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Abstract The groundwater pressure response to the ubiquitous Earth and atmospheric

tides provides a largely untapped opportunity to passively characterize and quantify

subsurface hydro-geomechanical properties. However, this requires reliable extrac-

tion of closely spaced harmonic components with relatively subtle amplitudes but

well-known tidal periods from noisy measurements. The minimum requirements for

the suitability of existing groundwater records for analysis are unknown. This work

systematically tests and compares the ability of two common signal processing meth-

ods, the discrete Fourier transform (DFT) and harmonic least squares (HALS), to

extract harmonic component properties. First, realistic conditions are simulated by

analyzing a large number of synthetic data sets with variable sampling frequencies,

record durations, sensor resolutions, noise levels and data gaps. Second, a model of

two real-world data sets with different characteristics is validated. The results reveal

that HALS outperforms the DFT in all aspects, including the ability to handle data

gaps. While there is a clear trade-off between sampling frequency and record duration,

sampling rates should not be less than six samples per day and records should not be

shorter than 20 days when simultaneously extracting tidal constituents. The accuracy
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of detection is degraded by increasing noise levels and decreasing sensor resolution.

However, a resolution of the same magnitude as the expected component amplitude is

sufficient in the absence of excessive noise. The results provide a practical framework

to determine the suitability of existing groundwater level records and can optimize

future groundwater monitoring strategies to improve passive characterization using

tidal signatures.

Keywords Tidal subsurface analysis · Tidal constituents · Signal analysis · Harmonic

least squares · Non-uniform sampling

1 Introduction

Reliable detection and extraction of harmonic components embedded in measurements

is crucial for a range of different applications in the geosciences. These include, but

are not limited to, the prediction of ocean tides (Pawlowicz et al. 2002), investigating

the propagation of seismic waves (Tary et al. 2014), identifying oscillations in climate

signals (Ghil et al. 2002) and quantifying water flux in near-surface sediments using

temperature measurements (Wörman et al. 2012; Rau et al. 2014; Halloran et al. 2016).

One emerging application is the characterization of the subsurface using the ground-

water response to Earth and atmospheric tides. The impacts of astronomical tides on

groundwater systems have long been observed, and methods have been developed and

applied to characterize subsurface systems (Bredehoeft and Papaopulos 1965; Hsieh

et al. 1987; Van der Kamp and Gale 1983; Xue et al. 2016). The advantage of such

techniques is that they are passive (Allègre et al. 2016) and thus can be widely applied

to existing data sets (McMillan et al. 2019). This approach enables the quantification

of subsurface hydro-geomechanical properties such as hydraulic conductivity, specific

storage or compressibility, and is termed tidal subsurface analysis (TSA) (McMillan

et al. 2019). However, the first step towards property quantification is the extraction

of amplitudes and phases of distinct harmonic constituents from measurements that

contain other signals or noise that is not white.

Many different signal analysis methods have been developed, each tailored to the

challenges of specific applications. Generally speaking, the suitability of any particular

methodology depends on the requirements for the spectral analysis (Tary et al. 2014).

One of the oldest and most popular approaches is the Fourier transform, a theorem

stating that any continuous periodic signal can be decomposed into a sum of properly

chosen sinusoidal functions (Stein and Shakarchi 2011). For discrete measurements,

the reformulated discrete Fourier transform (DFT) was introduced and translated into

the fast Fourier transform (FFT), an algorithm designed for computational efficiency

(Nussbaumer 1981). The FFT is implemented in all major software platforms designed

for scientific computations, such as MATLAB, Scientific Python (SciPy) or R, which

allows for easy implementation in data analysis workflows that require signal process-

ing. The FFT has been used in a broad range of scientific fields over many decades

and has therefore been hailed as one of the most important numerical algorithms ever

created (Rockmore 2000).
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With the DFT, the frequency content of a signal is estimated without a priori knowl-

edge. While this can be a major advantage, it comes at significant costs; for example,

estimates of harmonic components are prone to error, especially when their frequen-

cies do not comply with the discretization in the frequency domain which is dictated

by the record length in the time domain. As a result, the decomposition of harmonic

components is influenced by aliasing and spectral leakage (Havin and Jöricke 1994;

Smith et al. 2001; Stoica and Moses 2005). Separating harmonics with nearby fre-

quencies, such as those caused by different constituents (equivalent to components)

of the astronomical tides (McMillan et al. 2019), is difficult to achieve. To overcome

such frequency separation issues, the minimum record duration is estimated based on

the Nyquist theorem (Havin and Jöricke 1994; Acworth et al. 2016).

The presence of data gaps inherent to real-world measurements can complicate the

analysis, because DFT requires a uniform sampling rate. Data gaps are usually filled by

interpolation which adds to the processing steps and can affect the results in undesired

ways (Munteanu et al. 2016). Finally, the magnitude of harmonic components may

be smaller than the sensor resolution, and therefore these components may fall below

detectability (Rau et al. 2019). Despite these limitations, the DFT remains one of

the most popular approaches applied in the geosciences. However, its reliability for

analyzing real-world data sets is often neglected, probably because signal processing

is considered as a stepping stone rather than the research subject.

Many other signal analysis techniques have been developed to overcome the short-

comings of the DFT, such as methods that apply fitting between a model and data based

on minimizing a metric that quantifies the difference; for example, the least squares of

the differences between a signal and a sum of harmonic functions at defined frequen-

cies evaluated at the times at which the signal was sampled. The popular Lomb-Scargle

approach (Lomb 1976; Scargle 1982) falls within this category and was specifically

developed for non-uniformly sampled data (VanderPlas 2018). It has received much

attention and is a well-established tool applied to data sets from across the scientific

disciplines. However, Stoica et al. (2009) illustrated that it does not have any particular

advantages for spectral analysis based on least-squares periodograms (LSP). Further,

the limitations of least-squares-based approaches when analyzing real-world data sets

have not been established.

With signal extraction being a necessary step of TSA, the quality of subsequent

natural property quantification is directly proportional to the reliability and accuracy

of the signal analysis approach deployed. The aim of this paper is to (i) systemat-

ically compare the performance of the DFT with that of a harmonic least-squares

(HALS) approach when estimating amplitudes and phases of harmonic constituents

with known frequencies, and (ii) define practical limits for record duration, sampling

rate, measurement resolution (here termed signal quantization), signal-to-noise ratio

and gap fraction for the reliable extraction of harmonic constituents from real-world

time-series measurements. The results provide important criteria and guidelines for

the types of groundwater data sets that can be analyzed using TSA and for future

groundwater monitoring strategies (Rau et al. 2020b).
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2 Methodology

2.1 Estimation of Harmonic Component Properties

2.1.1 Discrete Fourier Transform (DFT)

In the geosciences the DFT is a commonly applied methodology. The use of the

DFT does not require any primary information about the signal before processing.

If a data set is complete, i.e., regularly sampled in time and without gaps, the DFT

can provide a good estimate of the frequency spectrum. Because of this simplicity,

the Fourier transform is widely used in many scientific fields to extract frequency

information about a process that is not easily accessible in the time domain. The

frequency spectrum can be expressed as follows (Havin and Jöricke 1994; Stoica and

Moses 2005)

Ŷ j =

N−1
∑

n=0

yn(tn) e−i
2π jn

N , j = 0, . . . , N − 1, (1)

where yn are discrete samples at times tn with the time index n; N is the number of

discrete samples; Ŷ j is a complex coefficient at a discrete frequency with index j . The

amplitudes and phases for each identified frequency component can be quantified as

Â j =
2

N
abs(Ŷ j ) =

2

N

√

ℜ(Ŷ j )
2 + ℑ(Ŷ j )

2, (2)

and

φ̂ j = −atan

(

ℜ(Ŷ j )

ℑ(Ŷ j )

)

, (3)

where ℜ and ℑ denote the real and imaginary parts of a complex number, respectively,

and phase values always fall within −π ≤ φk ≤ π .

The reader is reminded that the frequency bins are uniformly spaced, with

f j = j
fd

N
, j = 0, . . . , N − 1, (4)

where fd is the sampling frequency. Further, the frequency resolution ∆ f is the min-

imum interval between each frequency bin of the DFT that can be resolved and is

defined as

∆ f =
fd

N
=

1

τ
, (5)

where τ is the total duration of the time series.

The inverse relationship between the frequency resolution and the total duration of

the time series justifies taking a preferably long data set (i.e., the longer the duration,

the better the DFT resolves the components in the spectrum). Energy from frequency

components whose frequencies lie between bins is distributed to the neighboring bins.

This is referred to as spectral leakage (Havin and Jöricke 1994). Furthermore, the DFT

assumes the input data set to be finite (i.e., a continuous spectrum with one complete
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period of a periodic signal). Periodic continuation of the discrete signal beyond the

considered series duration can lead to discontinuities at the transition (i.e., the two

endpoints of the waveform). These affect our ability to distinguish the frequencies

of the original spectrum using DFT, as they appear in the spectrum as additional

high-frequency components. This well-known effect was minimized by multiplying

the time record with a Hanning window (Fig. 1h), which tapers the magnitude at the

beginning and at the end of a finite-length record towards zero and therefore prevents

discontinuities. While many different window shapes exist, the Hanning window is

often used to reduce interference from leakage (Harris 1978). For a comprehensive

discussion of the DFT please refer to relevant signal analysis literature, for example

Smith (2007).

2.1.2 Harmonic Least Squares (HALS)

The harmonic least-squares method for amplitude and phase estimation (HALS) is

an optimization approach which aims to minimize the sum of the squared residuals

between a model combining harmonics with known frequencies and some discretely

measured data points (Stoica and Moses 2005) and is defined as follows

min
ak ,bk

N−1
∑

n=0

[

y(tn) −

K
∑

k=1

[ak cos (ωk tn) + bk sin (ωk tn)]

]2

. (6)

Here, N is the number of discrete samples, y(tn) is the value of a sample at time tn
and K is the total number of tidal constituents k with angular frequency ωk = 2π fk .

By adding up the harmonics (K ), multiple tidal constituents, such as those found in

groundwater measurements (see Table 1), are taken into account. The sample timings

y(tn) in Eq. 6 are much more flexible compared to the requirement for equally spaced

samples yn(tn) in Eq. 1. The solution to this minimization problem can be simply

obtained by solving a system of linear equations for the coefficients ak and bk . It is

worth noting that the solution can be affected by numerical errors that arise from the

limited precision of the arithmetic operations performed by standard computers.

The coefficients ak and bk are converted into amplitude

Âk =

√

a2
k + b2

k , (7)

and phase

φ̂k = atan

(

ak

bk

)

, (8)

with phase values always within −π ≤ φk ≤ π .

2.1.3 De-trending of Records

Both DFT (Eq. (1)) and HALS (Eq. (6)) work best when a signal can be approximated

by a summation of harmonic components and white noise. Most real-world ground-
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Fig. 1 A workflow for the systematic generation and analysis of the synthetic signal data set. In sub-figure

(h), the windowed de-trending function is applied to a non-uniformly sampled input signal (black dots). The

resulting trend (green line) is subtracted from the original signal to get the de-trended signal (green dots).

The grey vertical bars illustrate the missing samples for a time series with a TGP of 0.2, while the change in

sampling frequency fs is shown in the second plot below. Finally, at the bottom, the HALS analysis results

for three frequencies and their deviation from the true value (grey broken line) are shown

water head measurements contain components with random but longer periods and

higher magnitudes compared to the target constituents (Table 1). A de-trend function

should precede application of both methods to improve signal extraction. This was

specifically developed for non-uniformly sampled data. The function fits a linear trend

to the data using least squares (Oliphant 2006) and then subtracts the resulting trend

from the original time series (Fig. 1h). In order to eliminate any frequency components

lower than a specific cut-off value, the de-trending was done in segments by moving

an averaging window with a predefined time length across the record. By defining the
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Table 1 Overview of the main tidal constituents reported in groundwater head measurements (Merritt 2004;

McMillan et al. 2019), their frequency spacing and minimum required record length to resolve harmonic

properties. The latter is calculated for the two closest constituents (top to bottom), using Eq. (5), with the

frequency spacing being the frequency resolution

Tidal constituent (K ) Period [d] Frequency ( fk ) [cpd] Spacing (∆ fk ) [cpd] Min. duration (τ ) [d]

Q1 1.1195 0.89324

O1 1.0758 0.92954 0.0363 27.55

M1 1.0347 0.96645 0.0369 27.09

P1 1.0027 0.99726 0.0308 32.46

S1 1.0000 1.00000 0.0027 364.96

K1 0.9973 1.00274 0.0027 364.96

N2 0.5274 1.89598

M2 0.5175 1.93227 0.0363 27.56

S2 0.5000 2.00000 0.0677 14.76

K2 0.4986 2.00548 0.0055 182.48

Lunar 27.5542 0.03629

Solar 365.2425 0.00274

window size in terms of a time length instead of a number of samples, this approach

works well for non-uniformly sampled time series. The approach acts as a high-pass

filter, where the cut-off frequency ( f ≥ 0.2 cpd) was selected to preserve the target

tidal frequencies ( fk > 0.89 cpd). Boundary effects were reduced by defining the

window step size as a fraction of its own size, resulting in a window overlap. Here,

a window size of 5 d with an overlap of 3 was chosen as a compromise between an

effective high-pass filter and reasonable computing times. De-trending can be opti-

mized by reducing the window size (i.e., by approximating the cut-off frequency to

the smallest fk) and increasing the overlap (i.e., by smoothing the de-trending curve).

In the present case, the high-pass filter removes all trends caused by constituents with

a period d ≥ 5, whereby all the tidal constituents sought are retained in the signal. For

availability of this de-trending function please refer to the acknowledgements.

2.2 Characteristics of Tidal Constituents

The frequencies of astronomical tides are measured in cycles per day (cpd) and have

been well documented in the literature (Agnew 2018), including their impact on

groundwater systems (Merritt 2004; McMillan et al. 2019). Table 1 shows the fre-

quencies of significant constituents that have been reported in the literature (Merritt

2004; McMillan et al. 2019) and will therefore be used in this analysis.

A major challenge for TSA is the fact that tidal constituents are buried in many other

signals. Further, the frequencies of tidal constituents embedded in groundwater head

measurements can be quite close. Table 1 illustrates the frequency spacing between

the two closest components and the theoretically required minimum record duration

to resolve the respective peaks using Eq. (5). Acworth et al. (2016) demonstrated
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that M2 and S2 have the highest information content, making them the most useful

constituents that can be resolved with a uniformly sampled groundwater level record

of just 15 days. However, separating other constituents such as P1, S1 and K 1 would

require a record length of 1 year. The uniformly spaced frequency resolution of the

DFT presents a particular challenge when identifying and resolving tidal constituents

(Table 1), for two reasons: (i) it is impossible to find a record duration which is a

multiple of all the estimated frequencies, and (ii) it is impractical to limit the analysis

to a defined record duration. Despite these shortcomings, the DFT is commonly used

(Acworth et al. 2016; Allègre et al. 2016; Xue et al. 2016; Rau et al. 2018; Qu et al.

2020). It is suggested that HALS would be a better solution since the problem is

well-posed because the desired tidal frequencies are known.

2.3 Synthetic Data Set for Method Testing

To compare and analyze the performance of DFT and HALS in extracting harmonic

tidal constituents, synthetic signals were generated with the following form

y(t) =

K
∑

k=1

Ak sin(2π fk t + φk). (9)

Here, t is time, and Ak and φk are the amplitude and phase of each mode k, with values

drawn at random from uniform distribution UA[0.1, 10] and Uφ[−π, π ], respectively.

The synthetic signal S consists of K = 12 superposed sinusoidal modes which rep-

resent typical tidal constituents that have been documented in the literature and are

summarized in Table 1 (Merritt 2004; McMillan et al. 2019). Moreover, white noise

was added to the signal in Eq. (9) such that

y(t) = S + Cµ, (10)

where

C =

√

Psignal

SN R
. (11)

Here, C is a scaling factor and µ is a Gaussian distributed random variable with

zero mean and unit standard deviation [N (0, 1)]. The scalable noise term in Eq. (10)

defines the noise level of the signal and was calculated based on the total signal power

Psignal and the signal-to-noise ratio SN R = {1, 10,∞}. To express the power ratio

between signal and noise (SN R) more conveniently, a logarithmic decibel (dB) scale

was chosen such that

d B = 10 lg
Psignal

Pnoise

. (12)

Thus, a signal with d B = 0 corresponds to a power ratio of 1.

A set of 900 synthetic signal realizations was generated from Eq. (10) (Fig. 1), based

on 100 different signal combinations S from Ak and φk in Eq. (9), while additionally

considering three random noise realizations for every given SN R in Eq. (11). The
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Table 2 Overview of the signal parameters and their set of values used to generate synthetic time series

representative of groundwater head measurements

Parameter Symbol Unit Value range

Amplitude A mm [0.1, 10]

Phase φ rad [−π, π ]

Signal-to-noise ratio SNR [–] {1, 10,∞}

Record duration τ d {10, 20, 30, . . . , 180}

Sampling frequency fs d−1 {4, 6, 12, 24, 48, 96, 144, 288}

Gap proportion TGP [–] {0, 0.05, 0.1, . . . , 0.95}

Total length N n [40, 51840]

Quantization q mm {0.1, 0.5, 1, 5, 10}

random noise was generated separately for every signal realization. The resulting data

set was then systematically sampled at a frequency fs over a record duration τ with

a total gap proportion (TGP) and quantization q to create 1,860 time series for each

element of the set. The complete parameter space is defined in Table 2. In total, the data

set consists of 1,674,000 time-series realizations that were generated and analyzed. The

different time-series configurations are designed to represent real-world groundwater

head measurements and can be broadly classified as:

i uniformly sampled time series, and

ii non-uniformly sampled time series that are characterized by missing values at

random locations, resulting in small data gaps.

While all time series with uniform sampling were analyzed by both DFT and HALS, the

analysis of the non-uniformly sampled time series was limited to HALS. It should be

noted that the latter configuration is representative of most time-series measurements in

groundwater monitoring. The gaps are caused, for example, by temporarily removing

the logger for maintenance purposes or by replacing it due to failure (Rau et al. 2019).

For the synthetic time series under consideration, these gaps were created by removing

sample points from the uniformly sampled time series of the signal at random locations

and of different sizes (Fig. 1e). For this purpose, a similar approach as in Munteanu

et al. (2016) was chosen, whereby the gap size distribution was defined by a gamma

function, so that

f (x, α, β) =
xα−1 × exp {−x

β
}

β × Γ (α)
, x > 0;α, β > 0 (13)

where α and β are the shape and scale parameter of the gamma probability density

function (PDF), respectively. The actual probability of each gap size P(s) was con-

trolled by drawing both mean (x̄ = α × β) and variance (s2 = α × β2) of the gamma

function at random from a uniform distribution Ug[1, 5]. Each gap size probability

was then scaled by the TGP, which represents the total number of points removed

from the time series and is defined as a proportion of the original number of sampling
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points N . Thus, the total number of gaps G of a certain size s that are removed from

the signal at a random location x as successive samples (ng = [nx , nx+s)) can be

described as follows

G(s) =
P(s) × T G P

s
× N , (14)

where the resulting real number was rounded to the nearest integer value. The overlap

of the randomly created gaps is minimized while

N − (G × 2) −
∑

ng > 0, (15)

by only selecting gap locations that are buffered by at least one sample value on

either side of the gap. Non-uniform sampling was limited to fd = {6, 12, 24, 48} and

τ = {60, 120, 180} to minimize the computational load while sampling representative

time series at the lower end of N .

In practice, every measurement device has a limited resolution, which leads to a

rounding effect on the digits of the signal magnitude (Fig. 1f). In signal theory this is

referred to as quantization, and the approximation leads to a small error. This effect

was considered by applying a uniform quantizer Q to each discrete time series, which

can be expressed using a floor function

Q(x) = q ∗
⌊ x

q
+

1

2

⌋

, (16)

where x is a real number and q is the quantization step size. The floor function returns

the greatest integer that is less than or equal to the enclosed term. Thus, for q = 1, the

quantizer is simply rounding to the nearest integer. The quantization range represents

the range of groundwater pressure transducer resolutions that are found on the market

(Rau et al. 2019).

2.4 Description and Analysis of Field Measurements

The two signal processing methods were further applied to real groundwater head

measurements from two boreholes at different locations, which are representative of

frequently occurring subsurface and measurement conditions:

– Borehole BLM-1 is located in Inyo County (California, USA) at the latitude

36.408130◦, longitude −116.471360◦ and height of 688 m (WGS84). The well

is screened in a carbonate rock aquifer at a depth of 884 m below land surface

with a screen length of 106 m. The groundwater heads were measured between

25 June 2009 22:00:00 [UTC] and 12 December 2009 16:30:00 [UTC], using a

high-quality gauge transducer manufactured by In-Situ Inc. (USA). The data set

comprises 16,683 data points sampled every 15 minutes (96 samples per day), with

no missing values. This data set shows an unusually strong Earth and atmospheric

tide influence and thus is an ideal case for investigating the impact of Earth and

atmospheric tides on groundwater systems (Rau et al. 2020a).
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Fig. 2 Groundwater head measurement time series from a borehole BLM-1 (Inyo County, CA, USA) and

c BH3 (Baldry, Australia) and the de-trended time series in b and d, respectively

– Borehole BH3 is located in Baldry (New South Wales, Australia) at the longi-

tude −32.868088◦, latitude 148.536771◦ and height of 450 m (WGS84). The well

is screened in a fractured rock aquifer below a confining layer of silt at 20 m

depth with a screen length of 1 m (Acworth et al. 2016). The groundwater heads

were measured between 24 October 2003 01:00:00 [UTC] and 15 February 2016

20:00:00 [UTC], using a high-quality gauge transducer manufactured by In-Situ

Inc. (USA). The data set comprises 107,948 measurements sampled hourly (24

samples per day) over 4,497.8 days, with no missing values. This unusually long

continuous data set provides an ideal test bed for achieving high-frequency res-

olution (here 10−4 cpd) when the DFT is used, resulting in sharp peaks in the

frequency spectrum and reliable identification of closely spaced frequency com-

ponents. The DFT spectrum for this data set was shown in McMillan et al. (2019).

Figure 2panels (a) and (c) show the groundwater head records measured over dif-

ferent time periods at each location. The amplitude and phase of the estimated tidal

constituents are considered stationary for both borehole data sets and thus represent

the integrated average of the function of the true values over the interval given by the

length of the data sets.

The accuracy of DFT and HALS in quantifying harmonic constituents was analyzed

and compared in the following way:

(a) The model of both methods was trained on the first 75% of each data set. Thus, the

model was trained on 12,512 and 80,961 samples for BLM-1 and BH3, respec-

tively. To evaluate the performance of each method, the error variance of the

residual between model and measurements was calculated.
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(b) For the DFT, the modeled signals were calculated using only the frequency bins

closest to the tidal frequencies. The other bins in the spectrum were discarded

to exclude artifacts originating from the de-trending or from noise and also to

increase practicability.

(c) Both models are validated on the remaining 25% of each data set by calculating

the variance of the residual between each model prediction and the corresponding

measurements. Thus, the validation was based on 4,171 and 26,987 samples for

BLM-1 and BH3, respectively.

The error variance σ is determined by

σ =
1

N
|M − D|2, (17)

where the vectors M and D contain the modeled and de-trended signal, respectively.

Comparing the error variance of the residual allows for a quantitative assessment of

model performance, whereby a smaller variance indicates better performance.

3 Results and Discussion

3.1 Comparison of DFT and HALS

When applying TSA, an accurate assessment of amplitudes and phases of the con-

stituents M2 and S2 is particularly important in order to derive reliable subsurface

properties. The efficacy of both the DFT and HALS methods was evaluated as a func-

tion of the detection accuracy, with results shown in Fig. 3. The direct comparison was

limited to time series with τ ≥ 30 days. Since the true parameter value is known, the

accuracy was defined in terms of the relative error RE as

RE A =
| Â − Atrue|

Atrue

, (18)

and

REφ =
|π − ||φ̂ − φtrue| − π ||

|φtrue|
, (19)

with the nominator in Eq. (19) taking into account that the maximum distance between

two phases is π . A target value (TV) of 10% relative error was defined as the maximum

acceptable relative error (i.e., results with a RE less than 10% are regarded as suffi-

ciently accurate). While this is an arbitrary threshold, it is a small value compared with

the compound uncertainties typical of active hydraulic investigations that are standard

in hydrogeology (Raghavan 2004). It should be noted that the RE distribution of both

methods is strongly right-skewed. In Fig. 3 this is evident from the off-centered median

value and interquartile range. In order to take account of the skewness in the data and

to give less weight to outliers, the mean relative error for each grid cell in Figs. 4, 5, 6

and 7 was calculated using the log-transformed RE values. The result was inverted

again for better readability.
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Fig. 3 Comparison of the two signal analysis methods HALS and DFT for τ ≥ 30 days in estimating the

a amplitude and b phase of the target constituent M2 and S2, respectively. The boxes are the interquartile

range (IQR), with the black horizontal line denoting the median of all calculated RE values. The whiskers

extend to 1.5 ∗ I Q R, and the black dots are outliers. Note that a is plotted on a symmetric log scale with

base 100 and linearly increasing values between 0 and 100

Overall, 86% and 62% of ÂM2, and 95% and 90% of φ̂M2 were below the TV for

HALS and DFT, respectively, whereas only 76% and 18% of ÂS2, and 86% and 40%

of φ̂S2 were below the TV for HALS and DFT, respectively. Thus, both methods are

consistently more accurate in estimating the M2 properties compared to S2.

The outliers for RE A estimates of the HALS method compared to a narrow and

low interquartile range in Fig. 3 indicates that the accuracy of the HALS estimation

deteriorates under certain boundary conditions, while it stays robust for most of the

investigated signal and sampling parameter range. While HALS clearly outperformed

the DFT in simultaneously estimating amplitudes and phases of the tidal constituents,

the estimation routine requires proper constraints (see Sect. 3.6). In contrast to the

DFT method, in which the maximum of Â is limited by the signal power, HALS is an

optimization problem that minimizes the residuals and thus has no reasonable inherent

constraint on Â. Instead, the goodness of fit depends on the polynomial order (i.e.,

the degrees of freedom) given by the number of estimated constituents, but also on

the record duration and the frequency separation of the estimated constituents. The

poor performance of DFT in estimating the S2 properties, on the other hand, is likely

due to spectral leakage from other nearby frequencies, for example S1, M2 and K 2

(Table 1). The method’s ability to discern nearby frequencies is strongly limited by the

frequency binning, which depends on sample frequency and record duration, which

is further analyzed below.

3.2 Practical Data Set Requirements for Detecting Harmonic Properties

When assessing whether a data set of measurements is suitable for TSA, record dura-

tion τ or sampling frequency fs are used as indicators in practice because they are
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Fig. 4 Effect of sampling frequency and record duration on the mean accuracy of both HALS (top) and

DFT (bottom) in estimating the amplitude (a, c,e, g) and phase (b, d, f, h) of the two target constituents

M2 and S2

easy to determine and related to criteria such as the Nyquist-Shannon sampling the-

orem. Figure 4 shows the interrelated effect of fs and τ on both RE A and REφ for

HALS and DFT, respectively. HALS can reliably extract the constituents phase and

amplitude at fs ≥ 6 n/d, while not exceeding the TV of 10% relative error. Only for

τ < 50 d, the sampling frequency increasingly becomes an issue in determining ÂS2

(Fig. 4c) and should be taken into consideration. In essence, τ and fs are inversely

correlated for τ < 50 d, and fs needs to be increased if M2 and S2 are to be reliably

detected. Figure 4 shows that even if fs = 288 d−1, the absolute minimum duration

for records analyzed with the HALS method is 20 days.

A detection trade-off between τ and fs was not discernible with the DFT method.

This is in accord with the well-known fact that the DFT frequency resolution depends

on record duration. Instead, the detection accuracy increased with the length of the

record only. Further, the DFT method appears much less robust compared to HALS,

and it is not possible to determine a minimum criterion for RE A within the realistic

constraints given by our analysis. Acworth et al. (2016) suggested that records as short

as 16 days could be used to resolve the properties of S2 and M2, based simply on

considering the Nyquist-Shannon theorem (Table 1). However, our analysis clearly

demonstrates that under realistic measurement conditions, the presence of additional

tidal constituents renders this limit impossible.

3.3 Effect of Measurement Resolution and Noise Level

The influence of measurement resolution and noise level on the accuracy of HALS

is shown in Figs. 5, 6 and 7. In order to facilitate a comparison of the effect of the

quantization step size q on the accuracy of the amplitude estimate RE A across all time

series, q was normalized by the amplitude Ak of the constituent of the signal under

consideration, namely M2 and S2, such that
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Fig. 5 Effect of sampling frequency and record duration on the mean accuracy of HALS in estimating the

amplitude of M2 (a–c) and S2 (d–f) for different ranges of normalized quantization

Fig. 6 Effect of sampling frequency and record duration on the mean accuracy of HALS in estimating M2

amplitude (a–c) and phase (d–f) for three different noise levels

qk =
q

Ak

k ∈ {M2, S2}. (20)

The resulting quantization ratio qk thus reflects the relative influence of the rounding

error introduced by q on the identifiability of the constituent k, which depends on the

magnitude of k itself.

From Fig. 5 it becomes apparent that the effect of the sample parameters τ and

fs on the detection accuracy changes with the qk . In fact, as qk increases, there is a

clear dependency between the accuracy and both sample parameters. For qk < 2.0,

the minimum sample criteria for HALS are identical to the previously determined

limits (Fig. 4). In other words, the quantization step size should be less than twice the

amplitude of the constituent under consideration, without impairing the accuracy of

the method. Conversely, at higher values of qk , the minimum sample criteria need to

be adapted for a reliable estimate, even more so for ÂS2. An increase in the sampling

rate seems to be particularly effective here. In practice, the actual measurement reso-

lution that can be achieved is of course limited, which is why this relationship is not

transferred to arbitrarily small amplitudes Ak ≪ 0.1 mm.
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Fig. 7 Effect of sampling frequency and record duration on the mean accuracy of HALS in estimating S2

amplitude (a–c) and phase (d–f) for three different noise levels

A similar overall tendency in the effect of the sample parameters on detection

accuracy was observed for a change in noise level. With an increasing level of noise, the

sampling criteria require adjustment. In contrast to qk , however, accurate estimates for

the properties of both target constituents are feasible even at the highest investigated

noise levels of 0 dB. Furthermore, for a noise level approaching zero (db = ∞),

HALS is effectively limited by the accuracy of the S2 estimate requiring fs ≥ 6 d−1

and τ ≥ 20 (Fig. 7).

3.4 Effect of Non-uniform Sampling on HALS Performance

One of the main advantage of the HALS method is that non-uniformly sampled data

records can be analyzed directly without further preprocessing steps. The performance

of the HALS method in estimating the target constituent properties for time series with

increasing TGP is presented in Fig. 8, as the fraction of estimates with a relative error

below the aforementioned TV of 10% (RE < 10%). On average, 72% and 70% of all

Â and 86% and 85% of all φ̂ met the TV criteria for M2 and S2, respectively. Thus,

the HALS method performs well in extracting the target constituent properties for

the majority of the investigated time series, even with gaps. However, the fraction of

estimates that meet the TV criteria are highly dependent on the TGP, which is apparent

from a sharp decrease in accuracy at T G P ≈ 0.5. This is especially the case for the

amplitude estimates (Fig 8a). For T G P < 0.5, on the other hand, the estimates are

highly reliable, with about 79 ± 25% and 94 ± 15% of all RE A and REφ meeting

the TV criteria, respectively. Thus, the general dependency of the estimation accuracy

on the TGP is much less pronounced for the phase (Fig. 8b). However, the standard

deviation indicates that the accuracy of the estimate at any given gap proportion can

deviate, depending on the underlying signal realization.

Furthermore, the effect of the gap proportion on the accuracy of the estimate is

again dependent on the sampling of the time series (Fig. 9). Data gaps decrease the

effective sampling rate, so that even for a T G P < 0.2, the minimum sampling criteria

are slightly more strict than for a time series without gaps. It should also be noted that

while the average gap size is controlled by the gamma function (Eq. (13)), once Eq. (15)
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Fig. 8 Effect of small gap proportion on the performance of HALS in estimating amplitude (a) and phase

(b) of the two target constituents M2 and S2. The performance is evaluated in terms of the fraction of time

series where the relative error is below the TV (RE < 0.1). The vertical bars indicate the standard deviation

for the different signal realizations

Fig. 9 Effect of sampling frequency and record duration on the mean accuracy of HALS in estimating

the amplitude of M2 and S2 combined, for different gap proportions. The mean accuracy was explicitly

indicated for values of RE > 0.2

is violated, the average gap size increases dramatically due to the aggregation of smaller

gaps. Thus, the observed steep decrease in estimation accuracy above T G P ≈ 0.5

can be partly attributed to the emergence of ever larger gaps.

Groundwater head measurements are generally made at regular intervals, but often

contain small, randomly distributed gaps, with the TGP remaining well below the

critical 50% (Rau et al. 2019). While these gaps are usually interpolated as a prepro-

cessing step for the DFT method, this not only adds an extra step to the data analysis,

but also increases the uncertainty of the parameter estimation. The previous analysis

shows that HALS, on the other hand, makes interpolation superfluous and works con-

sistently well for records with small gaps, providing another advantage for HALS as

a standard approach to extracting harmonic constituent properties.
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Fig. 10 Comparison of the amplitudes and phases determined by the DFT and HALS for a the BLM-1 data

set from Inyo County (California, USA) and for b the BH3 data set at Baldry (New South Wales, Australia).

The grey lines represent the differences between the DFT and HALS estimates. Note that the amplitude

scale is logarithmic for improved visibility

3.5 Comparing the Performance of DFT and HALS Using Groundwater Level

Measurements

Both methods were tested on the real-world groundwater head measurements

described in Sect. 3.2. Figure 10 shows the amplitude and phase estimates obtained

for all tidal constituents and both data sets. A comparison of the two data sets clearly

shows that the record length in particular has a major impact on the estimation accu-

racy. Indeed, the two methods result in rather different Â estimates for the short data

set (Fig. 10a), while they give almost identical Â estimates for the longer data set

(Fig. 10b). However, it is also interesting to note that the results for some of the con-

stituents are consistently very close, while others differ significantly. For example, the

determined ÂS2 and φ̂S2 are in compliance with each other for both DFT and HALS

and in both data sets. On the other hand, ÂK 2 and ÂS1 in the BLM-1 data set are rather

different for the two methods. These differences are mainly due to spectral leakage

inherent to the DFT. This means that the energy of tidal constituents with nearby

frequencies, for example, K 1 and S1, are contained within the same frequency bin,

especially for records with shorter duration (e.g., BLM-1), leading to an inaccurate

frequency resolution. In this regard, the ability of HALS to model specific frequencies

generally provides a better performance.

Figure 10 qualitatively illustrated that there can be significant differences in the

amplitudes and phases detected using DFT or HALS. When used to characterize

groundwater systems based on TSA, this can lead to erroneous interpretations. For

example, Hsieh et al. (1987) used the DFT to extract amplitudes but then calculated

phases using a HALS-like approach. Figure 10 and the synthetic data analysis indicate
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Fig. 11 Residuals calculated by applying the DFT (a, c) and HALS (b, d) to the real-world groundwater

head measurements from boreholes BLM-1 (a, b) and BH3 (c, d). The model for both methods was trained

on the first 75% of the record and validated using the remaining 25% (grey-shaded). Error variances were

calculated for the training and the validation periods and are listed in Table 3

Table 3 Summary of the training and validation of the DFT and HALS models for both real-world ground-

water head measurements. The values represent the error variance calculated for each subset of the data

depicted in Fig. 11

BLM-1 BH3

Training Validation Training Validation

DFT 9.99 · 10−4 1.09 · 10−3 3.93 · 10−4 3.55 · 10−4

HALS 1.56 · 10−4 4.62 · 10−4 2.87 · 10−4 2.97 · 10−4

that this could be inconsistent. Further, the synthetic data analysis clearly shows that

HALS provides more accurate results for real-world groundwater records.

Figure 10 begs the question of which method is more accurate in resolving har-

monic component properties. To answer this question, the prediction accuracy of each

method was analyzed and compared on the basis of the error variance of the model

residuals. The results are summarized in Fig. 11 and Table 3. Overall, the variance of

the residuals between model and measurements is small for HALS compared to DFT.

Of course, this should come as no surprise, as minimizing the residuals is inherent

to the least-squared method, and it is clearly superior in this regard. Nevertheless, it

also reflects the earlier results that were obtained by testing the methods with synthetic

data and demonstrates that HALS performs better in quantifying the properties of tidal

constituents. Furthermore, the model residuals of the validation data (Fig. 11), and thus
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the error variance (Table 3), are higher for the DFT than for the HALS method. This

is particularly pronounced for the short data set, where the DFT residuals also contain

prominent oscillations (Fig. 11a). These oscillations are a result of the spectral leakage

stemming from the discrete and fixed frequency resolution inherent to the DFT. Fig-

ure 11panels (c) and (d) show that the residuals of both methods become more similar

as the length of the data set increases. Thus, as the frequency resolution of the DFT

increases, the spectral leakage is reduced, which leads to an improved ability to detect

harmonic components. In contrast, the HALS model residuals are consistently low,

indicating that it is more accurate in resolving the harmonic components contained in

both records.

3.6 General Considerations for the Use of HALS

The analysis presented in this work demonstrates that HALS is superior to the DFT

when extracting tidal constituents from realistic groundwater head measurements.

While the minimum record duration required to distinguish components appears lower

compared to the DFT, it is still the most significant constraint for HALS. It is important

to note that Eq. 6 is an optimization problem where the solution can be affected by

the limited precision of arithmetic computations, leading to compounded numerical

errors. The risk of this occurring increases with decreasing record duration, where a

solution can become ill-conditioned. For example, the combination of closely spaced

frequency components and short duration records will lead to similar values in the

columns of the linear system of equations that is to be solved. This can degrade the

accuracy of the solution and lead to overall biased estimates.

Similar to the DFT, there is a trade-off between record duration and minimum

frequency spacing for the components determined by HALS (i.e., the smaller the

frequency spacing, the longer the record duration must be). To determine whether

the solution is ill-conditioned, the conditioning number can be evaluated. This is the

ratio of the maximum and minimum singular values of the matrix in the least-squares

problem (Eq. 6) and should not exceed a large number, such as 108 (i.e., depending on

the computing environment). If a system becomes ill-conditioned, a solution would be

to reduce the number of desired tidal constituents. For example, tidal constituents P1,

S1 and K 1 (Table 1) could first be unified into one harmonic component, as they are

closely spaced. Constituents S2 and K 2 are the next closest components that could be

merged if the previous merger does not improve the conditioning. For TSA, however,

the two components M2 and S2 are of primary interest, which is why an analysis with

HALS only makes sense as long as the properties of both can be reliably extracted.

4 Conclusions

The systematic analysis and comparison of the methods revealed that the harmonic

least-squares (HALS) approach is very robust and outperforms the discrete Fourier

transform (DFT) in extracting the amplitude and phase of harmonic constituents of

known and closely spaced frequencies from time-series measurements. Only for rather

short data sets can the variance of the least-squares amplitude estimate increase signif-
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icantly. The analysis focused on distinguishing the closely spaced frequencies of the

Earth and atmospheric tidal constituents M2 (1.93227 cpd) and S2 (2.0 cpd). Both are

generally present as dominant constituents in barometric and groundwater pressure

measurements and can be used to quantify subsurface properties. As a benchmark

of accuracy, an average relative error of 10% was considered to be acceptable when

estimating tidal constituent amplitudes and phases.

It is well known that the DFT frequency domain resolution increases with longer

duration of a time series and remains independent of the sampling frequency fs . For

HALS on the other hand, an accurate estimate of the S2 amplitude requires fs to

increase as τ decreases. This effect was slightly less pronounced for the amplitude

estimate of M2. Furthermore, the results of this study suggested that an absolute

minimum record duration of at least 20 days is needed for resolving the properties

of both constituents M2 and S2 at more than 24 n/d (for a normalized measurement

resolution below 2). However, fs should not be lower than 6 n/d, unless the noise level

approaches zero (SN R = ∞). In the case of SN R = ∞, HALS can exceed these

sampling limitations, in particular when determining the properties of M2. However,

this scenario is unlikely in practice, as environmental measurements are generally

noisy.

The synthetic data analysis further included noise and signal resolution, factors

that represent the characteristics of measurement hardware used in environmental

sensing such as groundwater pressure. As expected, increasing noise levels degrade

the detection of harmonic properties, but more so for amplitudes than phases. Even

a noise level of 0 dB, which is considered very high for standard sensors, resulted

in excellent HALS performance. Furthermore, sensor resolution (here simulated as

signal quantization) also degraded the performance. However, results illustrated that

a quantization ratio below 2.0 (i.e., quantization normalized by the amplitude of the

target constituent) is recommended.

Finally, the influence of small data gaps inherent to real-world data sets was ana-

lyzed. The results demonstrated that the accuracy of the HALS method in detecting

the harmonic constituents was reliable as long as the TGP remained below 50%. This

relatively high threshold is one of the main advantages of the HALS method, which

makes further preprocessing steps such as interpolation or resampling superfluous.

The superiority of HALS was further underpinned by a comparison of amplitude and

phase estimates from two different real-world groundwater head records.

The analysis presented herein suggests that when applying tidal subsurface analysis

(TSA) (McMillan et al. 2019), HALS should be used instead of DFT. In combination,

these approaches provide a powerful tool for groundwater resource investigations. The

results establish practical criteria which can be used to determine the suitability of

existing groundwater head records for TSA. In addition, recommendations for future

groundwater monitoring strategies can be derived, with which the accuracy of the

passive characterization can be maximized (Rau et al. 2020b).
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