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he main contribution of the confocal 
microscope to microscopy is that it pro- 

vides a practical method to obtain micro- 
scopic volume images. Although a 
confocal microscope is a true volume im- 
ager, its imaging properties give rise to a 
blumng phenomenon similar to the one in 
a conventional microscope, but with a re- 
duced range [ 11. The resulting distortions 
hamper subsequent quantitative analysis. 
Therefore, operations that invert the dis- 
tortions of the microscope may improve 
these analyses. In previous work[2], the 
iterative constrained Tikhonov-Miller 
(ICTM) inversion was used to restore dif- 
fraction-induced distortions. Quantitative 
texture measurements, based on the grey 
value distance transform, showed that the 
results improved when applied to images 
after restoration. 

The use of the ICTM restoration 
method was motivated by the linear sys- 
tem model used to describe the imaging 
properties of a confocal microscope. In 
this model, the image is a convolution of 
the object function with the point spread 
function of the microscope and distorted 
by additive noise. 

This image formation model breaks 
down on images with a low signal-to- 
noise ratio, where the additive noise 
model is a poor description of the actual 
photon-limited image recording. Under 
these circumstances, the noise charac- 
teristics are best described by a Poisson 
point process, which motivates the use of 
restoration methods optimized for Pois- 
son- noise distorted images. 

In this article, we compare the expec- 
tation-maximization (EM) algorithm for 
computing the maximum likelihood esti- 
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mator (MLE) for the intensity of a Poisson 
process, with the ICTM inversion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A growing amount of literature is be- 
ing published on the restoration of micro- 
scope images, using restoration methods 
such as EM-MLE [3,41 and ICTM [1,5]. 
Whereas these methods have just come 
within reach in terms of computational 
complexity, they have been shown to im- 
prove significantly the (quantitative) 
analysis of microscope images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3].  Due 
their non-linear nature, these methods are 
capable of restoring data from missing 
frequencies, as induced by the missing 
cone of the 3D OTF of incoherent light 
microscopes [4,6,7]. Therefore, they sig- 
nificantly reduce the diffraction-induced 
distortion found in confocal and conven- 
tional 3D images [4,7]. Finally, point 
spread function (PSF) measurements on 
optimized microscopes (such as 4n mi- 
croscope and the two-photon microscope) 
show that images recorded by them need 
to be restored to reduce PSF induced arti- 
facts before they can be analyzed [8]. 

Image Restoration Methods 
The aim of the image restoration dis- 

cussed in this section is to correct image 
distortions caused by the diffraction in a 
confocal fluorescence microscope. The 
incoherent nature of the emitted fluores- 
cence light allows us to model the image 
formation of the confocal fluorescence 
microscope (CFM) as a convolution of the 
object functionf(x) with the point spread 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhCy-x) of the microscope, with x 

being a 3D coordinate vector in the object 
space X ,  and y in the image space Y. The 
image g(y) formed by an ideal noise free 
CFM can thus be written as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Due to the photon nature of light and 
its effect on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (x) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(y) is distorted by noise. 
Noise, caused by photon-counting (Pois- 
son noise), by the readout of the detector 
(Gaussian), and by the analog-to-digital 
conversion (uniform), disturbs the image. 
We model this noise distortion here in a 
general way: 

m(y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N ( g ( y ) )  (2) 

with m(y) being the recorded image and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NO the noise distortion function. (In the 
case of additive noise, N(x) equals x+n, 
with n the additive noise.) 

Restoration methods are based on find- 
ing an approximate solution, f^ , from a set 
of feasible solutions, according to certain 
criteria. These criteria depend on the type 
of noise, imposed regularization, and con- 
straints set on the solutions found by the 
restoration algorithm. Although both the 
EM-MLE algorithm and the ICTM inver- 
sion are in principle based on maximum 
likelihood estimation, they differ signifi- 
cantly due to the different modeling of 
noise distortion on the image and the im- 
posed constraints and regularization. 

The EM-MLE algorithm computes the 
maximum likelihood estimator for esti- 
mating the intensity of a Poisson process. 
In the case where the noise distortion is 
additive Gaussian noise, the maximum 
likelihood criterion results in a mean- 
square-error criterion. The ICTM inver- 
sion is a constrained, regularized 
mean-square-error restoration method for 
finding a non-negative solution for im- 
ages disturbed by additive noise. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Maximum Likelihood Estimation 
using the Expectation-Maximiza- 

tion Algorithm 
A confocal microscope acquires an im- 

age of an object by scanning the object in 
three dimensions. At each point of the 
image, the emitted fluorescence light from 
the object is focused on the detector. (This 
light is converted by a photomultiplier 
tube into an electrical signal, and repre- 
sented by a discrete value after an 8-bit 
A/D conversion.) Under low light-level 
conditions, the detector behaves essen- 
tially as a photon counter. This conversion 
of fluorescence intensity to a descrete 
number of detected photons is described 
statistically as a Poisson process. The log 
likelihood function of Eq. 2, for NO being 
a Poisson point process, is given by[9]: 

with: 

a y )  = p 4 Y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-x)f(x)dx 
x 

The maximum likelihood solution for - 
f of Eq. 3 is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TMm = m=L(f^;m,h) (4) 

which can be found using the EM algo- 
rithm, as described by Dempster, Laird 
and Rubin [lo]. This iterative algorithm 
was used first by Shepp and Vardi [ 1 11 for 
computing the MLE of the intensity of a 
Poisson point process. The EM-MLE so- 
lution for Eq. 4 is: 

f k + " ( X )  = 

The EM-MLE algorithm insures a non- 
negative solution when an non-negative 
initial guess f^ is used. Furthermore, 
Vardi, et a1.,[12] have shown that the like- 
lihood of each iteration of the EM-MLE 
algorithm will strictly increase to a global 
maximum. 

The EM-MLE method for estimating 
the intensity of a Poisson point process is 
identical to the restoration algorithm that 
Richardson and Lucy [13] derived using 
different arguments. 

In fluorescence microscopy, it is com- 
mon to measure a non-zero background 
level arising from auto-fluorescence, in- 
adequate removal of fluorescent staining 
material, or electronic sources. When this 
background signal is modeled as a spatial 
invariant Poisson point processes, the 
EM-MLE estimator results in [2]: 

j k + ' ( X )  = j q x )  

,[! ( h ( y - x ) f k ( x ) + b ) d x  h'xr ] m ( i ) r  

(6) 

with b the average background intensity. 

Iterative Constrained 
Tikhonov-Miller Inversion 

In this section, we closely follow the 
derivation of ICTM inversion as given by 
Van der Voort and Strasters [l]. The in- 
version is based on the assumption that the 
general noise distortion function (Eq. 2) 

can be modeled as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan additive noise func- 
tion [14]: 

mb)=sCv>+n (7) 

For images with a relative high signal- 
to-noise ratio, the additive noise model 
can be motivated by the centra1 limit theo- 
rem [9]: Under these circumstances, the 
distribution of a Poisson process can be 
approximated with a Gaussian distribu- 
tion. 

The Tikhonov-Miller (TM) inversion 
combines two selection criteria for finding 
f in one quadratic functional: 
- 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE an estimate of the norm of the noise, 
E the power of the object, r a regulariza- 
tion operator, and 0 the convolution op- 
erator. The 1.1 norm is defined by: 

(9) 

The TM functional consists of a mean- 
square-error criterion and a stabilizing 
function, constrained by an energy bound. 
This regularizing functional suppresses 
solutions of f^ that oscillate wildly due to 
spectral components outside the band- 
width of h. Minimization of Eq. 8 yields 
the well-known TM solution: 

F =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA H*G 

llH112 + dl4 (10) 

with q=(dQ2, * denoting the conjugate 
operator, and capital letters the Fourier 
transform of the corresponding function. 
Although this solution requires modest 
computational efforts, it is very sensitive 
to errors in the estimation of the PSF, 
causing ringing artifacts [ 11. Furthermore, 
the TM inversion is a linear solution, thus 
not capable of restoring missing spatial 
frequency components, Finally, the solu- 
tion may contain negative values. This 
latter property of the TM inversion is a 
major drawback, since the intensity of an 
object is imaged, which is always positive. 

A solution to these disadvantages of 
the TM solution is to solve Eq. 8 with an 
iterative procedure, the ICTM method. 
Such a procedure can constrain the solu- 
tion f^ to be non-negative, by clipping 
each successive estimate. 

We used the method of conjugate gra- 
dients to implement the TM inversion in 
an iterative way[l4]. This is a modifica- 
tion to the steepest descent method, which 
gives faster convergence[l4] in the case 
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of a quadratic functional. The so-called 
conjugate direction is given by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ‘k + Y k P k - l  (11) 

with: 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArk denoting the steepest descent direc- 
tion: 

A new conjugate gradient estimate is 
now found as: 

f,+l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb k  (13) 

In absence of a non-linear constraint, 
the step size, p, can be calculated analyti- 
cally. However, in the presence of such a 
constraint, the optimal p must be searched 
for iteratively. In our implementation, a 
golden section rule line-search algorithm 
[ 151 is employed to find p. Thus, the algo- 
rithm consists of a main iterative loop in 
which the conjugate directions are com- 
puted, and a subiterative loop in which p 
is optimized and the new estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 is 
found. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Stopping Criteria 
In principle, one can continue to gen- 

erate new estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf̂  until the solution 
is optimal with respect to the functional of 
the applied restoration method (log-likeli- 
hood for EM-MLE, Eq. (8) for ICTM). In 
practice, this procedure is undesirable. 
Experiments[ 161 show that the likelihood 
of an EM-MLE estimate increases loga- 
rithmic as a function of the number of 
iterations. This growth makes the search 
for the maximum of the likelihood func- 
tion extremely computational expensive. 
Furthermore, Lagendijk [14] shows that 
noise amplifications can seri- 
ously deteriorate the ICTM re- 
sult when it is pursued for a 
large number of iterations. We 

have therefore used a thresh- 
old (typically 0.001%) on the 
change of the functional 

( j k + l  - ?k) ?k 

to stop the iterations. 

Implementation Consid- 
erations 

1 

0.1 
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in 

4 0.01 
- 

0 001 

putation burden. As can be seen from Eq 
5, the EM-MLE algorithm requires two 
convolutions for each iteration. For effi- 
ciency, these iterations are evaluated in 
the Fourier domain. However, the multi- 
plication and division can best be per- 
formed in the spatial domain, requiring an 
additional inverse transformation, result- 
ing in three Fourier transforms for each 
iteration. The subiterative loop to estimate 
p imposes the largest computational bur- 
den for ICTM algorithm. Although this 
loop is implemented with only one Fourier 
transform per iteration, it still has large 
computational complexity 

In our simulations, we have used a 
symmetrical PSF, allowing the use of the 
fast Hartley transform (FHT) [I71 to cal- 
culate the convolutions. In the FHT, the 
multiplication of complex numbers is re- 
placed by multiplication of real numbers, 
reducing the number of floating point op- 
erations by a factor of four, and the 
amount of memory required by two. 

Experiments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Results 
In this section, we describe the imple- 

mentation and results of three simulation 
experiments. In a first experiment, we 
compared the results of EM-NILE and 
ICTM algorithms on spheres convolved 
with a confocal point spread function 
(CPSF). We compared the restoration re- 
sults using the mean-square-error and I- 
Divergence distance measures. These 
measures were chosen because the resto- 
ration methods investigated minimize 
these distances. 

In a second experiment, we investi- 
gated the influence of the restoration 
methods on the measurement of the 
CPSF as was done by Van der Voort and 
Strasters [2]. We used their approach, 
and compare the ICTM results with EM- 
MLE. 

In a third experiment, the influence of 

EM-MLE and ICTM on quantitative tex- 
ture analysis of confocal images was in- 
vestigated. The restoration methods were 
used prior to a quantitative texture meas- 
ure based on the grey value distance trans- 
form (GDT). Finally, the restoration of a 
confocal image with EM-MLE and ICTM 
was performed. 

\ 

Restoration of Spheres 
In this experiment we compare the per- 

formances of the EM-MLE and ICTM 
algorithms on the restoration of spheres 
convolved with a CPSF and distorted by 
Poisson noise. The spheres were gener- 
ated using an analytical description of 
their Fourier transform, as given by[ 181 in 
spherical coordinates: 

with r the radius of the sphere. The Fourier 
transform is multiplied by the confocal 
OTF to ensure bandlimitation. Generated 
in this way, the spheres are free from 
aliasing effects, which arise from sam- 
pling non-bandlimited analytical objects. 

We computed the point spread func- 
tion from a theoretical model of the CPSF, 
based on electromagnetic diffraction the- 
ory [2]. This model takes important micro- 
scopic parameters, such as the finite size 
pinhole, high apertures and polarization 
effects into account; lens aberrations are 
not modeled. 

The performance of the restoration al- 
gorithms is measured as function of the 
signal-to-noise ratio (SNR), as defined by: 

L: 
SNR = - 

E (15) 

The simulated images are distorted by 
Poisson noise. The noise is generated by 
using the intensity of the convolved 
spheres as averages of spatial variant 
Poisson point processes [15]. We have 

-=- EM-MLE 

4-L --o- ICTM 

1 
00001 I * I 8 * . . I  1 

1 10 100 

SNR 

;ariedthe SNRratio of the simu- 
lated images by changing the 
photon-conversion efficiency. 
For Poisson processes, the vari- 
ance equals the mean, so the 
noise power in theimageis given 
by: 

E = 0 2 = C + 3 ~ 0 f C ~ ~ b  (16) 

with c the photon-conversion ef- 
ficiency, V the image volume, I ,  
the average object intensity and 
Io of the background. Using Eqs. 

Both restoration methods 1. The I-Divergence of the EM-MLE and ICTM restoration of 
impose a relative large com- spheres as a function of the signal-to-noise ratio. 

15 and 16, the photon-conver- 
sion can now be found with: 
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10 
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100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. The MSE of the EM-MLE and ICTM restoration of 
spheres as a function of the signal-to-noise ratio. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$nr’~: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C =  

S N R . ( ~ X ~ ’ Z ~  + V Z ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(17) 

The images were generated with a 
sampling density of twice the Nyquist fre- 
quency. An important motivation for this 
choice is given by the multiplicative itera- 
tive updating of the EM-MLE algorithm 
(Eq. 5). The spatial multiplication of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf^ 
results in a convolution of f^ in the Fourier 
domain, giving rise to potential aliasing 
effects. By sampling at significantly 
higher frequency than the Nyquist fre- 
quency, these aliasing effects are - 

io00 j . . . . . . . .  , . . . . . . . . ,  . . 
i 10 io0 

SNR 

3. The processing time (in seconds) of the EM-MLE and 
ICTM restoration of spheres as a function of the signal-to- 
noise ratio. The image size was 128x128~64 floating point 
voxels. The times were measured on a SGI Indigo (R4400 
CPU at 150 Mhz with 128 MB memory). 

sampling distance of 23.0 nm and an axial 
sampling distance of 81.2 nm. The images 
are 128 x 128 x 64 pixels in size, the 
spheres have a radius of 690.0 nm. The 
SNR ranges from 1.0 to 256.0 (0.0 dB to 
24.2 dB). 

Performance Measures 
The performance of the EM-MLE and 

ICTM algorithms are measured using the 
mean square error (MSE) and the I-Diver- 
gence measure. The MSE is given as: 

Csiszir[ 191 has introduced the I-Di- 
vergence: 

(19) 

to measure the distance of a function b to 
a function a. He has postulated a set of 
axioms of regularity (consistency, dis- 
tinctness, and continuity) and locality that 
a distance measure should posses. He con- 
cluded that for functions which are re- 

quired to be non-negative, the 
~ 

reduced. 
A second reason for choosing 

this high sampling dcnsity is that 
thc signal-to-noise mcasurement 
method of Van der Voort and 
Strastcrs 121 can be used to meas- 
ure the SNR of confocal images. 
This methods fits il spectral model 
of thc noisc in the  art of the suec- 

I-Divergence is the only consis- 1 tent dictance measure. For real- 
valued functions having both 
negative and positive values, the 
MSE is thc only consistent 
choicc. 

Snyder, et al.,  [ 201 have shown 
that maximi7ing the mean of the 
log-likelihood of Eq. 3 is equal to 

I -  

trum above Nyquist and extrapo- 
lates this in the lower part of the 
spectrum to give an estimate of the 
noise energy. The object energy is 
equal to the difference of the total 
spectrum and the estimated noise 
spectrum. 

For our simulations, we have 
selected microscopic parameters 
corresponding to typical working 
conditions: a numerical aperture 
of 1.3, a refractive index of the 
lensoil of 1.515, an excitation 
wave length of 479 nm, an excita- 
tiodemission ratio of 0.9, and a 
pinhole size of 282 nm. These 
conditions resulted in a lateral 

4. Restoration of spheres, the object (top-left), the confo- 
cal image of the object with a SNR of 16.0 (top-right), 
the restoration result with EM-MLE (bottom-left) and 
ICTM (bottom-right). The image size is 128x128~64 
voxels, with a voxel size of 23.0~23.0~81.4 nm. The ob- 
ject intensity is 200.0, with a background of 40.0, with a 
photon-conversion of 0.58. 

minimizing Csiszir’s I-Diver- 
gence: 

Z ( P . 7 )  = af) - E[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKh] 

(20) 

with E[ 3 the expectation operator. 

Restoration Results 
Figures 1 and 2 show the I-Di- 

vergence and MSE performance 
of the EM-MLE and ICTM meth- 
ods on the restoration of spheres, 
as a function of the SNR ratio. 
The I-Divergence and the MSE 
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5. The I-Divergence of the EM-MLE and ICTM result of the 
~ 

6. The MSE of the EM-MLE and ICTM result of the restora- 
restoration of the PSF as a function of the signal-to-noise ratio. tion of the PSF as a function of the signal-to-noise ratio. The 

MSE values are normalized by dividing them with the 
squared maximum value of the PSF. 

performance of EM-MLE is in most cases 
an order of magnitude better than of 
ICTM. Only for a high SNR, the MSE 
performance of ICTM approaches the 
EM-MLE. The processing time of the two 
algorithms, as shown in Fig. 3, is meas- 
ured on a SGI Indigo computer with an 
R4400 CPU running at 150 MHz, with 
128 MB memory (Silicon Graphics, 
Mountain View, CA). The time of the 
ICTM is about 65% of the EM-MLE time. 
The processing times of both algorithms 
increase strongly as afunction of the SNR. 
An example of the restoration with EM- 
MLE and ICTM is shown in Fig. 4, to- 
gether with the object and its confocal 
image. 

Measurements of the 
Point Spread Function 

In this experiment, we investigated the 
influence of the restoration algorithms on 
the measurement method of the CPSF, as 
described by Van der Voort and Stras- 
ters[2]. A CPSF can, in principle, be ob- 
tained by imaging a point-like object. 
However, due to bleaching effects, re- 
cording images of such objects with a 
sufficient SNR is not feasible. 

However, since the PSF is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAimage of 
a point object, it is non-negative, therefore 
the role of the object function and PSF in 
the ICTM algorithm can be completely 
reversed. As can be seen from Eq. 5, the 
same argument holds for the EM-MLE 
algorithm. 

Van der Voort and Strasters [2] re- 
corded fluorescent latex spheres (230 nm 
surface-stained "microbrite" spheres, 
Polysciences) and after a subpixel align- 
ment of their centers of mass, averaged 32 
to obtain images with a sufficient SNR. By 
using the analytical description of band- 

7. Restoration of the CPSF. The top pictures show the center x-y (left) and x-z 
(right) planes of the theoretical PSF of a confocal microscope. The middle two pic- 
tures show EM-MLE restoration of the PSF convolved with a 230.0 nm sphere 
(SNR of 16.0). The bottom pictures show the center x-y (left) and x-z (right) planes 
of the ICTM restoration result. Each transition from black to white represent an in- 
tensity reduction of a factor of ten relative to the maximum image intensity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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9. Error in the GDT texture measure due to diffraction-induced 
distortions before and after restoration with EM-MLE and 
ICTM. Horizontal axis: rotation angle of the object with respect 
to the focal plane. Vertical axis: percentage of the relative error 
between the texture measure derived from the image and the tex- 
ture measure of the synthetic object. 

8. Schematic model of the multiple cylindrical objects as 
used in figures 9,lO and 11. 

limited spheres (Eq. 14), a restoration al- 
gorithm can be used to correct for the 
non-flat object spectrum, and thus restore 
the PSF image. We compare the ICTM 
inversion results of Van der Voort and 
Strasters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]  with EM-MLE restoration for 
obtaining the PSF images. 

For the simulations, we have generated 
the images in the same way as described 

above. The diameter of the generated results in very small pixel intensities, and 
spheres is 230 nm, and the restoration thusverysmallMSEvalues. Wehavecho- 
results are again compared as a function sen to divide the MSE values of Fig. 6 by the 
of the SNR. Figures 5 and 6 show the maximum pixel intensity squaredfoundin 
I-Divergence and MSE performance theoriginalPSFimage.TheMSEva1uescan 
measures of both methods, as a function now be interpreted as an average intensity 
of the SNR. The generated PSFs are nor- difference relative to the maximum pix< 
malized in such a way that the sum of the intensity of the generated PSF. Figure 
intensities of all pixels equals one. This shows the center x-y and x-z planes of th 

10. The EM-MLE and ICTM restoration result of the multi- 
ple cylindrical objects, with the object (top-left), its confocal 
image (top-right), the EM-MLE result (bottom-left) and the 
ICTM result (bottom-right). 

The GDT Of the images shown in figure lo* 
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original PSF and the restoration 
results of EM-MLE and ICTM 
for a SNR of 16.0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Improvement of GDT 
Based 

Texture Analysis 
Van der Voort and Stras- 

ters[2] investigated the effect of 
restoration on texture analysis. 
Synthetic cylinder images were 
distorted with a theoretical 
CPSF and these images were 
then restored using the ICTM 
inversion. The texture measure, 
based on the GDT, measures the 
inaccessibility of an object. The 
blurring of an object with a 
CPSF greatly increases its inac- 
cessibility‘ It was shown that 
the lCTM restoration signifi- 
cantly reduces the inaccessible 

12. Mouse 3T3 fibroblast stained for tubulin. The confocal im- 
age is shown in the middle images, the EM-MLE result on the 
left, and ICTM result on the right. An x-y slice (top) and and 
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-z slice (bottom) are shown for all 3-D images. 

area. 
To quantify this improvement with a 

single value, Van der Voort and Strasters 
[2] summed all voxel values in the GDT 
transformed image. We used the same 
procedure to compare the improvement of 
EM-MLE and ICTM restoration for this 
specific kind of texture analysis. In con- 
trast to their simulation experiments, we 
generated images with multiple cylindri- 
cal objects (Fig. 8) with noise to simulate 
a more a “realistic” confocal image. The 
GDT sum values of the confocal image of 
the generated cylinders, as well as the 
values of the EM-MLE and ICTM results, 
are shown in Fig. 9. This figure shows a 
considerable reduction of the GDT sum 
value for ICTM. The reduction of the EM- 
MLE reconstructed images is an order of 
magnitude better than the ICTM results. 
However, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% error of the EM-MLE 
GDT values are negative in most cases, 
indicating a smaller GDT value for the 
EM-MLE result compared to object GDT 
value. The result of the EM-MLE and 
ICTM restoration of the cylindrical ob- 
jects are shown in Fig. 10, their GDT 
images are shown in Fig. 11. 

Restoration of Confocal Images: 
Mouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3T3 Fibroblast Stained 

for Tubulin 
A specimen was prepared of Mouse 

3T3 fibroblast stained for tubulin. Anti- 
Tubulin, rat IgG monoclonal antibody at 
a 1:lOO dilution, (Sera-lab) was used as 
primary anti-body. For a secondary anti- 
body, polyclonal Donkey-anti-Rat, IgGs- 
FITC labeled [21], was used at again a 
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I: 100 dilution. Fixation and immunocyto- 
chemical staining conditions are as de- 
scribed by Wansink, et al. [22]. 

The confocal images were recorded 
with an Aristoplan Leica (model 0001) 
confocal microscope, series 1000, with a 
lOOx oil immersion objective, with a NA 
of 1.32. The image size is 512 x 512 x 32 
pixels at zoom 2 with a Z-step 0.208 pm, 
giving a field size of 25 x 25 x 6 pm. The 
voxel size is 49 x 49 x 208 nm, slightly 
above the Nyquist criterion. To measure 
the CPSF (see above), about 10 green 
fluorescent micro-beads (diameter 49 nm, 
Polysciences) were recorded using the 
same CFM setup as is used for the regular 
images. 

The diameter of a microtubule is 25 
nm, the primary and secondary antibodies 
add about 24 nm. Therefore the diameter 
of a single, stained tubule adds up to 49 
nm, about the size of lateral sampling 
distance. Figure 12 shows the confocal 
image of the tubulin and the restoration 
results of the EM-MLE and ICTM algo- 
rithm. Both results were obtained using 
the Huygens [23] systemrunning on a SGI 
Power Indigo2 computer (Silicon Graph- 
ics, Mountain View, CA 94043). 

Conclusions 
We have compared the performance of 

the EM-MLE and ICTM restorations ap- 
plied to confocal images. Both methods 
greatly reduce diffraction-induced distor- 
tions of confocal images. Due to their 
non-linearity, both are able (partially) to 
restore data of missing frequencies. From 
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our experiments, it is clear 
that for our test objects, the 
EM-MLE algorithm per- 
forms much better than 
ICTM. The EM-MLE algo- 
rithm produces better results 
under all the conditions we 
tested, and with respect to all 
three performance measures 
(I-Divergence, MSE, GDT) 
we used. Only for high SNR 
conditions, the MSE per- 
formance of ICTM ap- 
proaches the EM-MLE 
results. It must be noted that 
this conclusion is only valid 
for the type of objects we used 
in our experiments (sparse 
objects); it may well be that 
for more dense objects, the 
situation is different. The 
poor ICTM performance 

shows that its functional is not well suited 
for images distorted with Poisson noise. 

We did not find artifacts such as ring- 
ing in the results of either algorithm. The 
restoration results on the cylindrical ob- 
jects show, however, that the EM-MLE 
algorithm has a tendency to reconstruct an 
image that is sharper and smaller than the 
original object (Fig. 10). This aspect of 
EM-MLE should be investigated thor- 
oughly. Greander’s method of Sieves [9] 
seems promising for regularizing the EM- 
MLE algorithm. 

Finally, to reduce the computational 
burden of ICTM and EM-MLE (Fig. 3), 
methods to speed up these algonthms 
should be investigated more fully zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3].  
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