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In biomarker-disease association studies, the long-term average level of a biomarker is often considered the
optimal measure of exposure. Long-term average levels may not be accurately measured from a single sample,
however, because of systematic temporal variation. For example, serum 25-hydroxyvitamin D (25(OH)D) concen-
trations may fluctuate because of seasonal variation in sun exposure. Association studies of 25(OH)D and cancer
risk have used different strategies to minimize bias from such seasonal variation, including adjusting for date of
sample collection (DOSC), often after matching on DOSC, and/or using season-specific cutpoints to assign sub-
jects to exposure categories. To evaluate and understand the impact of such strategies on potential bias, the
authors simulated a population in which 25(OH)D levels varied between individuals and by season, and disease
risk was determined by long-term average 25(OH)D. Ignoring temporal variation resulted in bias toward the null.
When cutpoints that did not account for DOSC were used, adjustment for DOSC sometimes resulted in bias away
from the null. Using season- or month-specific cutpoints reduced bias toward the null and did not cause bias away
from the null. To avoid potential bias away from the null, using season- or month-specific cutpoints may be
preferable to adjusting for DOSC.

biological markers; epidemiologic measurement; seasons; vitamins

Abbreviations: DOSC, date of sample collection; 25(OH)D, serum 25-hydroxyvitamin D.

Measurement error is an important problem in epidemi-
ologic studies of the association between a biomarker and
disease (1). Disease risk may plausibly depend on an indi-
vidual’s long-term average level of a biomarker. Therefore,
we assume that the disease risk is determined by the bio-
marker’s long-term average level, referred to as the true
level in this paper, and we consider it to be fixed for each
individual. In some circumstances, temporal factors may
influence short-term levels of the biomarker, so that a given
single measure may not adequately represent long-term lev-
els. For example, serum 25-hydroxyvitamin D (hereafter
referred to as 25(OH)D) concentrations fluctuate because
of seasonal variation in sun exposure (2). In large epidemi-
ologic studies, often only one biomarker sample is available

for each subject, and samples from different subjects are
collected on different dates (e.g., in different months or
seasons). If a single measured level is used to reflect the
long-term average, measurement error is likely. For in-
stance, subjects whose samples happened to be collected
during the winter rather than the summer may be misclassi-
fied into low-level 25(OH)D categories.

Researchers have used different analytic strategies to ad-
dress the problem of measurement error caused by temporal
variation when only one sample is available per subject. In
nested case-control studies of the metabolic precursor of
vitamin D, some researchers matched on (and adjusted
for) date of sample collection (DOSC) but did not account
for DOSC when creating 25(OH)D exposure categories
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(3, 4). Other researchers did not match or adjust for season of
blood collection but used season-specific cutpoints to assign
subjects to quartiles of 25(OH)D based on the season of the
subject’s sample collection (5). Yet others both matched on
(and adjusted for) DOSC and used season-specific cutpoints
to create categories (6).

To our knowledge, the impact of these different strategies
on bias has not specifically been examined, and sometimes
more than one of the above strategies was adopted in one
study (7, 8). In particular, the rationale and impact of adjust-
ing for DOSC deserves close examination. Prospectively,
DOSC will generally not be associated with later disease
risk and therefore would not usually be considered a con-
founding factor in nested case-control studies. However, it is
known that if factors that influence nutrient levels are not
taken into account, misclassification of the exposure may
occur. If such a factor is not associated with disease, it
contributes to random misclassification and attenuates any
true biomarker-disease associations (9).

The purpose of this paper is to investigate the potential
impact on bias associated with selected analytic strategies
used in recently published studies to account for temporal
variability in biomarker levels. We do not address impacts
on statistical efficiency. We carried out simulations to explore
whether adjustment for DOSC reduced bias, using the odds
ratio as the measure of association between 25(OH)D (as an
example of a biomarker that exhibits seasonal cyclic patterns)
and a binary disease outcome. In addition, we compared var-
ious schemes of categorizing 25(OH)D that did, or did not,
account for DOSC. Matching cases and controls on DOSC
rather than just adjusting for DOSC is often used in epidemi-
ologic studies. However, we focused on adjustment for
DOSC in our simulations, without using matching, because
matched selection of cases and controls (followed by appro-
priate adjustment for this matching) serves to make adjust-
ment for DOSC merely more statistically efficient and is not
expected to alter the magnitude of odds ratios (10). As noted
below, this expectation was confirmed in selected simulations
using matched selection of cases and controls.

We used 25(OH)D as a specific illustration of a biomarker
with temporal variation, and we chose some of the param-
eters used in the simulations based on studies of 25(OH)D
and its seasonal variation (7, 11–16). The magnitude of sea-
sonal variation from a variety of geographic locations is
generally close to or somewhat smaller than the value of
20 nmol/L (for highest vs. lowest 25(OH)D concentrations
in a year) that we used in our main simulation. In addition,
the results of our simulations could be generalized to other
biomarkers with seasonal variation of varying magnitude
similar to what we simulated for 25(OH)D. It is also possible
that some of the patterns of bias observed in our simulations
could be generalizable, at least qualitatively, to biomarkers
with diurnal variation rather than seasonal variation.

MATERIALS AND METHODS

We used Monte Carlo simulations to evaluate bias in
biomarker-disease odds-ratio estimates, using various ana-
lytic strategies. In these simulations, disease risk was de-
termined solely by the true long-term average level, but

short-term temporal changes affected the measured level.
To make our simulations more concrete, we simulated ex-
posure values that might be realistically observed if we were
measuring serum 25(OH)D in units of nmol/L (1 ng/mL ¼
2.496 nmol/L). Data were generated with SAS version 9.1
software (SAS Institute, Inc., Cary, North Carolina), and
macros are available upon request from the authors. This
section of the paper describes 1) the assumed long-term
average 25(OH)D levels and temporal changes, 2) the as-
sumed effect of 25(OH)D on disease occurrence, 3) the
analytic strategies, and 4) the simulation approach.

Model for individual 25(OH)D levels

Let li be the true long-term average level of 25(OH)D for
subject i that is causally responsible for the effect of
25(OH)D on the disease outcome. We refer to li as the true
level, and we assume it to be fixed for individual i. We also
assume that true 25(OH)D concentrations in our simulated
population follow a log-normal distribution, with a mean of
m and a standard deviation of s.

With seasonal variation, the measured levels will fluctu-
ate around li. Let mi(ti) be the measured 25(OH)D level for
subject i from a single sample collected on calendar date ti;
we express mi(ti) as the sum of 2 terms: the true level li and
the seasonal variation fi(ti),

miðtiÞ ¼ li þ fiðtiÞ:

Here, fi(ti) reflects the effect of temporal factors in terms of
dates in a calendar year on the measured level; that is, this
function of dates models the temporal variation. In our sim-
ulations, we assume that fi(t) ¼ Ai 3 sin(t), where sin(t) is
the trigonometric sine function to reflect sinusoidal changes
over time, where the smallest unit of time in the present
context is marked by dates in one calendar year, and Ai is
the subject-specific amplitude of the variation. As noted in
Table 1, the subject-specific Ai values were simulated by
using a normal distribution. Therefore, in our simulations,
each individual’s 25(OH)D level at calendar date ti is

miðtiÞ ¼ li þ Ai 3 sinðtiÞ:

A sinusoidal function may be a plausible model for tem-
poral variation not only for 25(OH)D but also for some other
biomarkers. We assumed that the DOSC ti for each subject
was uniformly distributed throughout the year and was not
associated with disease risk.

Model for 25(OH)D–disease association

Let pi represent the disease risk for subject i over a certain
time period of interest and pijli the conditional probability
of disease given that the subject’s true 25(OH)D concentra-
tion is li. We assume that the effect of 25(OH)D on disease
risk is specified by the following model:

logitðpij liÞ ¼ aþ b3 ðli � mÞ;

where logit(x) is the logistic function defined as logit(x) ¼
ln[x/(1 � x)] and a specifies the disease risk when the true
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25(OH)D concentration is at the population mean level m.
b is the increase in the log-odds ratio for each standard de-
viation increase in li, and the risk odds ratio is exp(b). For
example, when a ¼ �2.2 and b ¼ �0.22, the risk of dis-
ease is 10% for a true level of li ¼ m, and the disease odds
ratio for each s-unit increase in the true level (e.g., compar-
ing a true level of li þ s with li) is 0.8. We assumed that
the odds ratio associated with each standard deviation in-
crease in li was constant across the range of simulated
25(OH)D concentrations. Note that disease risk does
not depend on the measured level mi(ti), given the true
level li.

We evaluate the situation that may often hold in practice:
just one measured level mi(ti) is available for each individual
and is used (instead of li) to estimate b.

Analytic strategies

To investigate how different analytic strategies impact
bias, we applied several analytic strategies that have been
used in published studies. In most analytic strategies, we
categorized the measured 25(OH)D level into quartiles.
The analytic strategies differed from one another in 2 main
ways: first, how subjects were categorized into quartiles;
second, by whether and how models were adjusted for
DOSC. These strategies are described below. In an addi-
tional analysis, we treated the measured biomarker level
as continuous (no categorization).

Categorizing exposure into quartiles. Subjects were cat-
egorized into quartiles of their measured 25(OH)D concen-
trations by using 3 different approaches. First, we used
overall cutpoints ignoring DOSC and corresponding to the
25th, 50th, and 75th percentiles of measured concentrations
in the entire population. Second, we used season-specific
quartile cutpoints corresponding to the season-specific
25th, 50th, and 75th percentiles of measured levels in the
population among participants who provided a sample in
1 of the 4 seasons (Table 1). Third, we used month-specific
quartile cutpoints corresponding to the month-specific 25th,

50th, and 75th percentiles of measured levels in the popu-
lation within each month.

Adjusting for temporal factors. We assessed the impact
of considering DOSC by using 1 of 3 different analytic
strategies and comparing each model with ‘‘truth’’: 1) no
adjustment for DOSC, 2) adjustment for season of sample
collection, and 3) adjustment for month of sample collection.
The specific models that we fit are given subsequently in
equation 1 (refer to the ‘‘Fitted model’’ section of the text
below). Although DOSC is not a confounder in this situation
because it is not associated with disease risk, some of the
analytic strategies in the literature have included adjustment
for DOSC, presumably to account for the effect of season on
misclassification of the exposure, as previously noted.

Table 2 presents 8 models. Model 1 is a ‘‘gold standard’’
provided by fitting the specified model using the simulated
true long-term average levels. Models 2–8 are based on sim-
ulated measured levels and are different combinations of
approaches to defining quartile cutpoints (overall, season
specific, or month specific) and of adjusting for DOSC (no
adjustment, adjustment for season, and adjustment for
month).

Treating the exposure as continuous. We also simulated
treating the measured level as continuous and fitting the model

logit
�
pij mi

�
¼ logit

�
pij mi

�
ti
��

¼ a* þ b* 3mi

�
ti
�
;

where mi(ti) is the measured value of subject i. Similarly, we
also compared models that adjusted for DOSC.

Model fitting and simulation methods

Fitted model. For each simulation, we fit the logistic
model

logitðpij miÞ ¼ aþ b2 3 di2 þ b3 3 di3 þ b4 3 di4;

where dij takes the value of 1 if subject i is in quartile j, and
0 otherwise. We estimated the bs from fitting the logistic

Table 1. Parameters Used in Simulationsa

Parameter (Notation) Specification and Coding

i Index for each individual subject 1, 2, . . . , 100,000

True levels of 25(OH)D (li) Log-normal distribution with mean l ¼ 65 and standard deviation r ¼ 15

Date of sample collection (ti) for 25(OH)D 4 seasons and 12 months (uniform distribution on 0–2p):

Spring (March–May): 0 < ti � 0.25p (April 16–May 31) or 1.75p < ti � 2p
(March 1–April 15)

Summer (June–August): 0.25p < ti � 0.75p

Fall (September–November): 0.75p < ti � 1.25p

Winter (December–February): 1.25p < ti � 1.75p

Amplitude of temporal variation in measured 25(OH)D (Ai) Normal distribution with a mean of 20 and a standard deviation of 5

Temporal variation in measured 25(OH)D fi (ti) fi (ti) ¼ Ai 3 sin(ti)

Parameters for the model of the association between
25(OH)D and disease (a and b)

a ¼ �2.2, b ¼ �0.22

Odds ratio for every r-unit increase in li Odds ratio ¼ exp(b) ¼ 0.8

Abbreviation: 25(OH)D, serum 25-hydroxyvitamin D.
a Additional combinations of parameters are presented in the Web Appendix (posted on the Journal ’s website: http://aje.oupjournals.org/).
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regression models with SAS (Proc Logistic) software. We
adjusted for season or month in 2 ways:

1. Adding indicator variables for season to the model
statement:

logitðpij miÞ ¼ aþ b2 3 di2 þ b3 3 di3 þ b4 3 di4
þ c1 3 S1 þ c2 3 S2 þ c3 3 S3:

ð1Þ

Here, Sk (the indicator variable for season, where k ¼ 1, 2,
or 3) is 1 if the sample was collected in season k, and 0 other-
wise. Note that the subject index i is implicit for Sk but
omitted for brevity.

2. Adding indicator variables for month to the model state-
ment, analogous to equation 1 to adjust for month.

Simulation strategy. We considered different combina-
tions of the simulation parameters, specified to reflect
common scenarios. Table 1 shows the combination of pa-
rameters for which we present and discuss results in the text.

For each combination of simulation parameters, we gen-
erated a true 25(OH)D level for each of 100,000 subjects.
We then determined the disease status for each subject based
on his or her true 25(OH)D concentration. We compared
a random number between 0 and 1 with the disease risk
calculated from the model for the effect of the biomarker
on disease risk (refer to the ‘‘Model for 25(OH)D–disease
association’’ section of the text above). If the disease risk
was greater than the random number, the disease status of
the subject was considered diseased; otherwise, the subject
was nondiseased. We also generated another random num-
ber between 0 and 2p to represent the DOSC. Without loss
of generality, the interval between 0 and 2p was chosen to
represent 1 year, and the 4 seasons and 12 months were
represented by dividing this interval into 4 and 12 equal
subintervals, respectively. The corresponding indicator var-
iables for the seasons and months were determined by the
subinterval in which the random date was categorized. We

assumed that 25(OH)D levels peaked in midsummer (cor-
responding to 1/2 p) and were lowest in midwinter (corre-
sponding to 3/2 p); therefore, the spring season was split
into 2 parts (Table 1). The measured 25(OH)D level for each
subject was then determined by using his or her true
25(OH)D level and DOSC, according to the model for
25(OH)D levels presented above (refer to the ‘‘Model for
individual 25(OH)D levels’’ section of the text).

Logistic regression models specified above were fit and the
odds-ratio estimates obtained. We repeated the process 1,000
times for each combination of assumed parameters (for each
scenario). In this paper, we present the mean of the 1,000
resulting estimates to approximate the expected bias.

RESULTS

25(OH)D analyzed as a categorical variable

In Table 2, model 1 represents ‘‘truth,’’ the odds ratio for
each quartile of long-term average 25(OH)D level. When
quartiles were created without accounting for DOSC (overall
quartiles) and no adjustment was made for DOSC (model 2),
odds ratios were biased toward the null compared with truth.
In contrast, when overall quartiles were used but models
were adjusted for either season (model 3) or month (model
4) of sample collection, odds ratios were biased away from
the null (odds ratios footnoted in Table 2: associations were
exaggerated compared with truth), although the amount of
bias was not large.

When season-specific quartiles (model 5) or month-
specific quartiles (model 7) were used, bias toward the null
was reduced compared with use of overall quartiles (model
2), and there was no bias away from the null. When season-
specific quartiles (model 6) or month-specific quartiles
(model 8) were used, adjustment for season or month of
blood collection had no effect on results.

Additional scenarios were considered, as indicated in the
Web Appendix (Tables 1–15), and are summarized in Web

Table 2. Simulated Odds Ratios for the Association Between 25(OH)D and a Dichotomous Disease, Using Various Methods of Exposure

Categorization and Adjustment for Date of Sample Collection

Model
No.

25(OH)D Exposure Categorization
Adjustment for Date of

Sample Collection
OR for

Quartile 2
OR for

Quartile 3
OR for

Quartile 4 (High)

1 True levels (‘‘gold standard’’) None 0.806 0.703 0.569

2 Overall cutpoints, measureda None 0.880 0.820 0.680

3 Overall cutpoints, measureda Adjusted for season 0.811 0.700b 0.547b

4 Overall cutpoints, measureda Adjusted for month 0.777b 0.644b 0.496b

5 Season-specific cutpoints, measuredc None 0.839 0.741 0.603

6 Season-specific cutpoints, measuredc Adjusted for season 0.839 0.741 0.603

7 Month-specific cutpoints, measuredc None 0.822 0.715 0.583

8 Month-specific cutpoints, measuredc Adjusted for month 0.822 0.715 0.582

Abbreviations: OR, odds ratio; 25(OH)D, serum 25-hydroxyvitamin D.
a Overall quartile cutpoints were obtained by pooling the measured 25(OH)D levels of all subjects, regardless of seasons or months of sample

collection; refer to the Materials and Methods section of the text for more information.
b Indicates bias away from the null compared with odds-ratio estimates using true levels of 25(OH)D.
c Season-specific (or month-specific) cutpoints were obtained by assigning subjects to quartile categories within the same season (or month) of

sample collection; refer to Materials and Methods for more information.
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Appendix Table 2. (All 15 Web Appendix tables are posted
on the Journal’s website (http://aje.oupjournals.org/).) In
these scenarios, we examined the effect of changing values
of the parameters for the amount of variation in 25(OH)D
concentrations within the population, the degree of seasonal
variation in 25(OH)D, the degree to which seasonal vari-
ation varied between individuals, and the size and direction
of the association between 25(OH)D concentrations and the
disease outcome. Some of these parameters would be ex-
pected to vary depending on the geographic location of the
study population. For example, the amount of seasonal vari-
ation is likely to be larger at higher latitudes (larger Ai in
Web Appendix Table 6 versus smaller Ai in Web Appendix
Table 10), and the variation between individuals regarding
the amount of seasonal variation is likely to be greater in
populations that include people from across a large range of
latitudes (a larger standard deviation in Ai in Web Appendix
Table 9 versus a smaller standard deviation in Ai in Web
Appendix Table 7). The overall patterns of biases remained
similar in these additional scenarios, although the magni-
tude of bias varied. For example, a smaller standard devia-
tion in the seasonal amplitude of change resulted in
estimates from models using season-specific cutpoints that
were closer to ‘‘truth’’ (Web Appendix Table 7 vs. Web
Appendix Table 9). For another example, a very small sea-
sonal amplitude while holding the other parameters constant
also mitigated the magnitude of bias (Web Appendix Table
10 vs. Web Appendix Table 6).

25(OH)D analyzed as continuous

When 25(OH)D was analyzed as a continuous variable on
its original scale and date of blood collection was ignored, odds
ratios were biased toward the null, as expected (Table 3).
However, adjustment for DOSC reduced this bias (Table 3).
In no instance did adjustment for DOSC result in bias away
from the null.

DISCUSSION

Several patterns emerged from our simulations, in which
we applied 3 analytic strategies previously used in the liter-
ature to conditions that might plausibly be encountered in
a study of blood 25(OH)D concentrations and a dichotomous

disease outcome. First, as expected, ignoring DOSC re-
sulted in bias toward the null. Second, using categories cre-
ated without accounting for DOSC and then adjusting for
season or month of blood collection resulted in bias away
from the null in some simulations. Third, using categories
that accounted for DOSC (e.g., season-specific or month-
specific quartiles) did not result in bias away from the null
but successfully reduced bias toward the null.

Contrary to our original expectations, we observed bias
away from the null when 25(OH)D categories were created
without accounting for DOSC and models were then ad-
justed for DOSC. Although the magnitude of bias away
from the null that we found in our simulations was not large,
this bias may be counterintuitive to many and deserves care-
ful consideration.

The general concept that even nondifferential measure-
ment error can cause bias away from the null has previously
been documented (17–20). Flegal et al. (17) have shown that
nondifferential measurement error in a continuous exposure
measure can cause differential misclassification of exposure
when the continuous exposure measure is categorized and
cases have a different exposure distribution than noncases
do (i.e., exposure is related to disease risk). In some Flegal
et al. simulations, the resulting differential misclassification
of exposure caused substantial bias away from the null when
risk estimates were corrected by using methods appropriate
for nondifferential misclassification (17). Our simulations
differ from those of Flegal et al. in that we simulated mea-
surement error caused by temporal variation (rather than
purely random error), followed by modeling adjustment
for the source of that temporal variation (DOSC).

Some empirical observations may help explain why bias
away from the null occurred in some simulations when cat-
egorical variables for 25(OH)D were used. When quartiles
were created without accounting for DOSC, the proportion
of subjects within each quartile varied profoundly by season
of sample collection. For example, of subjects with samples
collected in winter, only about 0.5% were categorized into
the highest quartile of 25(OH)D, while 57% were catego-
rized into the lowest quartile of 25(OH)D. The 0.5% of
subjects categorized into the highest quartile despite having
a winter DOSC were those with extremely high true
25(OH)D concentrations; therefore, based on our disease
risk model, they were at extremely low risk of disease.
Conversely, of subjects with samples collected in summer,
only 6.5% with extremely low 25(OH)D concentrations, and
therefore at extremely high disease risk, were categorized
into the lowest (referent) quartile of 25(OH)D, while about
61% of subjects were categorized into the highest quartile of
25(OH)D. Because risk estimates adjusted for season would
reflect within-season risk estimates, models adjusted for
season may be biased away from the null because risk esti-
mates for those subjects with a winter or summer DOSC
do not reflect a comparison of quartiles of true long-term
25(OH)D levels but rather a comparison of more extreme
differences in 25(OH)D levels. We have referred to these
odds-ratio estimates based on more extreme differences as
being ‘‘biased’’ only because they differ from the odds ratios
for quartiles of true long-term levels, which is how many
might interpret odds ratios for quartiles. However, odds

Table 3. Simulated Odds Ratios for the Association Between

a Continuous Measure of 25(OH)D Level and a Dichotomous

Disease, by Method of Adjusting for Date of Sample Collection

Adjustment for Date of Sample Collection ORa

True levels (‘‘gold standard’’) 0.796

Measured 25(OH)D, no adjustment
for date of sample collection

0.895

Measured 25(OH)D, adjusted for
season of sample collection

0.833

Measured 25(OH)D, adjusted for
month of sample collection

0.810

Abbreviations: OR, odds ratio; 25(OH)D, serum 25-hydroxyvitamin D.
a Odds ratio associated with each 15 nmol/L increase in 25(OH)D

level.
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ratios based on these more extreme differences could rea-
sonably be considered biologically relevant measures, rather
than biased.

Our simulations were not intended to answer the question
of whether or not to match, because this question involves
considerations other than bias, such as statistical efficiency
(10). However, the implications of our simulation results
should be the same for DOSC-matched analyses and for
DOSC-adjusted analyses because both types of analysis
yield the same expected value of the odds ratio (10). To
illustrate, we repeated the analyses shown in Tables 2 and
3 by matching on DOSC (season/month) instead of adjust-
ing for DOSC (simulated 1:1 matching of cases and controls
on DOSC followed by conditional logistic regression anal-
ysis conditioning on the matched DOSC). As expected,
these DOSC-matched analyses yielded results virtually
identical to those from the DOSC-adjusted analyses (corre-
sponding odds ratios always within 1%; data not shown,
available on request). In DOSC-matched analyses, as in
DOSC-adjusted analyses, using cutpoints that did not ac-
count for DOSC sometimes resulted in bias away from the
null, whereas using DOSC-specific cutpoints did not.

One should consider how much we may generalize the
observation of bias away from the null in our simulations.
We note that meaningful bias away from the null did not
always occur when adjustment for DOSC was used. For
example, in Table 2, when models were adjusted for season
of sample collection (model 3), odds ratios were very close
to truth, presumably because biases away from and toward
the null may have canceled each other out in this simulation.
Only when adjustment for DOSC was more complete (for
month of sample collection, model 4) was the net result
a meaningful bias away from the null. More generally, we
expect that the degree of bias away from the null, if any, will
depend on the biomarker’s distribution and temporal vari-
ation, the form and strength of the exposure-disease relation.
Predicting the degree of bias away from the null (if any) in
a particular analytic situation is likely to be complex. Nev-
ertheless, our simulations illustrate that using categories
created without accounting for DOSC and then adjusting
for DOSC can result in bias away from the null under plau-
sible conditions. Therefore, this strategy of dealing with
measurement error from temporal variation can be less than
ideal.

The alternative analytic strategy of accounting for DOSC
when creating exposure categories (e.g., season- or month-
specific categories) may be preferable. In our simulations,
this strategy reduced bias toward the null and did not show
any potential to introduce bias away from the null, as simple
adjustment for DOSC did. Results of our simulations also
suggest that if season- or month-specific categories are used,
there is no additional advantage to further adjustment for
DOSC since, as one would expect, it had no effect on the
results.

It is worth noting that although using DOSC-specific
exposure categories (e.g., season- or month-specific catego-
ries) was relatively effective in reducing bias in our simu-
lations, it may be less effective under other conditions. In
our simulation, every individual’s 25(OH)D levels fluctu-
ated from his or her true long-term level in a similar sinu-

soidal pattern over date, although we allowed the degree of
fluctuation (the amplitude) to differ somewhat between in-
dividuals. Therefore, within short date intervals (e.g.,
a month), the approximate ranking of each study partici-
pant’s 25(OH)D levels relative to those of other participants
was preserved. In actuality, individuals’ 25(OH)D levels
may vary differently over the course of the year, depending
on their seasonal patterns of outdoor activities and diet, for
example. We found that use of DOSC-specific categories
was less effective in reducing bias away from the null when
the amount of temporal variation in biomarker levels varied
widely between individuals (Web Appendix Tables 7–9).

Our model of the exposure-disease relation assumes that
disease risk depends on each individual’s long-term average
level and that this relation does not depend on season of
sample collection. Other exposure-disease models are pos-
sible but are beyond the scope of this paper. For example,
disease risk might be strongly increased by transient or rel-
atively short periods of vitamin D deficiency. In this situa-
tion, levels of 25(OH)D measured in the winter might be
a stronger predictor of risk than levels measured during
other seasons. Examining results stratified by season could
be useful in exploring whether this type of exposure-disease
relation appears to be present.

While we focused primarily on categorical measures of
exposure, we also conducted simulations by using continu-
ous exposure variables, which may yield the most informa-
tive estimates when a continuous model is a good fit for the
true association between 25 (OH)D levels and disease risk.
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