 (95% CI, 0.80–0.86), GradientBoostingClassi-
fier was 0.86 (95% CI, 0.84–0.88), RandomForestClassifier was 0.87
(95% CI, 0.85–0.89), XGBClassifier was 0.85 (95% CI, 0.84–0.86), and
ExtraTreesClassifier was 0.87 (95% CI, 0.85–0.89)]. In addition,
LinearDiscriminantAnalysis [0.88 (95% CI, 0.86–0.90)], QuadraticDiscri-
minantAnalysis [0.81 (95% CI, 0.77–0.85)], GaussianNB [0.82 (95% CI,
0.78–0.86)] and DecisionTreeClassifier [0.82 (95% CI, 0.77–0.87)] also
had high F1 scores. However, for mortality prediction, LogisticRegres-
sion [0.76 (95% CI, 0.70–0.82)] had a low F1 score compared to
ensemble methods. The lowest F1 scores were for PassiveAggressi-
veClassifier, Perceptron, LinearSVC and KNeighborsClassifier (Table 3).
Upon performing a multiple comparison analysis between all models
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(based on PR AUC and F1 scores), the ensemble-based models,
GaussianNB and LinearDiscriminantAnalysis models had similar

patterns of performance (Supplementary Fig. 1D–F). When we
grouped the models based on their broad categories and compared
their F1 scores, we found that ensemble-based models performed
better than all other model types except naïve bayes, tree-based and

discriminant analysis-based methods (Fig. 2b; details of statistical
analysis in Supplementary Table 7).
For calculating expected classification error, we used the Brier

score which provides the mean squared error between probability
estimates and actual outcome. A lower score indicates more

accurate predictions. We observed that ensemble methods had
lower Brier score for ICU admission (mean Brier score <0.15 except
AdaBoostClassifier; Table 2) and mortality prediction models (mean
Brier score <0.12 except AdaBoostClassifier; Table 3).

Comparing performance of prediction models–temporal
validation

We then tested the temporally distinct dataset on ICU admission
models and found that ensemble-based methods, had higher F1

(≥0.4) and PR AUC (≥0.5) scores compared to other methods
(Table 2). Although LogisticRegression and LinearDiscriminantAna-
lysis models had comparable F1 scores, their PR AUC scores were
lower than ensemble-based methods. When the performance of
mortality models was evaluated using a temporally distinct
dataset, ensemble-based methods, LogisticRegression, GaussianNB,
DecisionTreeClassifier, and LinearDiscriminantAnalysis had relatively
higher F1 scores (≥0.26) compared to other mortality models
(Table 3). There was a more severe drop in F1 scores for
temporally distinct patients for mortality prediction compared to
ICU admission. For comparing classification error, we observed
that the Brier score was lower for ensemble methods for both ICU
admission and mortality prediction models (Tables 2 and 3). Based
on calibration plots, we found that all models over-estimated the
risk of disease, but ensemble-methods were closer to the true risk
(Random Forest and logistic regression model plots shown -
Supplementary Fig. 2).
Overall, even though performance of all machine learning

models dropped in the temporal validation dataset, the ensemble
models remained the best at predicting both ICU admission and
mortality for COVID-19 patients.
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Fig. 2 F1 score comparison and variables of importance for ICU admission and mortality prediction models. a, b Bar plots representing
the F1 scores of ICU admission and mortality prediction models. Error bars indicate standard deviation from mean. Statistical analysis was
performed using Two-stage step-up method of Benjamini, Krieger and Yekutieli test which controls for False discovery rate (FDR) during
multiple comparison. p-value style is geometric progression - <0.03 (*), <0.002 (**), <0.0002 (***), <0.0001 (****). c SHAP value summary dot
plot and d variable importance of RandomForest algorithm-based ICU admission model. e SHAP value summary dot plot and f variable
importance of RandomForest algorithm-based mortality model. The calculation of SHAP values is done by comparing the prediction of the
model with and without the feature in every possible way of adding the feature to the model. The bar plot depicts the mean SHAP values
whereas the summary dot plot shows the impact on the model. The color of the dot represents the value of the feature and the X-axis depicts
the direction and magnitude of the impact. Red colored dots represent high value of the feature and the blue represents lower value. A
positive SHAP value means the feature value increases likelihood of ICU admission/mortality. For features with positive SHAP value for red
dots, suggests directly proportional variable to outcome of interest and those with positive SHAP value for blue dots, suggest inverse
correlation.
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Critical variables for predicting ICU admission and mortality

To investigate how individual variables in the machine learning
models impact outcome prediction, we performed a SHAP analysis
of the random forest model as it was one of the best-performing
models (based on F1 scores) among the ensemble-based models
for predicting ICU admission and mortality. For the ICU admission
prediction models, C-reactive protein, neutrophil percentages,
lactate dehydrogenase, and first respiratory rate were directly
proportional to risk of ICU admission (Fig. 2c, d), while lower
oxygen saturation and lymphocyte percentages were associated
with increased probability of ICU admission. For mortality
prediction models, use of ventilator, estimated glomerular
filtration rate (eGFR) less than 60ml/min/1.72 m2, high neutrophil
percentage, high serum potassium, low lymphocyte percentages,
and high procalcitonin were associated with higher mortality (Fig.
2e, f). To address the reduction in F1 scores for ICU admission and
mortality models, we performed a SHAP analysis on the
temporally distinct patients to compare the important variables
for model predictions. For predicting ICU admission, the top
variables remained similar to the important variables in the
primary random forest model (Fig. 2c and d compared to
Supplementary Fig. 3A and B). However, for predicting mortality
in the temporal validation cohort, D-dimer and initial oxygen
saturation became more important, while ventilator use was less
important compared to the primary random forest model (Fig. 2e
and f compared to Supplementary Fig. 3C and D).

DISCUSSION

In this study, we evaluated the ability of various machine learning
algorithms to predict clinical outcomes such as ICU admission or
mortality using data available from the initial ED encounter of
COVID-19 patients. Based on our analysis of 18 algorithms, we
found that ensemble-based methods have moderately better
performance than other machine learning algorithms. Optimizing
the hyperparameters (Supplementary Tables 4 and 5) enabled us
to achieve the best-performing ensemble models. We also
identified variables that had the largest impact on the perfor-
mance of the models. We demonstrated that for predicting ICU
admission, C-reactive protein, LDH, procalcitonin, lymphocyte
percentage, neutrophil percentage, oxygen saturation and
respiratory rate were among the top predictors, but for mortality
prediction, eGFR < 60ml/min/1.73 m2, use of ventilator, lympho-
cyte percentage, neutrophil percentage, respiratory rate, procalci-
tonin, serum anion gap and serum potassium were the leading
predictors.
Our model detected that CRP, LDH, procalcitonin, eGFR < 60ml/

min/m2, serum potassium levels, advanced age and ventilator use
were indicative of a worse outcome, which aligns with previous
studies of ICU admission and mortality (Supplementary Table 2).
Retrospective studies have shown increased procalcitonin values
associated with high risk for severe COVID-19 infection17. The
explanation for this association is not clear. Increased procalcito-
nin levels in COVID -19 patients can suggest bacterial coinfection
but may also be a marker of hyperinflammation and/or a marker
of ARDS severity18–20. We also found reduced kidney function as
the major risk factor for mortality, however, based on the design
of the current study, it is not clear whether pre-existing renal
dysfunction is a causal factor for poor outcomes in COVID-19 or a
consequence of more severe COVID-19 infection. This result has
been revealed by two previous studies in the literature, indicating
that patients with chronic kidney disease with or without dialysis
have a high risk of mortality from COVID-1921,22. Our study also
highlighted serum potassium level as an important predictor for
mortality. This finding has been reported in the literature by two
previous studies to our knowledge23,24 and one study has
reported the high prevalence of hypokalemia among patients

with COVID-1925. Potassium derangement is independently
associated with increased mortality in ICU patients26,27. Deviations
in serum potassium levels in COVID-19 patients may represent
dysregulation of the renin-angiotensin system28 which has been
suggested to also play a role in SARS-CoV pathogenesis29.
However, there was no comparison to a hyperkalemia group in
this study as in previous studies. By treating serum potassium as a
continuous variable, we have identified higher serum potassium
levels on presentation to be a predictor of ICU admission and
mortality which maybe more reflective of impaired potassium
excretion due to decreased kidney function as the cause. This
finding shows that the model aligns with previously reported
clinically relevant markers and also predicts new markers that
emerged from our patient population.
For predicting ICU admission, the top variables remained similar

in both the training and temporal validation cohorts. However, in
predicting mortality in the temporal validation cohort, D-dimer
and initial oxygen saturation became more important, while the
ventilator use became less important than the training cohort.
Though the exact reason for this change with the temporal
validation cohort is uncertain, there are a number of reasons that
can be speculated. Mortality for COVID-19 has decreased over-
time30 which may have led to differences in predictive variables.
The reasons for this decrease in mortality are not well understood.
It occurred despite little change in patient acuity or presentation
and has been attributed variously to increased adherence to
standard evidenced based therapies for acute respiratory failure.
Disease outcome has been reported elsewhere to have improved
over time during the pandemic, possibly due to greater familiarity
and comfort with COVID-19 and the development of specific
treatments (chiefly remdesivir and dexamethasone) may have led
to declining mortality over time31.
Our study utilized a multi-hospital cohort that has been

developed and validated in temporarily distinct subsets. Multiple
studies in the past have used machine learning methodology for the
identification of clinical phenotypes in COVID-19 patients11–13,32,33.
However, these studies were oriented toward identifying clinical
features rather than determining the best machine learning
algorithm for predicting clinical outcomes in this novel disease, so
only a limited number of models were tested. To our knowledge,
this is the first study to quantitatively and systematically compare
multiple machine learning models. We demonstrated that
ensemble-methods perform better than other methods in predict-
ing ICU admission and mortality from COVID-19. Ensemble methods
are meta-algorithms that combine several different machine
learning techniques into one unified predictive model (Supplemen-
tary Table 3)34, which could explain their superior performance. We
also performed hyperparameter tuning to determine the best model
performance values (F1 score). By performing SHAP analysis, we
showed how variables impact outcomes in black-box machine
learning models. Thus, our study is consistent with previous clinical
study results, revealing similar clinical predictors for ICU admission
and mortality, utilizing higher-performing machine learning models.
There are a few weaknesses in our analysis. Since not all

machine learning algorithms are capable of predicting probabil-
ities (some models return decision function attribute), we were
unable to calibrate the models uniformly. Therefore, we resorted
to using the Brier score as a metric for determining expected
classification errors, which includes discrimination and calibration.
A lower Brier score indicates more accurate predictions but does
not necessarily mean better calibration. During hyperparameter
tuning, we considered F1-score as the primary metric for selecting
best hyperparameter for each model. The drawback of using F1-
score is that it does not have a good intuitive explanation. In this
study, we used beta= 1 as a metric, and therefore it has been
referred to as F1-score. However, based on expectations out of a
model, one has to modify the F-beta score which would attach
beta times as much importance to recall as to precision.
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Another limitation was related to using the k-nearest neighbor
algorithm for imputing missing values in dependent variables. This
algorithm assumes that the missing value is similar to that of other
patients who are more similar, based on other available features.
Although this method of imputation is superior to other
imputation methods, it does have a risk of data distortion35.
Additional shortcomings of the study are associated with using a
SHAP (TreeSHAP) analysis for determining variable of importance.
The SHAP analysis needs to be specifically adapted for a machine
learning algorithm - particularly for ensemble methods–to make it
more versatile and computationally efficient.
There are a few additional limitations in our study from a clinical

aspect. Some of the laboratory results may take hours to be
reported, and the data may not be available until after the patient
has transitioned out of the ED. This limits the utility of using these
laboratory predictors in triaging patient disposition. Another
limitation is that features related to the disease course prior to
presentation to ED were unavailable, which limited our ability to
verify rapidity of worsening symptoms. Future studies aimed at
training models based on time course data might allow earlier
identification of high-risk individuals.
Overall, the performance of our models on the temporal

validation dataset dropped, which might be attributed to changes
in management practices, evolution of SARS-CoV-2 pathogenesis,
or due to the imbalanced nature of the dataset. We also observed
that the F1 scores on the temporal validation cohort (imbalanced
dataset) were relatively higher for ICU admission models in
comparison to mortality models. This could be due changes in the
important variables for predicting mortality (Fig. 2c–f, Supple-
mentary Fig. 3). Future studies might provide a more definitive
answer to the question–“How did changes instated in the ICU
during the later period of pandemic affect mortality?” Changes in
treatment regimens may affect the relative importance of
variables over time, thereby affecting the mortality prediction of
our models. Since the most important variables for predicting ICU
admission did not change between the temporally different
cohorts, the drop in F1 score during temporal validation might be
due to the imbalanced nature of the dataset. Our cohort is based
on a population from Southern New England region of United
States and included two tertiary academic centers, which could
also limit the versatility of the models, as resources available at
these hospitals may not be available elsewhere. Larger, more
expansive studies based on this framework in other cohorts would
help validate our findings before clinical deployment of these
models.
Our model development process and findings could be used by

clinicians in gauging the clinical course, particularly ICU admission,
of an individual with COVID-19 during an ED encounter. We
recommend using ensemble-based methods for developing
clinical prediction models in COVID-19. Our ensemble methods
identified key features in patients, such as kidney function,
lymphocyte percentage, neutrophil percentage, CRP and LDH, that
allowed us to predict clinical outcomes. Deploying such models
could augment the clinical decision-making process by allowing
physicians to identify potentially high-risk individuals and adjust
their treatment and triaging accordingly.

METHODS

Study population

Patients from the Mass General Brigham (MGB) healthcare system that
were positive for SARS-CoV-2 between March and August of 2020 and had
an ED encounter were included. Patients either had COVID-19 prior to the
index ED visit or were diagnosed during that encounter. MGB is an
integrated health care system which encompasses 14 hospitals across New
England in the United States. COVID-19 positive patients were defined by
the COVID-19 infection status, a discretely recorded field in the Epic EHR
(Epic Systems Inc., Verona, WI). The COVID-19 infection status was added

automatically if a SARS-CoV-2 PCR test was positive, or by Infection Control
personnel if the patient had a confirmed positive test from an outside
facility. This study was approved by the MGB Institutional Review Board
(IRB protocol # 2020P000964).

Data collection and covariate selection

We queried the data warehouse of our EHR for patient-level data including
demographics, comorbidities, home medications, most recent outpatient
recorded blood pressure, and death date. For each hospital encounter we
extracted vital signs, laboratory values, admitting service, hospital length of
stay, date of first ICU admission, amongst others. We considered only the
first clinical and laboratory values that were recorded after ED admission.
The patient’s problem list was extracted and transformed into a
comorbidity matrix by using the comorbidity R package36.

Outcome definition

The two primary outcomes used for developing the models were ICU
admission within 5 days of ED encounter and mortality within 28 days of
ED encounter. The beginning of the prediction window began upon arrival
to the ED.

Model development

As described in Supplementary Table 1, we selected a reduced set of
potential predictor variables from previously published literature (Supple-
mentary Table 2). We used the same covariates in developing the ICU
admission and mortality models except for ventilator use which was added
to mortality models but excluded from ICU admission models. Age (10 year
intervals), race (African American or other), BMI, modified Charlson
Comorbidity Index37, angiotensin converting enzyme inhibitor/angiotensin
receptor blocker (ACEi/ARB) use, hypertension (>140/90mmHg), and eGFR
<60ml/min were treated as categorical values. Patients with missing
values for the dependent variables (outcome: ICU admission or mortality
information) or obviously incorrect entries (e.g., one patient was listed with
respiratory rate of 75 breaths per minute) were excluded. Missing values
were imputed using the k-nearest neighbor algorithm38,39. Models were
developed using the patients admitted during the period of March and
April 2020. For model validation, we used a temporally distinct cohort
consisting of patients admitted from May through August 2020. The data
set was imbalanced with significantly fewer patients who were admitted to
the ICU or who died due to COVID-19 compared with those who did not.
For the purpose of developing the machine learning models, we
performed random undersampling of the majority class and used these
balanced datasets for developing machine learning models. To rule out
bias during undersampling, we compared the excluded patients of the
majority class with patients who were included to ensure that none of the
variables were significantly different (p ≥ 0.05; Supplementary Table 8). We
avoided oversampling techniques to balance the datasets to prevent
overfitting and to reduce computation time40.
A total of eighteen machine learning algorithms were tested, the

descriptions of which are available in Supplementary Table 3. For every
machine learning model, we used a three-step approach. First, we made
models using various combinations of tunable hyperparameters which
were used to control the learning process of algorithms. The hyperpara-
meters that were adjusted depended on the algorithm (outlined in
Supplementary Table 4). After developing these models for each
combination of hyperparameter, we tested the performance of each of
these combinations (performance metrics generated for each combination
of hyperparameter––data not shown) using a cross validation technique
(number of folds= 5) during which the F1 score was considered to select
the best hyperparameter (Supplementary Table 5). The F1 score is a
measure that unites the trade-offs of precision and recall and provides a
single number that represents the utility of a classifier in predicting the
minority class. For grading the performance of models, we used F1 scores
as this is more applicable for datasets that are imbalanced41. In our case,
the temporal validation dataset remained an imbalanced dataset.

Evaluation of model performance

Model performance evaluation was done in two parts. A StratifiedKFold
technique of cross validation was first used during model development. In
this method, 20% of the patients were excluded while training the model
and the excluded patients were then used to test the model. This was
performed using an iterative process. Each model was evaluated by
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calculating the Receiver Operating Characteristic Area Under the Curve
(ROC AUC), PR AUC, F1, recall, precision, balanced accuracy, and Brier
scores. To calculate the 95% confidence interval, we used t0.975, df=4=

2.776 based on t-distribution for n= 5. Secondly, for the temporal
validation, the cohort of patients who presented to the ED between May
and August 2020 was used (Supplementary Table 6).

Model interpretation using Shapley values

For explaining the models, SHAP feature importance was reported based
on Shapley values42, details of which are outlined in the Supplementary
Methods. SHAP values are useful to explain “black-box” machine learning
models which are otherwise difficult to interpret. SHAP values for each
patient feature explain the intensity and direction of impact on predicting
the outcome.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The clinical data used in this study belongs to MGB healthcare and restrictions apply

to the availability of these data. Qualified researchers affiliated with the Mass General

Brigham (MGB) may apply for access to these data through the MGB institutional

review board.

CODE AVAILABILITY

The programming code for R and Python are available upon request addressed to the

corresponding authors: Sayon Dutta, MD (sdutta1@partners.org) and Rakesh K. Jain,

PhD (jain@steele.mgh.harvard.edu). Data cleaning and processing were performed

with R (R Core Team, version 3.6.3) using the tidyverse and comorbidity packages (for

cross referencing ICD-10 problem list diagnoses to their corresponding Charlson

comorbidities)36,43,44. Machine learning model development was done using Python

(details in Supplementary Methods)45–48.
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