
Comparing Methods for Large-Scale Agile
Software Development: A Systematic

Literature Review
Henry Edison , Xiaofeng Wang, and Kieran Conboy

Abstract—Following the highly pervasive and effective use of agile methods at the team level, many software organisations now wish

to replicate this success at the organisational level, adopting large-scale agile methods such as SAFe, Scrum-at-Scale, and others.

However, this has proven significantly challenging. An analysis of the extant literature reveals a disparate set of studies across each

individual method, with no cross-method comparison based on empirical evidence. This systematic literature review compares the

main large-scale agile methods, namely SAFe, LeSS, Scrum-at-Scale, DAD, and the Spotify model. It is the first study to analyse and

compare each of the method’s principles, practices, tools, and metrics in a standardised manner. For each method, it presents not just

the original method specifications but also all extensions and modifications to each method proposed by subsequent empirical

research. It includes in this comparison not just commercial large-scale methods but also those that have been custom-built in

organisations such as Nokia, Ericsson, and others. Based on the findings reported in this study, practitioners can make a more

informed decision as to which commercial method or method component or, indeed, custom-built method is better suited to their needs.

Our study reveals a number of theoretical and practical issues in the current literature, such as an emphasis on the practices of

commercial frameworks at the expense of their underlying principles, or indeed any of the custom method. A set of challenges and

success factors associated with the use of large-scale agile methods are identified. The study also identifies a number of research gaps

to be addressed across methods.

Index Terms—Large-scale agile, critical assessment, challenges and success factors, systematic literature review

Ç

1 INTRODUCTION

FOR the last two decades, agile methods such as Scrum
[1], [2], eXtreme Programming (XP) [3], DevOps [4], and

flow [5] have proven overwhelmingly popular and, for the
most part, highly effective amongst software development
teams. More recently, attention has turned to the challenge
of designing and implementing large-scale, organisation-
wide variants of these methods. Reasons underpinning the
emergence of these large-scale1 methods include a need for

alignment and cohesion across many teams, deep interde-
pendencies between software development and other organi-
sational functions such as human resources, legal, and
finance, as well as the global trend toward large distributed
teams and product delivery at scale [6]. This movement has
been given many different labels such as ‘large-scale devel-
opment’, ‘process transformation’ [6], [10] and ‘organisation-
wide transformation’ [11]. Over the last number of years,
quite a few large-scale agile methods have been proposed,
e.g., the Scaled Agile Framework (SAFe) [12], and Large-
Scale Scrum (LeSS) [13].

Previous research indicates that the scaling up of agile
methods to large-scale development presents “a thorny set of
issues” [14], such as the questionable assumption that effec-
tive large-scale development can be achieved by simply scal-
ing up small-scale agile methods [9]. The implementation of
large-scale methods, regardless of prescribed or scaled-up
from team-level, has proven highly challenging, with few
successful cases to date [15]. These scaled-up methods have
struggled to deal with the exponentially greater complexities
and interdependencies of large-scale, organisation-wide
development. The difficulties usually centre around the com-
plexities and ambiguities, arising from (i) a large number of
teams, roles, and personalities; (ii) an often unknown compo-
sition of participant teams and projects at the outset; (iii)
abstract, knowledge-intensive, and often ill-structured work
processes; (iv) diverse and often competing agendas between
teams that sometimes contradict the organisation itself; (v)
abstract, complex, and often unknown final outputs and
goals [9], [10], [15].

� Henry Edison is with Maersk Mc Kinney Moller Institute, Syddansk
Universitet, 5230 Odense, Denmark. E-mail: hedis@mmmi.sdu.dk.

� Xiaofeng Wang is with Computer Science, Free University of Bozen-Bolzano,
39100 Bolzano, Italy. E-mail: xiaofeng.wang@unibz.it.

� Kieran Conboy is with Business Information Systems, National University of
IrelandGalway,H91TK33Galway, Ireland. E-mail: Kieran.Conboy@nuigalway.ie.

Manuscript received 30 March 2020; revised 20 February 2021; accepted 21
March 2021. Date of publication 26 March 2021; date of current version 15
August 2022.
(Corresponding author: Henry Edison.)
Recommended for acceptance by N. Bencomo.
Digital Object Identifier no. 10.1109/TSE.2021.3069039

1. There is no firm agreement as to what constitutes large-scale
development in the literature[6], [7]. Barlow et al. [8] define the term as
characterised by multiple stakeholders and complex projects within
large organisations. Rolland et al. [9] suggest that large-scale involves
complex integration with various internal and external information sys-
tems, multiple stakeholders with different interests. The review by
Dikert et al. [6] provides a more focused and quantifiable definition of
large scale development, interpreting it as involving more than 50
developers or at least six teams working on a common product or proj-
ect in the same organisation. This is the definition adopted in this study.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022 2709

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9494-8059
https://orcid.org/0000-0002-9494-8059
https://orcid.org/0000-0002-9494-8059
https://orcid.org/0000-0002-9494-8059
https://orcid.org/0000-0002-9494-8059
https://orcid.org/0000-0001-8260-4075
https://orcid.org/0000-0001-8260-4075
https://orcid.org/0000-0001-8260-4075
https://orcid.org/0000-0001-8260-4075
https://orcid.org/0000-0001-8260-4075
mailto:hedis@mmmi.sdu.dk
mailto:xiaofeng.wang@unibz.it
mailto:Kieran.Conboy@nuigalway.ie

As is often the case with new and emerging phenomena
in software development, practice has led research, with the
creation, promotion, and dissemination of these large-scale
agile methods largely due to the efforts of practitioners and
consultants [15]. While this practice-driven nature certainly
has merits, Rolland et al. [9] argue that the method and
method implementations are often built on fundamentally
incorrect assumptions. There is a need for a review that
reflects and critiques the conceptual underpinnings of these
large-scale methods.

A further problem is that what limited literature does
exist tends to focus on single methods, such as SAFe, Spotify
model or DAD [6], [7], [9], [16], [17], [18], rather than any
comparison between them. Researchers and practitioners
need some means of comparing and contrasting between
these methods to identify the advantages and disadvan-
tages of each, to choose which parts are most suited to their
particular context, to identify the gaps of each method and
to identify new principles, practices, tools, and metrics that
can be used to fill those gaps. These actions will then hope-
fully further the body of knowledge of large-scale develop-
ment and lead to more effective outcomes than at present.

1.1 Research Questions

To address the issues identified above, this study’s objective
is set to systematically identify and analyse empirical evi-
dence of large-scale agile development methods in the liter-
ature. This study will specifically focus on a comparison
between methods. The study addresses the following
research questions:

RQ1 To what extent have large-scale agile methods been
studied empirically in the literature?

RQ2 To what level of abstraction (principles, practices, tools,
and metrics) are the large-scale agile methods identi-
fied in RQ1 studied empirically, and what are the
resulting knowledge gaps?

RQ3 What challenges have been reported for the large-
scale agile methods identified in RQ1?

RQ4 What success factors have been reported for the
large-scale agile methods identified in RQ1?

1.2 Contributions of the Study

Aside from being the most up-to-date review of large-scale
agile methods, including 191 primary studies across 134
organisations, this study makes a number of contributions
to research and practice.

First, while others have also studied large-scale methods,
this is the first to compare and contrast between the meth-
ods themselves (e.g., SAFe, Scrum-at-Scale, LeSS, DAD, and
scaled agile methods). Others either focus on one method
(e.g., [7], [19]) or they study the overall methods in a collec-
tive, aggregated manner that does not allow researchers or
practitioners to compare and contrast these methods (e.g.,
[6], [8], [9], [17], [20], [21], [22]). This study is also the first to
include custom-built methods (RQ1).

Second, the study is novel in that it conducts this com-
parison across a standard set of headings, namely each
method’s principles, practices, tools, and metrics [23]. A
method comprises different levels of abstraction: A principle
is a proposition that serves as the foundation or basis for a
system. It does not prescribe an action or process but rather
provides a basis for making those decisions. Practices are
habitual or customary ways of doing something, acknowl-
edged by a community as the correct way to do things [24],
[25]. Tools (e.g., diagrams, notations, or computer support)
are used to support the application of the practices [23].
Metrics are used to evaluate performance when using the
method. This facilitates a structure for a balanced compari-
son and evaluation of each method’s strengths, weaknesses,
and gaps. This study then analyses the empirical studies of
the large-scale agile frameworks under each of these head-
ings. We identify and present various extensions to these
large-scale agile frameworks that have been proposed in the
literature (RQ2). Until now, original versions of each
method were separated from any new recommended addi-
tions that emerged through various empirical studies. This
allows the building of cumulative tradition, a positive trait
of any research area where each piece of research can build
on a solid foundation encompassing all existing research.

Finally, our study identifies the challenges (RQ3) and key
success factors (RQ4) associated with the application of
large-scale agile methods. Challenges are issues or obstacles
that demand great consideration and need to be overcome
[26]. When challenges are unmanaged, they may cause proj-
ect delays, quality issues, or failure [27], [28]. Success factors
are the things that “must go right” as they are strongly
related to the achievement of strategic goals [29], [30]. Most
existing literature reviews focus on either challenges or suc-
cess factors only and study those of large-scale agile trans-
formation in general. We incorporated both challenges and
success factors across each methods. Including both aspects
in one study enables us to produce the most comprehensive
overview possible. Therefore if a researcher or practitioner
is using this study to examine challenges and success fac-
tors, they have an over-arching set of all relevant issues,
regardless of whether the original authors labelled them as
a challenge or success factor.

1.3 Structure of the Paper

The remainder of this article is structured as follows. Sec-
tion 2 presents the related work in this area. This is followed
by description of our research approach in Section 3. In Sec-
tion 4, we present the characteristics of the primary studies
included in our review. The key findings of this study are
presented in Section 5 and discussed in Section 6, along
with the implications for research and practice. Section 7
then presents the conclusions of the study.

2 RELATED WORK

Relevant systematic reviews were identified by searcing in
the Compendex, ISI Web of Science, Scopus, and AIS e-
Library digital databases. We used the following search
string to search within title and abstract and keywords, com-
bined with the synonyms of “systematic literature reviews”
[31]: (transform* OR transiti* OR migrat* OR journey OR

2710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

”rollout” OR ”large scale” OR scale* OR enterprise OR portfolio
OR “mega project” OR ”mega system” OR ”systems-of-systems”
OR distributed) AND (software OR “information system” OR
“information systems”) AND (“systematic review” OR “research
review” OR “research synthesis” OR “research integration” OR
“systematic overview” OR “systematic research synthesis” OR
“integrative research review” OR “integrative review” OR
“systematic literature review”OR “literature review”).

This search string returned 1,677 papers in total. After
removing duplicates, the titles and abstracts of the remain-
ing articles were read. We identified 19 relevant systematic
literature reviews in this area ([4], [6], [7], [9], [16], [19], [20],
[21], [22], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]).
By reading the titles of articles that cite these reviews, we
identified three more relevant articles ([17], [42], [43]). Dur-
ing the actual search process of primary studies, we also
found another two relevant literature review studies ([8],
[44]). In total, 24 related literature reviews were identified.
The results of our assessment are discussed below.

The majority of the reviews are focused on the adoption
of agile methods in (i) global software development (GSD)
(9 reviews), (ii) software product lines (SPL) (2 reviews), (ii)
a single method, e.g., Lean (2 reviews) and DevOps (1
review), and (iii) large-scale agile development (10 reviews).
Except for the reviews by Hossain et al. [33] and Lous et al.
[37], which studied Scrum, all reviews on GSD do not dis-
tinguish between methods in their analysis. GSD does not
necessarily mean large; thus, these reviews also included
studies on small-sized teams as their primary studies. The
findings of these studies, e.g., challenges, barriers, or suc-
cess factors were reported in an aggregated manner and did
not provide method-specific information. This is also the
case of the agile and SPL studies [32], [36] or Lean [35], [43].

Ten reviews on large-scale agile development were con-
sidered most relevant to this study ([6], [7], [8], [9], [17],
[19], [20], [21], [22], [42]). In terms of the review method,
only five out of ten reviews were guided by well-known lit-
erature review approaches ([6], [7], [20], [21], [22]). Two
reviews employed a more ad-hoc approach ([9], [17]). Two
reviews did not report their review method ([8], [42]), while
one used a multi-vocal approach that combined peer-
reviewed and grey literature. The studies of Abrar et al. [20]
and Dikert et al. [6]) present extensive literature reviews by
following the guidelines by Kitchenham and Charter [45]
but do not perform a quality assessment.

In terms of the large-scale agile methods studied (RQ1),
seven reviews [6], [8], [9], [17], [20], [21], [22] focused on
the adoption of team-level agile methods in large-scale
projects. Three reviews studied the commercial large-scale
methods, e.g., SAFe [19], SAFe and LeSS [7], and DAD,
SAFe, LeSS, Spotify, Nexus, RAGE [42]. However, the
study by Alqudah & Razali [42] did not provide empirical
evidence as it mixed the findings from empirical research
and seminal books or articles. In terms of the level of
abstraction (RQ2), the review of Kalenda et al. [7] reported
studies that examined the practice level of the methods in
an aggregated way, rather than method-specific. In terms
of challenges and success factors (RQ3 & RQ4), the studies
by Putta et al. [19] and Kalenda et al. [7] also reported the
challenges and success factors of SAFe and LeSS. Three
reviews reported the challenges and success factors of

large-scale agile development in general instead of
method-specific ([6], [21], [22]).

In summary, even though several reviews of the litera-
ture have been conducted in the related area, most of them
are focused on agile transformation processes rather than
large-scale methods per se. Those that do have a focus on
large-scale methods are comparing methods primarily on
the training or advertised materials of these methods and
lack the required scientific empirical evidence. None of
these reviews reported which principles, practices, tools,
and metrics have been examined by the primary studies.
Further, none of these reviews reported on custom-built
(non-commercial) methods.

3 RESEARCH PROCESS

We now present our strategy for the systematic review [45]
and the threats to it’s validity.

3.1 Search Strategy

Starting with the research questions, suitable keywords
were identified using synonyms. We also extracted, aggre-
gated, and used keywords from related literature reviews to
build our search terms. The search terms were organised
into three groups and separated by AND- clauses (see
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2021.3069039). In the first group, we included
methods that have been used in large-scale development.
We used the latest report of VersionOne [46] to identify
these methods. The second group ensured we retrieved
papers associated with software and information systems
development. The third group ensured that we included
articles that discussed the use of agile methods in large-
scale settings.

The digital libraries searched were Engineering Village,
ISI Web of Science, Scopus and AIS e-Library to ensure cov-
erage of computer science, software engineering (SE), and
information systems (IS) literature [47], [48] (see Appendix
A, available in the online supplemental material, for the
search string used in each digital library and the corre-
sponding results). In total, we retrieved 35,215 articles.

3.2 Selection Strategy

The selection process is shown in Fig. 1. Our search strings
yielded broad search results, as we intended to err on the
side of inclusivity by identifying as many papers as possi-
ble. This is typically done in a field such as this, where the
area is not built on a cohesive body of well-defined terms
[49]. Moreover, research on large-scale agile method is a
cross-disciplinary study, and so terms used vary across dis-
ciplines. The first step in the selection process identified and
removed a total of 33,150 irrelevant papers, duplicates, non-
English, non-empirical papers, and secondary studies.

In the next step, we applied selection criteria (Table 1) to
the 2,065 remaining papers. We employed the majority vot-
ing selection process [48]. Two independent reviewers eval-
uated each paper. For a paper to be included, two reviewers
had to be in agreement. In cases where both reviewers
did not agree, a third reviewer evaluated the record

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2711

http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3069039
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3069039

independently, and an agreement based on the majority
was reached. At the end of this step, 1,700 papers were
excluded.

The final step was to apply selection criteria to the full
text of the 365 papers. This excluded a further 190 papers.
During the full-text review, we also performed a snowball-
ing search and found an additional 16 relevant articles. In
total, 191 primary studies are included (see Appendix B,
available in the online supplemental material, for the com-
plete list). Throughout the rest of the paper, each primary
study is referred to by its identification number.

3.3 Quality Assessment

We performed a quality assessment on the 191 papers to
evaluate the relative strength of empirical evidence or find-
ings reported. The assessment (see Table 2) was based on
the seven questions proposed by Dyba

�
and Dingsøyr [50].

We used a three-point scale to answer the assessment ques-
tions: no (0), to some extent (0.5), and yes (1). The quality of
each paper was assessed by two reviewers. Each reviewer
could give a maximum of 7 points to a paper; thus, the max-
imum possible score for the quality assessment for each
paper was 14. Scores for primary studies ranged between 2
and 14. The median score was 8.0 and the average was 7.6.
This indicates that the quality of the primary studies, on
average, is good. The studies within the 25 percent percen-
tile scored low on the quality assessment criteria regarding
research design and data collection, data analysis, findings,
and credibility of the conclusion. This is to be expected
given that most of these studies are in the form of experi-
ence reports.

3.4 Data Analysis and Synthesis

We performed the data extraction during the full-text
review. Each reviewer highlighted the relevant text in each
article that corresponded to the properties listed in Table 3.
The first reviewer aggregated the highlighted texts and
compiled them into a spreadsheet for further analysis.

Data for D1 and D2 were collected to provide a broad
overview of the primary studies. We categorised the pri-
mary studies according to the applied research methods.
When a study reported industrial experiences without stat-
ing research questions or research methods, it was classified
as an experience report.

Fig. 1. Steps for conducting the review.

TABLE 1
Inclusion/Exclusion Criteria

Facet Inclusion Criteria Exclusion Criteria

Scale (i) The method is
practiced by at least
50 persons or six teams,
working on a common
product or project.
(ii) The article explicitly
considers itself as
large-scale (either in title,
abstract, or keywords).

(i) The process is practiced
by a single team or less than
50 persons or six teams in a
large or distributed setting.
(ii) No indication that the
context, process or issues
are related to large-scale
development. (iii) The
method was not
implemented in a real world
development setting.

Context Software or information
systems development.

Non-software, e.g.,
manufacturing, supply
chain, human resource, etc.

Studies Peer-reviewed scientific
papers, peer-reviewed or
curated experience
reports, written in English,
full-text available.

Books, editorial, theses,
position papers, talks,
abstracts, non-English, and
full-text not available.

Findings The article provides at least
one answer to our research
questions.

The article does not provide
an answer to the research
questions.

TABLE 2
Quality Assessment Checklist (Adapted From [50])

Research Design
QA1. Is the research objective sufficiently explained and well-
motivated?
QA2. Is the context (industry, project setting, product used,
participants or observational units, etc.) in which the research
was carried out clearly stated?

Data Collection
QA3. Was the data collection carried out thoroughly? For
example, discussion of data collection procedures and how
the research setting may have influenced the data collected.

Data Analysis
QA4. Are the approach to and formulation of the analysis
well-conveyed? For example, justification and description of
analysis method/tool/package.
QA5. Are alternative explanations and cofounders considered
and discussed in the analysis?

Findings and Conclusion
QA6. Are the findings and conclusions credible? For example,
the study is methodologically explained so that we can trust
the findings; the findings are clearly stated and supported by
the data, and are resonant with other knowledge and
experience.
QA7. Are limitations and credibility of the study adequately
discussed?

2712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

We recorded data for D3 to D6 to answer our research
questions. To help answer RQ2, we searched for the official
sources of each large-scale development framework in
either published books or websites and identified the pre-
scribed principles, practices, tools, and metrics. We
searched for the most recent main sources of SAFe,2 LeSS,3

Scrum-at-Scale,4 DAD5 and Spotify model.6 Then, we exam-
ined each primary study to evaluate whether it discussed or
reflected the findings at each abstraction level. Using the
definitions given in Section 1.2, we identified the princi-
ples/practices/tools/metrics studied in these primary stud-
ies and mapped them to the ones in the official sources.

3.5 Threats to Validity

This subsection describes four potential validity threats to
this systematic review. In addition we also discuss our strat-
egy to address each.

3.5.1 Publication Bias

Publication bias occurs when positive research outcomes
are more likely to get published than negative ones [45],
[51]. Method creators often have a vested interest in the
reporting of the method, and organisations studied may
wish to avoid or at least reduce the emphasis on negative
aspects of them. Review studies such as ours are always
susceptible to such bias. In this study, we regard this threat
as high. To mitigate it, we conducted a quality screening
check, and distinguished between rigorous empirical
research and experience reports. We decided not to include
grey literature, e.g., work-in-progress, technical reports,
blogs, and unpublished or non-peer reviewed articles.

3.5.2 Threats Regarding Identification of Primary

Studies

To reduce the threat of missing or excluding relevant
papers, our strategy was to retrieve as many peer-reviewed
papers as possible related to large-scale software or infor-
mation systems development. We also performed a snow-
balling search during the full-text review by finding
relevant papers in the reference list of each paper [48]. It is
impossible to completely eliminate the threat of missing

relevant articles. Inconsistent terminology, particularly in
large-scale software development research, or use of differ-
ent terminology with respect to the exercised search string
(Appendix A, available in the online supplemental material)
may have biased the identification of primary studies.

We did not attempt to optimise the search string for a
high level of precision, in order to be as inclusive as possi-
ble. Precision refers to the ratio of retrieved relevant items
and all retrieved items [52]. Our precision is 1 percent, con-
sidering 22,967 unique papers (without duplicates) and 191
primary studies. The low precision causes more effort to
select the primary studies, as discussed in Section 3.5.3.

3.5.3 Threats to Consistency of Selection of Primary

Studies and Data Extraction

As discussed in Section 3.2, the formulation of the inclusion
and exclusion criteria involved a pilot at each stage to
remove ambiguities and to check the agreement level
among reviewers. The first pilot was based on the title and
abstract. The assessment results of each reviewer were com-
pared. A meeting was called to discuss the contrasting inter-
pretation of the criteria and disparities in the assessment
results. A similar approach was followed during the second
pilot on the full-text review. An ambiguity revealed during
the piloting was related to the definition of large-scale, as
some studies did not explicitly report the size of the case
under the study. Definitions were thus formally made and
agreed upon. The pilot exercise was re-run, and it was clear
that this issue had been adequately resolved.

A pilot was also conducted on the quality assessment
checklist. Similar to the selection process, two independent
reviewers assessed the quality of the primary studies. A
pilot with 50 papers was performed to check the agreement
level among the reviewers. After the pilot, a meeting was
called to evaluate the checklist and find strategies to
approach certain vagueness or missing details in some
papers. Any dissimilarity in the reviewers’ assessment was
also discussed and clarified in the presence of all reviewers.

3.5.4 Reliability of the Extracted Data

We found that some studies did not have clear details about
the team size or about the large-scale method. In this case,
we had to infer using researcher judgment. For example,
some papers did not reveal the number of development
teams but rather referred to the whole organisation. In the
cases where the method was not clearly stated, we used the
study context and practices reported in all related studies to
classify the paper. Therefore, there is a possibility that some
of the extracted findings are partially inaccurate. To miti-
gate this, while performing a full-text review, each reviewer
refined and verified the extracted data. The extracted data
were then re-checked by the other reviewers.

4 CHARACTERISTICS OF PRIMARY STUDIES

4.1 Publication Types, Sources, and Venues

The distribution of primary studies by year is shown in
Fig. 2, which also highlights the year in which some of the
well-known large-scale agile frameworks were proposed.
All primary studies were dated after the year 2001. There

TABLE 3
Extracted Data

Property Goal

D1 Research Method Overview
D2 Context (Organisation name, size,

development period)
Overview

D3 Large-scale method, connecting practices RQ1
D4 Principles, practices, tools, metrics RQ2
D5 Challenges RQ3
D6 Success factors RQ4

2. https://www.scaledagileframework.com/
3. https://less.works
4. https://www.scrumatscale.com/
5. https://disciplinedagiledelivery.com/
6. https://blog.crisp.se/wp-content/uploads/2012/11/

SpotifyScaling.pdf; https://vimeo.com/85490944; https://vimeo.com/
94950270

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2713

https://www.scaledagileframework.com/
https://www.scrumatscale.com/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://vimeo.com/85490944
https://vimeo.com/94950270
https://vimeo.com/94950270

were peaks in 2007 and 2013, and the number of studies
increases steadily since 2016 till the time of this study. The
empirical studies of a particular large-scale agile framework
were typically published three years after its adoption in
the organisation under the study.

The majority of primary studies (83 percent) are pub-
lished in SE-related conferences, e.g., Agile Conference, XP,
International Conference on Global Software Engineering,
or journals, e.g., Empirical Software Engineering, and IEEE
Transactions on Software Engineering. The topic is also of
interest to IS researchers as 11 percent of the primary stud-
ies are published in IS conferences, e.g., Hawaii Interna-
tional Conference on System Sciences, Americas Conference
on Information Systems, or journals, e.g., Communications
of the Association for Information Systems or MIT Sloan
Management Review. In Tables 4, 7, 6, 8, and 9, a double
asterisk sign (**) indicates studies published in IS discipline.
We also identified studies published in other disciplines (6
percent) such as management (e.g., Project Management
Journal, International Journal of Managing Projects in Busi-
ness), social science (e.g., Industrial and Corporate Change)
or design (e.g., International Design Conference).

Most of the 191 primary studies are empirical research
papers (66 percent), whilst the rest are experience reports
(34 percent). In Tables 4, 7, 6, 8, and 9, a single asterisk sign
(*) indicates experience reports. Among the 127 empirical
research papers, only 10 (8 percent) used theories. For the
purpose of this work, we adopted Gregor’s [53] understand-
ing of theory: (i) generalisation – an attempt to generalise
knowledge of specific events or object into more abstract
and universal, (ii) causality – the relationship between cause
and effect, and (iii) explanation and prediction – under-
standing and predicting a phenomenon and guiding action.
In the reviewed empirical studies, theories were often used
to explain how and why some phenomena occurred, e.g.,
coordination mode and mechanism theory (PS23, PS38,
PS88), trust–mediated organisational control (PS31). Theo-
ries were also used to understand the causality between
people and technology, e.g., socio-technical systems theory
(PS26), project governance (PS71), knowledge management
theory (PS109), relational coordination theory (PS146), rou-
tine dynamics theory (PS152), and adaptive structuration

theory (PS180). There is no predominant theory used in the
reviewed studies.

4.2 Authors, Case Organisations, and Primary
Studies

The 191 primary studies are written by a total of 325
authors. On average, there are four authors per article, in
which one of them had an affiliation with the case organisa-
tion when the paper was published. As shown in Fig. 3, the
majority of the authors come from Scandinavia (37 percent)
then followed by North America including the United
States and Canada (20 percent). Fig. 4 shows the distribution
of the case organisations across business sectors. Twenty-six
primary studies (19 percent) were conducted in software

Fig. 2. Temporal distribution of the primary studies by method category.

Fig. 3. Distribution of the authors’ countries.

Fig. 4. Business sector distribution of the case organisations.

2714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

vendors, while sixteen were in telecom companies, e.g.,
Ericsson or Nokia.

In total, there were 134 case organisations studied. In sev-
eral cases, more than one primary studies focused on the same

organisation, but usually focused on different aspects. For
example, one paper may study inter-team coordination
(PS11), while others would examine retrospectives (PS21) or
customer involvement (PS22). Conversely, if a paper studied

TABLE 4
Large-Scale Development Methods/Framework, Organisations and Primary Studies

Note: * indicates experience reports
** indicates articles published in IS venues.

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2715

multiple organisations, each organisation is treated as an indi-
vidual case, e.g., PS124, PS132. However, if those organisations
were working on the same project, they are all treated as one
case e.g., PS135. Some organisations may have branches,
subsidiaries, or business units in multiple locations and work
on different products, e.g Siemens Healthineers (PS36, PS37,
PS84, PS111, PS149, PS153, PS174) or Siemens Technology and
Services (PS113, PS127, PS128, PS179). We treated them as sep-
arate case organisations. The list of case organisations is pre-
sented in Appendix C, available in the online supplemental
material. Similar to the primary studies, the unique case orga-
nisation is referred to using their case IDs.

5 RESULTS AND ANALYSIS

This section provides an overview of large-scale agile meth-
ods based on a synthesis of the reviewed primary studies.7

5.1 Large-Scale Agile Methods

Table 4 presents the methods/frameworks, case organisa-
tions and the primary studies investigating these methods
in the case organisations. Two articles (PS82, PS89) appear
in the table multiple times as they reported multiple case
organisations that used different methods. Similarly, some
case organisations (e.g., CO50, CO53) appear in the table
multiple times as they may have adopted different large-
agile agile methods at different points of time.

As shown in Table 4, the predominant method used in
large-scale development is Scrum (49 organisations), either
as a single method or combined with other methods, fol-
lowed by SAFe (19 organisations).

Forty-one primary studies reported the use of commer-
cial large-scale methods in 32 organisations. SAFe alone
was used in 19 organisations (21 primary studies), while
one study reported the use of both SAFe and Spotify model
in a single case (CO129, PS171). LeSS was used in four
organisations (11 primary studies). Some organisations
were using a traditional, plan-driven method before decid-
ing to adopt a large-scale agile framework. Some were
already familiar with agile methods prior to the large-scale
framework adoption. These frameworks aim at addressing
large-scale development issues, such as co-ordination of
multiple teams, and requirement analysis (PS91, PS104).

Fifteen primary studies reported that 13 organisations
did not adhere to a specific large-scale method, but com-
bined and tailored multiple methods for large-scale devel-
opment to suit their particular context. For example, four
frameworks were based on Scrum: Distributed Scrum
(PS17), Adaptive Development Methodology (ADM - PS20,
PS67, PS80), Product Evolution Process (PEP - PS179), and
Enterprise Scrum (PS32, PS33). Two frameworks were based
on the Unified Process: BEKK Model (PS2), PAF Model for
Project (PAMP - PS103), and one was based on XP: Qwest’s
Enterprise XP (PS121). All of these customised frameworks
were typically based on the processes that the case organisa-
tions were already familiar with, which were previously

implemented at a smaller scale. As the numbers of teams
and projects grew, management needed to formalise and
control the processes across the organisation. They then
selected, tailored, and integrated different existing method
fragments relevant to their context. The customised frame-
works were typically implemented only in one case organi-
sation only, except HAMRA, which was used in two case
companies (CO33, CO34) as reported in PS30.

Among the 113 primary studies that did not mention
the use of commercial large-scale frameworks, we found
that 72 studies reported connecting practices. Literature
shows that large-scale development involves challenges
related to inter-team coordination, large project organisa-
tion, release planning and architecture, customer collabora-
tion (including contracts), and knowledge sharing and
improvement [54]. Thus, when a particular method is
being scaled in large-scale development, we expect to see
connecting practices to address these challenges. Table 5
tabulates connecting practices reported in these primary
studies. For improving inter-team coordination, the Scrum-
of-Scrums (SoS) meeting is the most common connecting
practice reported in 17 primary studies of 15 case organisa-
tions), in which Scrum masters from each team meet to
coordinate the delivery of software and solve inter-depen-
dencies. Four primary studies reported that four organisa-
tions established a steering committee, council or project
management office at the portfolio level to make decisions
regarding the overall project and process improvement.
Another connecting practice suggested architecture guide-
lines be used for development teams. This was imple-
mented in ten organisations and reported in nine primary
studies. To leverage customer collaboration, scaling the
role of the Product Owner (PO) was a common practice in
five organisations (12 primary studies). The common prac-
tices to improve knowledge sharing are community of
practice (seven primary studies) and shared resources e.g.,
web-based wiki (eight primary studies). In contrast, we
did not find any evidence of connecting practices reported
in 41 studies.

Fig. 2 illustrates the evolution of the primary studies by
the four categories of large-scale agile software develop-
ment methods. It is not surprising to see the uptake of stud-
ies focused on large-scale agile frameworks, especially in
recent years. However, it is also noticeable that there is a
stream of studies investigating large-scale development in
the organisations that did not apply any large-scale meth-
ods (highlighted in light-blue and purple). The number of
these types of studies did not diminish despite the emergent
and prevalence of large-scale frameworks such as SAFe. In
comparison, the studies of customised large-scale methods
(highlighted in green) are marginal.

5.2 Levels of Abstraction of Large-Scale Agile
Frameworks

Table 6 lists the studies that investigated the large-scale
agile frameworks (the first group in Table 4) at various lev-
els of abstraction (principles, practices, tools, and metrics).
Table 7 lists these elements in each framework from the offi-
cial sources and the emergent ones from the primary
studies.

7. Seventeen primary studies (PS3, PS4, PS5, PS44, PS53, PS133,
PS141, PS143, PS145, PS154, PS155, PS156, PS168, PS175, PS176, PS180,
PS183) were not used in the analysis as they studied various methods
at multiple organisations and reported the results in an aggregated
manner. Thus it was impossible to extract method-specific information.

2716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

5.2.1 Principles
Each large-scale framework studied included basic princi-
ples. For example, SAFe explicitly mentions four core values
(alignment, built-in quality, transparency and program exe-
cution), Lean-Agile mindset and ten principles. LeSS has
ten principles. DAD has seven principles, while Scrum-at-
Scale defines five core values (openness, courage, focus,
respect, and commitment) and Spotify model has ten. In
this study, we grouped the terms value, mindset, and princi-
ple together under principle, as they inspire and inform the

practices, tools and metrics of a framework. From this point
on only the term principle is used.

Our review found that only two out of 21 SAFe-related
studies focused on a lean-agile mindset (PS24, PS101). SAFe
is built on the agile values and principles, and methods.
Thus the adoption of SAFe requires full support from lead-
ers to embrace agility across an organisation. SAFe does not
focus on team process or workflow, but rather on the adap-
tation of processes, roles, and tools parallel in the whole
organisation (PS24, PS101).

TABLE 5
Connecting Practices

Areas Practices Case ID Source(s)

Inter-team
coordination

SoS meetings (i.e. Grande SoS,
feature SoS, etc.)

CO10, CO37, CO39, CO43, CO52,
CO54, CO58, CO40, CO77, CO83,
CO84, CO85, CO130, CO132,
CO133

PS34, PS36, PS37, PS50, PS55, PS60,
PS84, PS87, PS93, PS96, PS98, PS111,
PS173, PS181, PS186, PS189, PS190

Central team directives CO4, CO39, CO43, CO69 PS7, PS8, PS75, PS90, PS111, PS186
Joint/inter-team retrospective CO69, CO77, CO87, CO117 PS75, PS87, PS100, PS110
Iterative proxy collaboration CO4, CO10, CO43 PS7, PS8, PS18, PS95, PS107, PS131
Visualisation (i.e. dependencies,
deliveries, IT project portfolio)

CO65, CO74, CO103, CO104 PS73, PS87, PS81, PS124

Common goal for the sprint CO69, CO109 PS130, PS136
Team specific swim lane CO103, CO104 PS124
Central team planning CO4 PS7, PS8
Ad-hoc communication CO4 PS7, PS8
Synchronised sprint cycle CO64, CO65 PS72, PS77
Virtual stand up meetings CO39 PS37
Mid sprint review CO42 PS38, PS152
Theme review meetings CO69 PS75, PS136
Collaborative platform CO55 PS56
Cross-team demo CO43, CO69 PS75, PS136, PS186
PO coordination meetings CO43, CO124 PS146, PS186

Large project
organisation

Steering committee, portfolio council
or project management office

CO3, CO47, CO95, CO112 PS6, PS45, PS119, PS134

Establishing central roles CO5, CO69, CO83, CO84 PS75, PS96, PS184
Establish a proxy between
management and development

CO43, CO95 PS90, PS112

Flat organisational hierarchy CO8 PS16

Release
planning and
architecture

Architecture guidelines CO31, CO35, CO39, CO44, CO47,
CO49, CO71, CO72, CO73, CO40

PS27, PS31, PS40, PS45, PS47, PS78,
PS79, PS84, PS174

Regular full integration of software,
hardware, and mechanics

CO15, CO16, CO17, CO18, CO19,
CO20

PS25

Strategic roadmap / high level
planning

CO43, CO47, CO65, CO69, CO75,
CO94, CO117

PS45, PS73, PS75, PS85, PS90, PS109,
PS110

Joint release planning CO4, CO45 PS7, PS8, PS41
Requirements architect role CO3, CO39 PS6, PS111

Customer
collaboration

Scaling the POs (e.g., one PO in each
team)

CO43, CO51, CO69, CO83, CO109 PS43, PS49, PS75, PS92, PS93, PS94,
PS95, PS96, PS107, PS130, PS136, PS186

Network of POs CO39 PS111

Knowledge
sharing and
improvement

Training, workshops and seminars CO35, CO39, CO43, CO58, CO95 PS31, PS60, PS92, PS111, PS112
Community of Practice (CoP) CO5, CO43, CO109, CO117 PS82, PS92, PS94, PS95, PS107, PS110,

PS130
Teammember rotation CO37, CO65, CO74 PS34, PS73, PS81
Physical proximity of teams CO5, CO43, CO133 PS39, PS69, PS107, PS117, PS190
Shared workspace and source CO10, CO43, CO131 PS43, PS90, PS92, PS94, PS95, PS107,

PS181, PS187
Flow-assisted Value StreamMapping CO5 PS9
Posting progress for a constant
feedback

CO74 PS81

Technical experts as a point of
contact

CO5 PS82, PS184

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2717

The study PS139 reported two emerging principles of the
Spotify model: building structure around customer needs and
keep it fluid, and providing employees with development and
growth opportunities. The study PS163 suggested four princi-
ples of a tailored Spotify model, but this was specifically in
business-to-business (B2B) organisations: strengthening the
interactions within B2B product development, building strong
and successful B2B relationships, strengthening project visibility
for customers, and satisfying customers by responding at different
velocity levels. We did not find any primary study that exam-
ined the principles of LeSS, Scrum-at-Scale or DAD.

5.2.2 Practices

In this category, we grouped all practices and related terms,
such as structures and artefacts provided by a large-scale
framework. For example, SAFe provides eight practices,
LeSS has ten Scrum-based practices and five structures. In
the Spotify model, teams are organised into squads, tribes,
guilds and chapters, and adopt Lean startup practices such
as minimum viable product and validated learning. Similarly,
Scrum-at-Scale prescribes practices based on Scrum, while
in DAD practitioners can choose practices based on Scrum,
Lean, Continuous Delivery life cycle.

Eighteen out of 21 SAFe studies focused on practices. For
example, Program Increment (PI) planning and Agile Release
Train (ART) are the two practices studied by the majority of
the studies (e.g., PS24, PS35, PS38, PS91, PS101, PS148,
PS150, PS151, PS152, PS162, PS167, PS178). Only one study
examined the SAFe portfolio management practices (PS68).
PS148 suggested a new role Complete System Architecture
(CSA) to solve dependencies between multiple ART and/or
solutions. In the LeSS studies, various practices for coordi-
nation and integration have been studied empirically, e.g.,
establishing various types of meetings overtime, continuous
integration, Community of Practices (PS10, PS22, PS23,
PS83, PS88, PS97). Moreover, two studies (PS11, PS12) spe-
cifically reported various team and organisational struc-
tures to support LeSS. PS11 suggested a new practice mini-
demos to improve the communication between the

developing and business teams. Instead of having a com-
mon demo at the end of every iteration, mini-demos can be
held during iterations to receive feedback from the business
team.

PS163 and PS164 analysed several practices of the Spotify
Model in a mission-critical software service, including fail-
friendly environment, features with a toggle switch,
embrace Lean startup to promote innovation, and suggested
software product lines for automation and standardisation.
PS139 suggested two new practices for the model, pop-up
squads to manage one-off, short-term projects, and quarterly
business review (QBR) meetings where each tribe lead defines
a set of objectives and key results for the following quarter.

PS123 and PS132 reported the scaling of SoSoS (Scrum-
of-Scrum-of-Scrums) in Scrum-at-Scale. A SoS (Scrum-of-
Scrum) operates as a Scrum team with scaled versions of
roles, events, and artefacts. For example, for each SoS in a
large distributed team, there is a group of PO (at program
and team levels) or Scrum Masters (PS123, PS132). Only one
study investigated the practices of DAD (PS70).

5.2.3 Tools

We grouped all supporting tools prescribed by the frame-
works (see Table 7). SAFe provides various tools for differ-
ent purposes, e.g., feature progress chart, program Kanban
boards, burn-up charts, and continuous flow diagrams to
increase the visibility and transparency of program perfor-
mance. Scrum-at-Scale does not explicitly describe any tools
to support its usage. Correspondingly, we did not find any
related studies. Surprisingly, neither did we find any stud-
ies focusing on the tools of the other frameworks.

5.2.4 Metrics

SAFe provides 20 types of metrics for all levels of the frame-
work, e.g., business agility self-assessment for the enterprise
level, value stream key performance indicator or lean portfolio
metrics for the portfolio level. We found three dedicated
studies on the metrics of SAFe (PS104, PS105, PS161). The
study PS104 and PS105 examined two self-assessment

TABLE 6
Levels of Large-Scale Method’s Abstraction Studied by Primary Studies

Note: * indicates experience reports
** indicates articles published in IS venues. A cell with gray background indicates that there are no elements at that level of abstraction prescribed by the
framework.

2718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

TABLE 7
Principles, Practices, Tools and Metrics of Main Large-Scale Methods

Note: * indicates experience reports, ** indicates articles published in IS venues.

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2719

measurements provided by SAFe: Lean enterprise assessment
and Lean portfolio metrics. The studies argued that these met-
rics were useful to assess how well the adoption of SAFe prac-
tices in an organisation was. PS161 proposed SAFe-based
metrics to measure the quality in a hybrid development
model.

One study of DAD (PS14) focused on metrics used to
measure improvements from two perspectives: business-
related and agile-related. Business-related metrics were
used by leaders and executives, while agile-related metrics
were used by the teams. Our review did not find any studies
on the metrics of LeSS, Scrum-at-Scale, DAD or the Spotify
model, in accordance with the fact that no metrics are speci-
fied in these frameworks (except for Scrum-at-Scale).

5.3 Challenges of Applying Large-Scale Agile
Methods

This research question aimed to identify the challenges that
organisations are confronted with when applying large-
scale agile development methods. We organised the 31 chal-
lenges that were reported in the primary studies into nine
categories, as shown in Table 8.

5.3.1 Inter-Team Collaboration

Synchronising across dynamic and fast-moving teams (C-
IC-1) has been a challenge for organisations that adopted
Scrum-at-Scale (PS132), custom built-methods (PS17, PS166,
PS179), or scaled methods (PS36, PS149). For example, in
the case of CO9, CO110, and CO111, the challenge with
team synchronising is because each team is responsible for
different tasks, thus it is important to assure the know how
transfer and the update of the deliverable to the next team
and all stakeholders (PS189). Moreover, the challenge is also
to synchronise tasks to reduce dependency while at the
same time to maintain consistent performance across the
dynamic and fast-moving teams (PS17, PS132).

SoS meetings may not be an effective communication
channel to discuss and address impediments (PS36). One
reason is due to the multiple agile layers (C-IC-2). As the
number of layers grows larger, meetings take longer to
cover all topics and teams may not receive any feedback or
solutions to their problems (PS49, PS96). The attendance in
other common meetings, e.g., common sprint planning,
common demo, common retrospective was seen as waste
(PS97, PS186). This is also the case for SAFe. Spending too

TABLE 8
Challenges of Large-Scale Development Methods

Note: * indicates experience reports, ** indicates articles published in IS venues, *** indicates challenges newly identified in our study.

2720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

much time in joint meetings, e.g., Product Increment (PI)
Planning meetings, was considered waste (PS150, PS157).

The study PS84 reported that the development Scrum
teams of CO40 struggled to avoid distractions that pre-
vented them from concentrating on development tasks (C-
IC-3). For example, team members must participate in
cross-team activities and allocate time to project-wide activi-
ties, e.g., Scrum meetings or mentoring:

“While [team members] recognized the need for cross-
team communication, they resented context switching
and the impact on their time dedicated to the team’s spirit
goals.” (Scrum, CO40, PS84)

While scaling the Lean and Scrum methods to large-scale
development, enabling end-to-end development (C-IC-4)
and maintaining transparency across a high number of fast-
moving, adaptive teams and projects (C-IC-5) remained
challenging for the development teams of Ericsson (CO43).
All needed knowledge and infrastructure should be avail-
able for each site to enable end-to-end development (PS95).
Moreover, some teams limited the collaboration within the
agile teams. This is risky as it can lead to local optimisations
at the overall systems’ expense (PS107). Moreover, achiev-
ing end-to-end flow may increase handovers (considered a
type of waste by Lean) as it involves a number of decision-
making processes (PS107).

5.3.2 Organisational Structural Challenges

Agile principles require organisations to have cross-func-
tional and fast-moving teams that can implement any fea-
tures of software (PS25, PS43, PS49, PS92). However, it may
be the case that some features are very domain-specific and
require additional competency and expertise before devel-
opment starts. Therefore, management assigned features to
specialist teams that had the required competency. Balanc-
ing between building generalist and specialist teams (C-OS-
1) is even more challenging as the pressure to release the
features is mounting (PS43, PS92).

In some cases, when organisations attempt to scale a par-
ticular agile method for large-scale development, the defini-
tions of new roles and responsibilities (C-OS-2) are not
always straightforward (PS46, PS49, PS92). This typically
happens in an organisation where agile teams are created in
a traditional waterfall organisation and the agile roles are
practised in traditional manner (PS49). The inadequate tran-
sition of organisational roles could lead to (i) delegation
instead of self-organisation, (ii) unbalanced workload, (iii)
divided business and organisation, and (iv) unproductive
agile ceremonies (PS49).

The emergence of various new roles while adopting SAFe
could lead to a complex organisational setup (C-OS-3,
PS101). It causes a large number of handovers (PS142). Infor-
mation to and from development teams must go through
multiple levels in the organisation, which are considered to
affect the development speed negatively (PS101, PS142).

A race condition might happen in an organisation as
multiple teams compete for shared resources (C-OS-4) to
meet the planned schedules (PS33). For example, quarterly
sprints of Business Scrum suggest that several releases
could occur at the end of a quarter, but at the same time

other teams such as testing, customer support also need to
deliver value to customers. These teams may experience
fluctuating demand and need to prioritise their work.

5.3.3 Architectural Challenges

The inability to see the big picture at the program level (C-
AR-1) is perceived as a challenge when applying SAFe
(PS24), LeSS (PS22), custom-built framework (PS17), and
scaled methods (PS36, PS55, PS117, PS124, PS140, PS149).
For example, one team is responsible for completing a fea-
ture request while another team takes care of test cases.
When the work needs to be passed from one team to the
other, it is difficult to keep the flow as they cannot describe
the overall system’s behaviour (PS17). One reason is no sup-
port structure in the organisation above the team level:

“Although [SAFe] development worked relatively well at
the team level, the team members had difficulty seeing
how their daily work linked to and affected other parts of
the globally distributed organization.” (SAFe, CO13,
PS24)

The study PS36 also shows that ineffective SoS meetings
challenged teams in presenting the big picture (e.g., product
performance of previous releases, major customer pain
areas, technical debts, overall project status, major feedback
from specialist) to the team members and stakeholders (C-
AR-1). The transparency among stakeholders becomes even
lower with an increasing number of teams scaling up and
being further distributed geographically (PS36, PS124).

Missing the big picture of the systems may affect the con-
tinuous integration (CI) and test automation process (C-AR-
2, PS117). Teams may also receive incompatible components
developed by other teams, which can result in merge con-
flicts. Often, this causes teams to re-work and ultimately
leads to late deliveries or releases (PS117). While a strong CI
pipeline is considered a major facilitator for SAFe, building
CI and test automation requires a huge effort (PS92).

PS132 and PS191 reported the challenges related to agile
and security. As large-scale projects involve multiple agile
teams, organisations need to ensure confidential electronic
transmissions and privacy (PS132). It could be more chal-
lenging when a project involves external developers who
focus on their assignments mainly and lack security aware-
ness (C-AR-3, PS191). In the case of CO134, security testing
activities took place only if an item for a certain security fea-
ture is present in the backlog. Other security-enhancing
activities commonly recommended for agile projects such
as security code reviews were not performed.

5.3.4 Requirements Engineering Challenges

The importance of requirement planning across agile teams
was pointed out in PS117, as it would minimise the occur-
rence of dependencies. However, in a large-scale project
where managers lack knowledge on software development,
it might happen that plans are not developed appropriately.
Insufficient planning leads to dependencies across teams.
Ultimately, it will lead to changes in requirements and time
management plans (C-RE-1, PS25, PS41, PS54, PS55, PS117).

Capturing value and prioritisation (C-RE-2) is considered
challenging in scaled methods (PS46, PS93, PS117). Unlike

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2721

in small and medium projects, identifying and prioritising
the right requirements should consider all stakeholders
involved in a large-scale project. Conflict may arise as differ-
ent customers and teams have different values and prioriti-
sation. The responsibility for capturing and maximising
product value should be shared among stakeholders.

To be able to deliver working software frequently, agile
suggests breaking down requirements into smaller user sto-
ries, which can be done in a short timescale. However, it
needs more effort to maintain and trace them (C-RE-3).
Moreover, formulating user stories that are clear, detailed
enough, and measurable for both product and non-product
projects is difficult (PS130). Organisations, especially at the
team level, struggle to break down the requirements into
smaller user stories to implement them within one release.
Even though this seems to be a minor issue, it does cause
many serious problems (PS92). If user stories are too big, it
is difficult to see the progress of a development team
(PS124):

“... if there’s too much things going on, it really doesn’t
tell how things are going. And if the features are, or sub-
features are too big, then there’s nothing moving.” (Kan-
ban, CO103 & CO104, PS124)

The transition from writing full user or system require-
ments to user stories (C-RE-3) is also challenging during the
adoption of ADM (PS103). Vague requirements will lead to
vague user stories. Then it is likely that the stories keep
changing before a sprint starts. This can cause a waste of
time and effort of development teams (PS103).

5.3.5 Customer Collaboration Challenges

To promote sustainable development, agile principles sug-
gest that all stakeholders should maintain a constant pace
indefinitely (C-CC-1). However, this has rendered relation-
ship management between the project and client organisa-
tion a major challenge. Business unit managers are typically
less knowledgable with agile methods, but still need to align
their way of working with them. This will create ambiguity
in the nature and scope of the project deliverable (PS110).

“What customers have to realise is that we need a day-to-
day proximity with them throughout the development
cycle but when coding the contacts will likely slow down.
We do understand that interacting with IT people takes
away from their daily job duties but in the end we are pro-
viding them with solutions that will help them in the end
to better do their work. So they need to find a balance.”
(Scrum, CO117, PS110)

5.3.6 Method Adoption Related Challenges

SAFe was designed originally for scaling agile practices in
large organisations. Compared to other large-scale methods,
it has more roles, events, artefacts, and practices. However,
focusing excessively on adopting and tailoring these ele-
ments could distract an organisation from achieving its busi-
ness goals (PS104, PS105, PS150). Similarly, in CO128, one
concern reported during the adoption of LeSS was related to
the numerous coordination meetings (PS170). Having too
manymeetings can affect productivity (C-MA-1):

“The PO attends so many meetings that he doesn’t have
time to write user stories himself ... And if you haven’t
written them yourself, it’s incredibly difficult to accept
them.” (LeSS, CO128, PS170)

Supporting functions such as sales and marketing should
also to be taken care of when the whole organisation transits
to agile (PS33, PS101). However, scaling agile practices to
non-development units (C-MA-2) is a common challenge in
the adoption of SAFe (PS101), LeSS (PS97), DAD (PS14), cus-
tom-built frameworks (PS33), and scaled methods (PS110,
PS121). This challenge could be intensified if an agile
method does not lend itself well to large-scale adoption and
customisation in a complex environment, e.g., the unsuc-
cessful scaling of XP in CO100 (PS121).

Despite the increasing adoption of large-scale agile
methods in organisations, there is a lack of well-structured
approaches or engineering practices (C-MA-3) for the
adoption of SAFe (PS35, PS122, PS162) and the Spotify
model (PS163, PS164, PS166). For example, the absence of
guidelines made the teams of F-Secure (CO38) struggle
with internal releases and meeting stakeholders’ expecta-
tions (PS35). Similarly, six studies on the scaled methods
(PS6, PS34, PS50, PS54, PS60, PS92) reported that there was
no gradual approaches, proper engineering practices or
guidelines for scaling agile methods such as Scrum, XP, or
Kanban, which were originally developed for small teams
working on small projects, and not intended for large-scale
development.

Some studies reported that development teams lack
maturity (C-MA-4) with agile methods (PS8, PS35, PS49,
PS97), which may be partially due to a lack of guidance pro-
vided for agile adoption. PS49 and PS97 highlighted the
importance of knowledge about agile methods, including
roles and ceremonies, for method adoption.

Implementing large-scale agile methods to a specific
organisational context (C-MA-5) is also recognised as chal-
lenging (PS14, PS103, PS121, PS25, PS40, PS60, PS110). For
example, how the DAD practices could be applied in a more
controlled environment, e.g., banking, medical industry.

5.3.7 Change Management Challenges

Several studies reported that a lack of the right mindset and
culture (C-CM-1) prohibits organisations from benefiting
the whole potential of SAFe (PS24, PS101), LeSS (PS97,
PS170) or scaled methods (PS25, PS30, PS54, PS95). The
transformation starts with people’s mindset to be able to
reach the organisational culture (PS24). Embracing transpar-
ency and continuously improving based on experimenta-
tion require courage and a change of mindset (PS101).

As an organisation attempts to improve its way of work-
ing continuously using agile methods, constant change (C-
CM-2) is inevitable (PS92). Organisations need to cope with
constant and concurrent changes in terms of team struc-
tures, processes, tools and metrics.

Both internal and external stakeholders need to be
informed in the first place of the reasons for a method’s
adoption and potential impacts on their daily routines,
roles, and responsibilities (PS91, PS139). Not being engaged
in a change process could lead to resistance (C-CM-3):

2722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

“... even agreeing [on] the dates with the Product Manag-
ers for the first PI planning event was hard, as finding
suitable time slots from everyone’s calendar was not easy,
which shows that the importance of this event was not yet
understood.” (SAFe, CO13, PS91)

When a team has been working for a long period of time,
a strong team culture could be established. If it is estab-
lished before a new agile method is adopted, the adoption
at the team level is slower (PS49). Team members are reluc-
tant to change as they already have their internal process in
place and thus tend to keep doing the same thing.

5.3.8 Team Related Challenges

The study PS17 showed that the downside of Distributed
Scrum was that developers lacked ownership of the
assigned user stories (C-TM-1), therefore no commitment to
their completion. In the case of CO9, the teams were too
relaxed on the deliverables and accepted any delays. The
managers and Scrum master did not have control over
developers to complete tasks faster (PS181).

The study PS43 reported that, in the case of CO43 in
which a scaled method was adopted, the product manage-
ment was still working in the traditional mode by request-
ing a long-term feature development plan. This caused
over-commitments (C-TM-2) by the development teams
and decreased flexibility of the development (PS43).

In the application of scaled methods, some teams may
feel a lack of autonomy (C-TM-3) when certain decisions,
e.g., sprint length, could not be made by themselves. It
makes them feel moving backward, towards the old way of
working (PS25, PS92). The lack of autonomy is also per-
ceived in the SAFe adoption. PS151 reported that the teams
did not have freedom to choose which features to build.
They had been decided in pre-planning meetings.

The study PS151 reported a downside of all joint activi-
ties implemented in SAFe, e.g., PI Planning, which is the
fear of criticism as teams discuss and show the details of a
sprint (C-TM-5). This could cause a loss of clarity as no
team member speaks up.

5.3.9 Project Management Challenges

The transition to a scaled method may cause conflict
between long-term and short-term sprint-based planning
(C-PP-1, PS54, PS140). Backlogs often only provide short-
term visibility. Thus, organisations may use their experi-
enced program managers to estimate the subsequent pro-
grams. However, this results in more time spent on sprint
planning activity.

A lack of alignment with existing processes could be
caused by a lack of engagement (C-PP-2) from existing
stakeholders (PS121, PS25, PS43, PS92, PS136). For example,
middle management should be informed of the changes,
e.g., what is happening or why and how they should
respond. Otherwise, it creates alienation and ultimately
causes management to undermine or ignore the change.

There is a general assumption that amain reason for organi-
sations to adopt large-scale agilemethods is to achieve business
success (PS66). However, finding the best ways to measure
improvement that is expected from adopting large-scale

methods (C-PP-3) is challenging (PS14). There is a lack ofmean-
ingful measures (e.g., product or process related measures) to
capture how organisations progress towards their business
goals and values due to the adoption and application of large-
scalemethods (PS14, PS66).

5.4 Success Factors for the Application of
Large-Scale Agile Methods

Table 9 list the factors that can help organisations apply dif-
ferent types of large-scale agile methods successfully.

5.4.1 Management and Organisational

Strong leadership support (SF-MO-1) was needed to adopt
SAFe (PS24, PS101), DAD (PS14), Spotify (PS139), and
scaled methods (PS16, PS49, PS50) in the case organisations.
For example, in CO13 and CO14, the leadership support
enabled them to move the whole organisation towards
SAFe. Moreover, the introduction of change towards a new
method in software development projects usually leads to
financial and political pressures (PS14) and a major person-
nel change (PS139). Thus, visibility and strong support from
leadership is important to ensure the success of method
adoption.

The support and commitment from leadership (SF-MO-
1) during the method adoption and rollout is critical to
address any challenges that emerge during the adoption
process (PS14, PS87). Teams may not see the benefit of
adopting a particular method. However, knowing that the
management is continuously working to address the
impediments have improved teams’ satisfaction towards
the method adoption (PS91). Management needs to be
engaged and involved in the change (PS80).

“Their [management] ability to hold firm reinforced the
principles of delivering early and often, reducing waste,
and sticking to the deadline no matter what. ” (ADM,
CO12, PS20)

In addition to leadership support, buy-in from all stake-
holders (SF-MO-2) are necessary to develop a custom devel-
opment framework and roll it out across an organisation
(PS20, PS51, PS80, PS121). Organisations need to get sup-
port from and convince all internal and external stakehold-
ers as the change will also affect them (PS2, PS68, PS139).
All their concerns need to be addressed:

“Most important, ING’s executives assured regulators
that finance, compliance, and legal functions would con-
tinue to be managed in their traditional way.” (Spotify
Model, CO116, PS139)

One key success factor for implementing the SAFe port-
folio is the flexible budget model (SF-MO-4, PS68). As the
development progresses from one stage to the next, some
part of the budget available is allocated to be based on the
previous stage. In this way, management still has funds to
allocate in an agile manner to areas with the biggest needs.

In the case of CO116, to keep the structure around cus-
tomers, the management decided to have a fluid team struc-
ture (SF-MO-5) to adapt to do what is the best for customers
quicker (PS139). For example, a tribe in charge of daily
banking can also handle customer relationships so that they
can capture customer issues or needs. After a period of

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2723

time, these customer relationship tasks are handed over to
another tribe in that specialisation.

5.4.2 Process

As organisations start adopting SAFe for their large-scale
software development projects, the studies PS24, PS35, PS91
and PS151 suggest them to invest more in the first PI plan-
ning meeting (SF-PR-1). In fact, it is one of the critical events
to get a buy-in of the change from all stakeholders. People
will get a good picture of what is happening and this posi-
tively affects their attitudes towards SAFe in general (PS91).
The PI Planning event also creates better transparency of
overall programs and teams, which creates more opportuni-
ties to give and receive help and empowers teams to say no
to more work.

In SAFe, having a dedicated full-time team (SF-PR-2),
e.g., release train engineers (RTE), is beneficial to lead the
coordination among teams (e.g., SoS meetings) and drive
continuous improvement by taking care of the metrics
(PS24, PS91). RTE can focus on improving the way of work-
ing by creating action plans, assigning people, and coordi-
nate the implementation (PS24). In this way, teams are
ensured that improvement is ongoing.

An effective mechanism for continuous process improve-
ment (SF-PR-3) brings positive results to method adoption
(PS24, PS91, PS87). However, to make use of the

mechanism, all stakeholders need to have adequate train-
ing, mentoring, and coaching as well as their commitment
to the continuous process improvement. This also brings
long-lasting and sustainable results of the process improve-
ment (PS87).

A physical proximity of teams (SF-PR-4) contributes to
the efficient coordination and knowledge sharing for SAFe
(PS38), LeSS (PS11, PS21, PS22), and scaled methods (PS39,
PS79). When teams are sitting in an open working area, it
allows an insight into the work across teams and reduces
delays and a lack of communication. For example, progress
boards are visible, and it is easier to arrange discussions
and meetings. Moreover, it also supports the development
of a shared mental model to be able to interpret contextual
cues in a similar manner and make decisions for common
goals (PS11). Seating arrangements have been suggested to
promote transparency and learning in the development
chain (PS107). A transparent development process reduces
dependencies and increases the planning and coordination
between teams in a project (PS69, PS77).

Organisations may use different arenas to improve coor-
dination among teams (SF-PR-5) that suit their situations
(PS38, PS151 PS22, PS83, PS147, PS146, PS190). PS22 identi-
fied 14 formal and informal coordination arenas, such as
board discussion, demo, instant messaging, SoS and wiki.
These arenas may change over time depending on the need
at the programme level (PS22). This is also the case of SAFe

TABLE 9
Success Factors of Large-Scale Development Methods

Note: * indicates experience reports, ** indicates articles published in IS venues, *** indicates success factor newly identified in our study.

2724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

(PS38, PS151). How organisations implement the coordina-
tion arenas such as PI planning, SoS and program board
may continuously change, depending on the circumstances.

While adopting new methods, teams should focus on
principles rather than mechanics such as practices or tools
(SF-PR-6, PS20, PS68, PS87). It helps them understand the
reason for the change. Balancing oversight and autonomy
(SF-PR-7) is also reported as one of the success factors of the
Spotify model (PS139) and the scaled methods (PS6, PS73,
PS110). Top-level oversight provides guidance and set
ambitious targets and goals, while autonomy gives teams
room to decide what and how the work is done. Having a
balanced autonomy (e.g., setting own sprint plan, choices of
working practices) and oversight (e.g., aligned backlogs,
deliveries synchronisation) affects the sense of commitment
within a team.

Maintaining transparency across high number of fast-
moving, adaptive teams and projects (SF-PR-8) is considered
important in themajority of themethods. For SAFe, transpar-
ency at the portfolio level improves awareness across an
organisation regarding the ongoing development, forces
managers tomake joint-decision, instead of operating in silos
(PS68). At the team level, transparency incentivises teams to
deliver high-quality software (PS170) and promotes collabo-
ration, communication and knowledge sharing (PS8, PS100,
PS36, PS37, PS69, PS77, PS107, PS149 PS140).

While SAFe provides more ceremonies, practices, and
tools than other large-scale frameworks, organisations need
to use only the necessary ones and adopt and tailor them to
meet their specific business goals (SF-PR-9, PS104, PS105).
For example, in the case of CO50, instead of having a sprint
review at the end of each sprint, a sprint review was con-
ducted once every three months as it took more time and
effort to prepare and attend, but also to allow enough time
to develop new features (PS140).

In a large-scale software development project, architec-
tural guidelines (SF-PR-10) are beneficial for development
teams as to give methodological guidance to and for man-
agement and as to provide a high abstraction level of soft-
ware (PS36, PS125). Even though architects do not have
decision-making authority, they provide inputs to deci-
sions. In the case of CO40, the architecture-focused
approach shows a profound impact on enabling continuous
delivery (PS153). PS148 suggested that the architectural
guidelines (SF-PR-10) should assure the optimal solution
from the overall system point of view. To achieve this goal,
in the case of CO53, a new structure (CSA) was established
to coordinate and support the architectural work together
with System and Solution Architect as defined by SAFe.

Balanced use of documentation (SF-PR-11) is perceived
important for knowledge sharing across teams and increase
project visibility and coordination effectiveness (PS690). As
each team is responsible for their backlog items, they need
to identify, recognise and establish a shared understanding
of the existence of interdependencies and ways to resolve
them (SF-PR-12, PS8). For example, the results of joint plan-
ning on specification and prioritisation at the inter-team
level help individual teams to specify their high priority
tasks in detail and this allows teams to give feedback
regarding emergent inter-team dependencies before com-
mitting to the next sprint.

In the case of CO7, the organisation had developed a
structured enabling program that would guide the transi-
tion or adoption to DAD (SF-PR-13, PS14). The program
described the project’s life cycle from inception to delivery
and provided support for roles and clear measurement
activities (PS14). Commercial large-scale agile frameworks
such as SAFe, DAD or Spotify Model allow each team to
use various procedures, practices, or tool suitable to their
context. The study PS14 suggested organisations to stan-
dardise the way of working (SF-PR-14). The standards
enhance quality and product innovation as they enable peo-
ple to be moved around easily and transferred between
projects as needed (PS30, PS70, PS81, PS87, PS130).

5.4.3 People

Training and coaching (SF-PE-1) is essential for the adop-
tion of SAFe (PS24, PS66, PS68, PS91) and DAD (PS14,
PS70). They have a high pay-off in terms of team productiv-
ity (PS13, PS17, PS20, PS80, PS103). Training is useful to
communicate with all stakeholders about the why (the rea-
sons for change), and its impact (e.g., generated by new
practices, roles and responsibilities, and tools). Participation
of higher management in coaching and training sessions is
considered to be an effective strategy to demonstrate their
commitment to the change process.

Early access to external coaches (SF-PE-2) for guidance,
support, and improvement can make an agile transition
smoother (PS80). Experienced external coaches are
quicker to recognise ways to introduce and embrace
changes, and reliable to ensure that agile practices are cor-
rectly used (PS110). Thus, at the beginning of the change,
they may help organisations to train and coach key per-
sonnel and to help with the first PI planning event (PS24,
PS91, PS101). These key personnel later become the
change agents who can push the change forward and con-
tribute to continuous improvement (PS91). Improvement
items need to be implemented and monitored seriously by
created action plans and be assigned to responsible per-
sons (PS24).

CoP (SF-PE-3) has proven to help an organisation to coor-
dinate between teams, lead the organisational continuous
improvement, share good development practices across the
organisation, and handle decisions affecting several teams
(PS94, PS159). The knowledge sharing may also happen
informally and on-demand across different groups (PS164).
It is worth emphasising that these community-based activi-
ties and decision making are rooted in experimental culture
with fast feedback. Making errors and failures are consid-
ered to be learning opportunities.

Common vision (SF-PE-4) is important for establishing a
common ground and clarity of goals and direction (PS92,
PS170, PS183, PS187). It is a team effort to move all stake-
holders towards the common goals. By informing and
engaging people (SF-PE-5), the change process gains legiti-
macy and supports across the organisation (PS6, PS95).
Employees should be involved as early as possible to mini-
mise resistance. The motivation to adopt the method needs
to be properly promoted and communicated (PS170).

The success of the adoption of scaled methods depends
on the discipline of involved teams (SF-PE-6); thus it is

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2725

necessary to create an environment that encourages team
discipline (PS108).

Trust among teams (SF-PE-7) is reported as one key fac-
tor for the survival of LeSS in CO6 (PS11). Early in the pro-
gram, there was a delay in delivery; thus some in the
management in Pension Fund wanted to closely monitor
the program (PS11). However, the trust from the director
empowered the teams to take responsibility, act, and
deliver:

“... the director of the Pension Fund stated: ‘Let the people
who know how to work, work!’ ” (LeSS, CO6, PS11)

5.4.4 Technology

In a large-scale project, an adequate infrastructure to sup-
port communication, knowledge sharing, and a community
of practice (SF-TE-1) can support the development of
knowledge networks and social capital (PS82). The infra-
structure (SF-TE-2) is necessary to enable end-to-end devel-
opment processes. This includes joint development tools,
test environments, continuous integration, and automated
tests (PS14, PS17, PS92, PS187).

6 DISCUSSION

Our study shows that empirical studies on large-scale agile
software development is increasing rapidly and steadily in
recent years. In comparison to Dikert et al. [6], where only
six empirical papers were identified published by 2013, this
study identified 191 primary studies published by 2019, and
127 of these are empirical research papers. It is worth noting
that, despite the fact that these primary studies are pub-
lished in both SE and IS venues, our SLR did not find any
significant differences in terms of the findings between the
two (see Tables 8 and 9). There are often perceptions that SE
and IS are very different; that SE research focuses on techni-
cal issues while IS focus on the behavioural and social
implications of technology. However, our analysis and the
emerging challenges and success factors show that this is
not the case. Both fields addressed common issues such as
management of large-scale development projects, human
factors, organisational issues, and economic aspects of soft-
ware development and deployment [55], [56], [57], [58]. In
fact, it is interesting to note that some researchers published
their work in both SE or IS venues.

6.1 Analysing the Use of Large-Scale Software
Development Methods

According to a recent industry survey from VersionOne
[46], commercialised large-scale methods, such as SAFe,
DAD, Spotify model, and LeSS, are among the most popu-
lar scaling methods adopted by the respondent companies
worldwide by 2019. However, our findings reported in
Section 5.1 depict a somewhat different, more nuanced pic-
ture. As shown in Fig. 2 in Section 5.1, many companies
choose to develop their own customised method. These
were typically scaled up from agile method implementa-
tions that had been proven to be effective at a team level in
that organisation, with or without connecting practices to
help to scale to large-scale projects. This was understand-
able before SAFe and other large-scale frameworks

appeared and became mainstream in the market. How-
ever, the tendency to develop in-house methods has not
reduced, even after commercialised large-scale frame-
works became available and increasingly adopted. One
possible explanation is that organisations are more com-
fortable scaling what they are already know, rather than a
cold switch to a large-scale unknown frameworks. To a
certain extent, the primary studies of large-scale develop-
ment in Nokia over a ten-year period (PS51, PS72, PS79,
PS102 and PS151) illustrate this pattern. However, pur-
posefully designed longitudinal studies on the adoption
and application of large-scale agile methods are rarely
seen in the existing literature. One reason could be that
applying agile methods in large-scale software develop-
ment is a highly complex phenomenon that takes signifi-
cant research access and resources over a long and
unknown period of time. It is possible that researchers lack
access to organisations for such a long period, or possibly
the long-term funding or resources to do so.

Table 4 shows that the number of studies that address
customisation of large-scale frameworks is much smaller
than the studies on other types of methods. The majority of
those are experience reports. This might indicate a research
strand where again practitioners are leading and research is
yet to catch up.

The connecting practices reported in Table 5 provide fur-
ther support to the viability of custom-building own large-
scale methods in practice. These practices help tackle the
key challenges that companies are confronted with when
approaching large-scale software development, such as
inter-team coordination, release planning and architecture,
and knowledge sharing [6]. The case companies reported in
the primary studies developed various practices to tackle
these challenges, as shown in Table 5, which could inform
other organisations should they choose to grow their in-
house large-scale methods. The study by Kalenda et al. [7]
reported 8 scaling practices based on SAFe and LeSS. These
are different with our connecting practices, as they are
based on scaled up agile methods (non-commercial and cus-
tomise methods).

Based on the findings in Section 5.1, it can also be argued
that there is no defined pattern for approaching large-scale
development. Companies have taken very different paths,
as demonstrated by the variety of the types of the methods
reported in Table 4. In addition, there is no one method that
suits a particular type of company. The analysed methodol-
ogies were adopted and used by organisations from differ-
ent business domains, with different method adoption
trajectories and usage experiences.

6.2 Analysing Methods by Levels of Abstraction

As far as the authors are aware, there is no previous study
that compares large-scale agile frameworks across the levels
of abstraction in terms of principles, practices, metrics, and
tools. The study by Alqudah & Razali [42] compared these
methods by team size, training and organisation type, and
was based on the original textbook version of these
methods.

Our findings (Section 5.2) reveal that most of the primary
studies focused on the practices, tools and metrics of the

2726 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

large-scale frameworks. Very few explored the principles
behind them. As shown in Table 7, not all the frameworks
have emphasised the underlying principles in an equally
comprehensive and explicit manner. This omission of prin-
ciples in some methods has without doubt constrained
empirical researchers who are aiming to study the values or
principles underpinning these methods, and from any sub-
sequent comparison between them. One of the most com-
mon reasons for agile method failures, even at team level, is
that developers often adhere to agile practices without fol-
lowing the spirit of agile thinking [59]. This tendency of
“doing agile” over “being agile” looks like continuing in the
large-scale movement, given the combination of a lack of
detail on some method’s principles, combined with a lack of
empirical research on the ones that remain. This gap also
supports the claim of Rolland et al. [9] that these methods
are often built on loose or incorrect values and assumptions,
and in addition shows this also applies to the empirical
research that has subsequently studied them.

Table 7 shows that seven primary studies offer new
emerging principles (PS139, PS163), practices (PS148, PS11,
PS139), and metrics (PS14, PS161). However, it must be
noted that only two of them were based on rigorous empiri-
cal research (PS11, PS163), with the reminder based on
experience reports. This could be seen as an opportunity for
the research community to actively contribute or even lead
the development of large-scale frameworks and methods, to
provide a stronger theoretical underpinning for them by
examining and explicating the mindsets and principles that
truly enable the effective use of the practices from these
large-scale frameworks, and in turn to achieve true organi-
sational agility. The studies PS150 and 174 are good exam-
ples of this direction. While there was no empirical research
on tools, there was at the practice and metrics levels to some
extent - new emerging practices and metrics that can fit and
complement current large-scale frameworks have been dis-
covered and defined through empirical studies (e.g., PS139,
PS123, PS161).

6.3 Challenges in Using Large-Scale Agile Methods

Adopting or customising existing large-scale agile frame-
works allows organisations to approach large-scale software
development in a more structured and managed manner.
However, implementing these methods can also bring new
or intensify existing challenges that they are confronted with
when developing at a large scale. In our study, we have iden-
tified 31 challenges, grouped them into 9 categories and
linked them to the different methods for large-scale agile
development, as shown in Table 8. They show that the appli-
cation of large-scale agile methods is challenging and the
obstacles presented are both technical and organisational.

Unlike Dikert et al. [6] and Kalenda et al. [7] that study
large scale agile transformation in general, we have ana-
lysed the identified challenges and reported them by
method level. This might be one reason that, even though
they overlap with what has been reported in Dikert et al. [6]
and Kalenda et al. [7], there are challenges that are reported
in our studies only, and some of the challenges identified in
their studies were not covered by our findings. A direct
comparison of the numbers of identified challenges would

be misleading. However, it is worth highlighting that some
challenges identified in the previous SLRs which reviewed
the literature dated back to 2013 or earlier are captured
again by our study of more recently published primary
studies, e.g., (C-OS-2) Fluidity of agile roles and no direct map-
ping from old job roles to the new ones, and (C-MA-2) Scaling
agile practices to non-development units. These are persistent
challenges reported repeatedly in the literature.

Most challenges identified in Dikert et al. [6] and Kalenda
et al. [7] are largely confirmed by our study. In addition, our
study identified 10 new previously unidentified challenges,
as indicated with “***” in Table 8. Among them, only one
challenge, (C-CM-2) Constant change, is reported only by the
primary studies published in recent years (after 2016). The
other challenges are reported by the primary studies rang-
ing from 2007 to 2019, which means that these are not newly
emerged challenges. For example, (C-AR-2) Difficulty in see-
ing the big picture of the systems and (C-TM-1) Lack of owner-
ship of completion of user stories are reported in PS17
published in 2007. Another example is (C-AR-4) Software
security reported in PS132, also published in 2007. Perhaps
unsurprisingly, these three challenges are all linked to cus-
tom-built methods rather than commercial ones, and the
fact this study is the first to include custom-built methods
may explain why these were not discovered before. We also
mapped each challenges from the specific perspective of the
large-scale methods applied in the case companies, and
made more explicit linkage between them, as shown by
Table 8.

The findings of our study also show that there are not
many challenges that are unique to a specific commercial-
ised large-scale method, except (C-TM-5) Fear of getting cri-
tique and be humiliated in sprint planning which is linked to
SAFe (PS151). In comparison, slightly more challenges seem
to be only related to custom-built methods or methods
scaled from original team-oriented agile approaches, e.g.,
(C-IC-5) Maintaining transparency across high number of fast-
moving, adaptive teams and projects, and (C-OS-4) Flow level-
ling for limited resources/race condition.

6.4 Success Factors in Using Large-Scale Agile
Methods

Similar to the identified challenges, we aggregated and
reported the success factors at the method level. While
some of the factors have been identified in previous studies,
this is the first to assign a factor to the individual method
where it was uncovered. A success factor was only included
if it was clearly shown to be such a factor in the context of a
specific method, rather than any abstract argument apply-
ing to development generally. In total, we have identified 27
success factors that could be associated to specific methods.
Most success factors identified in the previous SLRs are
unveiled by our study as well such as (SF-MO-1) Strong lead-
ership support and (SF-PR-8) Maintaining transparency across
high number of fast-moving, adaptive teams and projects [6].
Two success factors, Keep it simple and Recognise the impor-
tance of the PO role, are reported in Dikert et al. [6] but not
covered by our study.

A closer inspection of the 12 newly identified success fac-
tors from the reviewed primary studies (as indicated with

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2727

“***” in Table 9) revealed that most of them have been
reported in the primary studies that were published
between 2003 and 2019, as shown in Fig. 2, but not reported
in the previous SLRs. In contrast, two success factors, (SF-
MO-5) Fluid agile team structure related to the Spotify Model,
and (SF-PR-5) Different arenas for coordination over time linked
to SAFe, LeSS and scaled methods, are reported in recent
primary studies after 2016.

In comparison to the patterns observed regarding chal-
lenges, there are slightly more success factors that are linked
exclusively to a specific commercialised large-scale method
than to their custom-built counterparts and scaled methods.
The success factors linked specifically to the Spotify Model
are (SF-MO-5) Fluid agile team structure, (SF-PR-7) Balancing
agile autonomy with need for oversight and (SF-TE-1) Well-
structured information and knowledge sharing systems. (SF-PR-
3) Continuous improvement is the success factor linked to
SAFe only. (SF-PR-13) Well-structured adoption approach and
(SF-TE-2) Joint/common infrastructure are linked exclusively
to DAD. The three unique success factors linked to custom-
built and scaled methods are from the Process category -
(SF-PR-6) Principles ahead of metrics, (SF-PR-11) Balanced use
of internal software documentation, and (SF-PR-12) Dependen-
cies awareness.

As compared to previous reviews, our findings linked
these factors with large-scale agile methods in a more
explicit and specific manner, which can better contextualise
these factors from the development method perspective. As
discussed in Section 2, we found two reviews in commercial
large-scale frameworks [7], [42]. The study by Kalenda et al.
[7] reported the challenges and success factors of SAFe and
LeSS in an aggregated manner. Thus it is impossible to dis-
tinguish which challenges and success factors are associated
with each method. It may be the case that the granularity
level of the challenges and success factors is different in this
study. For example, resistance to change (SC1) seems to
have a linkage with all challenges in the Change Manage-
ment Challenges category in our study. However, only
bridging agile culture and mindset at scale are reported to
have association with SAFe and LeSS, while change resis-
tance is associated with SAFe only.

As shown in Tables 8 and 9, the majority of the chal-
lenges and success factors associated with commercial
large-scale frameworks such as SAFe, LeSS and Spotify
Model are identified and reported by empirical research
rather than experience reports. This indicates that while
these methods are originally driven by practitioners, they
have been validated by the research community. We have
also seen that the majority of the challenges and success fac-
tors of scaled methods are evaluated in empirical research
than experience reports. This is not the case for Scrum-at-
Scale and DAD. We identified three studies of these meth-
ods but two of them are experience reports. While the time-
liness and importance of these methods to practitioners is
evident, the research is still lagging behind.

When one considers the source of the challenges and suc-
cess factors identified in this study, it is logical that some
arise due to the large-scale nature of the development con-
text. For example, inter-team co-ordination (C-IC) has been
an issue associated with large-scale projects long before
agile (e.g.[60], [61]). Similarly, some challenges and success

factors are associated with agile development, even in small
(non-large-scale) development environs (e.g., requirements
engineering challenge (C-RE) has been identified as a chal-
lenge even in the context of 2-5 developers [62]). However,
while a challenge or success factor may be primarily attrib-
uted to large-scale or agile, our analysis of both sets of litera-
ture suggests that all make an appearance in either set, even
though it may appear less so in one that the other. Further,
even where a challenge may appear in large-scale generally
pre-agile (e.g., C-IC), the agile nature of work certainly exac-
erbates it. For example, the traditional pre-agile response to
co-ordination of large teams would be to control from the
top down by appointing a set of controllers responsible for
ensuring procedures are adhered to using extensive stand-
ardised reporting over long periods of time [63], [64]. How-
ever, agile principles forbid top down control, extensive
reporting and any intolerance of change. Therefore, while
co-ordination is a long-standing challenge it is a much more
complex one in an agile era, and one that requires different
solutions to those of the past.

6.5 Implications for Future Research

This study has a number of implications for researchers.
First, it provides the most up to date review of large-scale
agile methods for researchers, including 191 papers across
134 case organisations.

Second, researchers are now provided with a set of com-
parisons between commercial large-scale agile methods
(e.g., SAFe, LeSS, Scrum-at-Scale, DAD and Spotify Model),
and one that also includes custom-built methods. Previous
studies either focused on one method or studied all meth-
ods in a collective, aggregated manner. In addition, the anal-
ysis compares methods across standard headings of
principles, practices, tools and metrics, identifying gaps
within each method. Researchers can now aim to develop
principles, practices, tools or metrics that effectively fill
each gap. Further, research can also examine how gaps in
one method could be filled by other methods that are strong
in that area. It also provides a standard comparison for
researchers to evaluate the effectiveness of each method’s
set of principles, practices, tools or metrics, and then com-
pare them with the corresponding parts of other methods at
that same level of abstraction.

A criticism of method research in general, is that every
researcher studies the original textbook method and not
take into account the additional improvements added by
other researchers that have scrutinised the method since its
publication. Table 7 provides researchers with the original
method plus a set of extended practices that have subse-
quently been proposed in the literature. Now, rather than
each researcher studying the original textbook method, they
can now build on the cumulative, extended work of others,
studying not just the original practices, but the additional
ones as well.

This study showed, for the first time, most primary stud-
ies focused on the application of the practices. Tools and
metrics rather than the underlying agile principles, and in
fact that the parent methods are often light when it comes to
providing detail on these principles. Researchers should
seek to address this gap, particularly given the history of

2728 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

agile development where there is a focus on an adherence-
based approach, where the team “does agile” rather than
“being agile”. Table 5 also suggests a potentially new
research topic, which involves the study of connecting prac-
tices that are required to scale traditional agile methods
such as XP and Scrum. While numerous primary studies
revealed different connecting practices, dedicated research
on connecting practices and an understanding in how they
are designed and implemented is yet to be seen.

Our study identifies the challenges and key success fac-
tors related to the application of each large-scale agile
method. What distinguishes our study from previous work
is that we break the challenges and success factors down by
method (as shown in Tables 8 and 9). Practitioners or
researchers can distinguish between challenges/factors that
may clearly been shown to apply to their method, versus
those general ones that have been identified in other meth-
ods and so may not apply in their own method context.
Researchers can now build on these and test the impact of
each challenge or success factor and whether they apply to
large-scale development generally, or if there are nuances of
each or additional ones that emerge in specific contexts e.g.,
regulated environments, particular sectors, or in high pres-
sured or distributed contexts. This is particularly true where
experience reports may have surfaced interesting, but as yet
unvalidated findings. We encourage researchers to examine
the findings of the experience reports (see the papers
marked with an asterisk in Tables 4, 7, 6, 8, and 9). Future
research could also investigate the severity of the challenges
of large-scale agile methods identified in this study. Some
challenges, if they are not addressed well, may harm the
projects and lead to cancelation or abandonment.

Tables 8 and 9 show that SAFe, LeSS and scaled methods
have received more attention from the research community
than Scrum-at-Scale, DAD and Spotify Model. Moreover,
primary studies on Scrum-at-Scale and DAD are mainly
driven by practitioners than researchers. Therefore, our
study calls for more empirical research on these methods to
compare and synthesise our findings thus provide complete
evidence that can be useful for practitioners.

Finally, we considered both software engineering and
information systems literature in the search process. There
may be some researchers in either field who are unaware of
the relevant work in the other, and so this study may help
close the gap between the disciplines.

6.6 Implication for Practice

This study providesmany implications for practitioners. First,
it provides a single resource for practitioners to learn about
the range of large-scale development methods available,
rather than sourcing texts on each method separately. Practi-
tioners often ask which method is better, considering this as a
binary decision- either a method is adopted or not. Now prac-
titioners can find a link to the core methods, but also links to
all empirical research on each method. Also, by comparing
across the variousmethod parts, practitioners can see the rela-
tive strengths andweakness and the gaps. So theymay decide
to adopt some or all of the practices of one method and com-
bine them with the practices of another. Or they may supple-
ment practices of a method with tools or metrics of another,

where such a combination makes sense. The standardised
comparison of methods in this paper allows this to be done in
amore considered and informedmanner.

Practitioners can consult related primary studies to learn
how similar case organisations listed in Appendix C, avail-
able in the online supplemental material, to implement
respective methods or frameworks (using Table 4). In such
situations, practitioners may take into consideration the
challenges and success factors listed in Tables 8 and 9 to
ensure a smooth and successful implementation of the
method in their large-scale development projects.

The findings of our SLR show that organisations may
approach different paths to choose and adopt a suitable
agile method in their large-scale software development
projects. However, the journey of scaling an agile method
through experimentation, failure and learning may take
some time and effort. For example Nokia took more than 10
years to adopt agile methods at scale (XP, Scrum, LeSS).
Therefore, practitioners need to be always cautious and take
into consideration the complexities of their own develop-
ment context.

Also, we would hope that by providing the full array of
empirical research and experience reports, this would
encourage practitioners to reflect, write up and publish their
own large-scale agile method journey, either in conjunction
with researchers (empirical research) or on their own (via
experience reports).

7 CONCLUSION AND LIMITATIONS

This paper aims to improve the general understanding of
methods used for large-scale agile software development in
organisations. This systematic literature review compares
the main large-scale agile methods, namely SAFe, Scrum-at-
Scale, DAD, the Spotify model and LeSS. In total 191 primary
studies across 134 case organisations were identified. It is the
first study to analyse and compare each of these methods, as
well as custom-built methods, across a set of standard head-
ings, namely the principles, practices, tools, and metrics of
each method. For each method, it presents not just the origi-
nal method specifications but also all extensions and modifi-
cations to each method proposed by subsequent empirical
research. It reveals a number of theoretical and practical
issues in the current literature such as over-emphasis on the
practices of commercial large-scale agile frameworks at the
expense of their foundational principles. A set of 31 chal-
lenges and 27 success factors associated with each method
were identified. The study provides researchers with a num-
ber of gaps to be addressed across methods. As a result of
this study, practitioners can make a more informed decision
as to which commercial method or method component or
indeed, custom-built method is better suited to their needs
based on the findings reported in this study.

In terms of limitations, while agile approaches to large
scale development are becoming increasingly prevalent,
they are by no means the only approaches for large scale
project delivery. In systems engineering for example, there
are many projects using other models e.g., [65], [66]. Some
of our findings may also be relevant in those contexts. As
can be seen from some challenges and success factors, some
are specific to, or at least exacerbated in, the context of agile

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2729

development where the fluidity and dynamism are inten-
tionally inherent.

Also, this study did not consider the levels of method
adoption across the papers studied. Given that the adoption
of large scale agile methods is often a long and in itself chal-
lenging one [10], it is likely that organisations will struggle
with different challenges at different points in the adoption
process. Moreover, both challenges and success factors will
be particularly relevant and exacerbated at various points.
Future research could adopt a longitudinal study for exam-
ple, to examine this over time.

A further limitation of the study is thatwhilemanymethod
practices are very clear and operational, others are somewhat
vague and open to misinterpretation e.g., the “Be Awesome”
practice in DAD. The purpose of this study was not to deci-
pher the meaning of these vague practices, but rather to ana-
lyse the empirical papers that studied these practices in an
objective way. However, future research could analyse and
help strengthen the conceptual depth of these more ambigu-
ous practices by applying an appropriate theoretical lens. In
the case of “Be Awesome” for example, a lens from motiva-
tion, psychology or innovation theorymay be appropriate.

ACKNOWLEDGMENTS

This work was supported in part by Science Foundation Ire-
land grant 13/RC/2094_P2.

REFERENCES

[1] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

[2] K. Schwaber and J. Sutherland, “The Scrum GuideTM – The
Definitive Guide to Scrum: The Rules of the Game,” 2017. [Online].
Available: https://www.scrumguides.org/docs/scrumguide/
v2017/2017-Scrum-Guide-US.pdf

[3] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Reading, MA, USA: Addison-Wesley, 2004.

[4] G. B. Ghantous and A. Gill, “Devops: Concepts, practices, tools,
benefits and challenges,” in Proc. 21th Pacific Asia Conf. Inf. Syst.,
2017, pp. 1–12.

[5] D. G. Reinertsen, The Principles of Product Development Flow: Second
Generation Lean Product Development. Redondo Beach, CA, USA:
Celeritas Publishing, 2009.

[6] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and suc-
cess factors for large-scale agile transformation: A systematic liter-
ature review,” J. Syst. Softw., vol. 119, pp. 87–108, 2016.

[7] M. Kalenda, P. Hyna, and B. Rossi, “Scaling agile in large organi-
zation: Practices, challenges, and success factors,” J. Softw.: Evol.
Process, vol. 30, no. 10, 2018, Art. no. e1954.

[8] J. B. Barlow, J. S. Giboney, M. J. Keith, D. W. Wilson, and
R. M. Schuetzler, “Overview and guidance on agile development in
large organization,”Commun. Assoc. Inf. Syst., vol. 29, pp. 25–44, 2011.

[9] K. H. Rolland, B. Fitzgerald, T. Dingsøyr, and K.-J. Stol,
“Problematizing agile in the large: Alternative assumptions for
large-scale agile development,” in Proc. 37th Int. Conf. Inf. Syst.,
2016, pp. 1–21.

[10] K. Conboy and N. Carroll, “Implementating large-scale agile
frameworks: Challenges and recommendations,” IEEE Softw., vol.
36, no. 2, pp. 44–50, Mar./Apr. 2019.

[11] M. Laanti, O. Salo, and P. Abrahamsson, “Agile methods rapidly
replacing traditional methods at nokia: A survey of opinions
on agile transformation,” Inf. Softw. Technol., vol. 53, no. 3,
pp. 276–290, 2011.

[12] D. Leffingwell, SAFe 4.5 Reference Guide: Scaled Agile Framework for
Lean Enterprises. Reading, MA, USA: Addison-Wesley, 2018.

[13] C. Larman and B. Vodde, Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development with Large-
Scale Scrum. London, U.K.: Pearson Education, 2010.

[14] D. J. Reifer, F. Maurer, and H. Erdogmus, “Scaling agile meth-
ods,” IEEE Softw., vol. 20, no. 4, pp. 12–14, July/Aug. 2003.

[15] M. Paasivaara, “Adopting SAFe to scale agile in a globally distrib-
uted organization,” in Proc. 12th IEEE Int. Conf. Global Softw. Eng.,
2017, pp. 36–40.

[16] M. Shameem, C. Kumar, B. Chandra, and A. A. Khan, “Systematic
review of success factors for scaling agile methods in global soft-
ware development environment: A client-vendor perspective,” in
Proc. 24th Asia-Pacific Softw. Eng. Conf. Workshops, 2017, pp. 17–24.

[17] H. Saeeda, H. Khalid, M. Ahmed, A. Sameer, and F. Arif,
“Systematic literature review of agile scalability for large scale
projects,” Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 2, pp. 63–75,
2015.

[18] J. Kl€under, P. Hohl, and K. Schneider, “Becoming agile while pre-
serving software product lines,” in Proc. Int. Conf. Softw. Syst.
Process, 2018, pp. 1–10.

[19] A. Putta, M. Paasivaara, and C. Lassenius, “Benefits and chal-
lenges of adopting the scaled agile framework (SAFe): Prelimi-
nary results from a multivocal literature review,” in Proc. 19th
Int. Conf. Product-Focused Softw. Process Improvement, 2018,
pp. 334–351.

[20] M. F. Abrar et al., “Motivators for large-scale agile adoption from
management perspective: A systematic literature review,” IEEE
Access, vol. 7, pp. 22 660–22 674, 2019.

[21] B. Kischelewski and J. Richter, “Implementing large-scale agile -
an analysis of challenges and success factors,” in Proc. 28th Eur.
Conf. Inf. Syst., 2020, pp. 1–17.

[22] O. Uludag̎, M. Hauder, M. Kleehaus, C. Schimpfle, and
F. Matthes, “Supporting large-scale agile development with
domain-driven design,” in Proc. 19th XP Conf., 2018, pp. 232–247.

[23] Y. Dittrich, “What does it mean to use a method? Towards a prac-
tice theory for software engineering,” Inf. Softw. Technol., vol. 70,
pp. 220–231, 2016.

[24] R. Turk, R. France, and B. Rumpe, “Assumptions underlying agile
software development processes,” J. Database Manage., vol. 16, no. 4,
pp. 62–87, 2005.

[25] C. Hansson, Y. Dittrich, B. Gustafsson, and S. Zarnak, “How agile
are industrial software development practices?,” J. Syst. Softw.,
vol. 79, no. 9, pp. 1295–1311, 2006.

[26] I. Nurdiani, R. Jabangwe, D. �Smite, and D. Damian, “Risk identifi-
cation and risk mitigation instruments for global software devel-
opment: Systematic review and survey results,” in Proc. 6th IEEE
6th Int. Conf. Global Softw. Eng. Workshop, 2011, pp. 36–41.

[27] K. T. Yeo, “Critical failure factors in information systems proj-
ects,” Int. J. Project Manage., vol. 20, pp. 241–246, 2002.

[28] M. R. Arizmendi and L. Stapleton, “Failure factors in the control
of large-scale business intelligence systems development proj-
ects,” IFAC-PapersOnline, vol. 52, no. 25, pp. 579–584, 2019.

[29] J. F. Rockhard, “Chief executives define their own data needs,”
Harv Bus Rev., vol. 57, no. 2, pp. 81–93, 1979.

[30] S. Matook and R. Vidgen, “Harmonizing critical success factors in
agile ISD projects,” inProc. 20th Amer. Conf. Inf. Syst., 2014, pp. 1–10.

[31] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U. Conte,
and G. H. Travassos, “Scientific research ontology to support sys-
tematic review in software engineering,” J. Ancient Egyptian Inter-
connections, vol. 21, no. 2, pp. 133–151, 2007.

[32] J. D�ıaz, J. P�erez, P. P. Alarc�on, and J. Garbajosa, “Agile product
line engineering – A systematic literature review,” J. Softw.: Prac-
tice Experience, vol. 41, no. 8, pp. 921–941, 2011.

[33] E. Hossain, M. A. Babar, and H.-Y. Paik, “Using scrum in global
software development: A systematic literature review,” in Proc.
4th IEEE Int. Conf. Global Softw. Eng., 2009, pp. 175–184.

[34] S. Jalali and C. Wohlin, “Global software engineering and agile
practices: A systematic review,” J. Softw.: Evol. Process, vol. 24, no.
6, pp. 643–659, 2012.

[35] F. Ki�s�s and B. Rossi, “Agile to lean software development trans-
formation: A systematic literature review,” in Proc. Federated Conf.
Comput. Sci. Inf. Syst., 2018, pp. 969–973.

[36] J. A. Kl€undeer, P. Hohl, N. Prenner, and K. Schneider,
“Transformation towards agile software product line engineering
in large companies: A literature review,” J. Softw.: Evol. Process,
vol. 31, no. 5, 2019, Art. no. e2168.

[37] P. Lous, M. Kuhrmann, and P. Tell, “Is scrum fit for global soft-
ware engineering?,” in Proc. 12th IEEE Int. Conf. Global Softw. Eng.,
2017, pp. 2–10.

[38] S. Matalonga, M. Solari, and G. Matturro, “Factors affecting dis-
tributed agile projects: A systematic review,” Int. J. Softw. Eng.
Knowl. Eng., vol. 23, no. 9, pp. 1289–1301, 2013.

2730 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

[39] B. Rizvi, E. Bagheri, and D. Gasevic, “A systematic review of dis-
tributed agile software engineering,” J. Softw.: Evol. Process, vol.
27, no. 10, pp. 723–762, 2015.

[40] R. Sinha, M. Shameem, and C. Kumar, “SWOT: Strength, weak-
ness, opportunities, and threats for scaling agile methods in global
software development,” in Proc. 13th Innovations Softw. Eng. Conf.
Formerly Known India Softw. Eng. Conf., 2020, Art. no. 3.

[41] R. Vallon, B. J. S. Est�acio, R. Prikladnicki, and T. Grechenig,
“Systematic literature review on agile practices in global software
development,” Inf. Softw. Technol., vol. 96, pp. 161–180, 2018.

[42] M. Alqudah and R. Razali, “A review of scaling agile methods in
large software development,” Int. J. Adv. Sci. Eng. Inf. Technol.,
vol. 6, no. 6, pp. 828–837, 2016.

[43] J. Pernsta
�
l, R. Feldt, and T. Gorschek, “The lean gap: A review of

lean approach to large-scale software systems development,” J.
Syst. Softw., vol. 86, no. 11, pp. 2797–2821, 2013.

[44] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality requirements
in large-scale distributed agile projects - A systematic literature
review,” in Proc. Int. Working Conf. Requirements Eng.: Foundation
Softw. Qual., 2017, pp. 219–234.

[45] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” Keele Univ.,
Newcastle, U.K., Rep. no. EBSE-2007-01, 2007.

[46] The 13th Annual State of Agile Report. Collab.NET and VersionOne.
Com, 2019. [Online]. Available: https://stateofagile.com/#ufh-i-
613553418-13th-annual-state-of-agile-report/7027494

[47] T. Dyba
�
, T. Dingsøyr, and G. K. Hanssen, “Applying systematic

reviews to diverse study types: An experience report,” in Proc. 1st
Int. Symp. Empir. Softw. Eng. Meas., 2007, pp. 225–234.

[48] M. Kuhrmann, D. M. Fern�andez, and M. Daneva, “On the prag-
matic design of literature studies in software engineering: An
experience-based guideline,” Empir. Softw. Eng., vol. 22, pp. 2852–
2891, 2017.

[49] N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software development in startup compa-
nies: A systematic mapping study,” Inf. Softw. Technol., vol. 56, no.
10, pp. 1200–1218, 2014.

[50] T. Dyba
�
and T. Dingsøyr, “Empirical studies of agile software

development: A systematic review,” Inf. Softw. Technol., vol. 50,
no. 9–10, pp. 833–859, 2008.

[51] R. F. Paige, J. Cabot, and N. A. Ernst, “Foreword to the special sec-
tion on negative results in software engineering,” Empir. Softw.
Eng., vol. 22, no. 5, pp. 2453–2456, 2017.

[52] T. Saracevic, “Evaluation of evaluation in information retrieval,”
in Proc. 18th Annu. Int. Conf. RDIR, 1995, pp. 138–146.

[53] S. Gregor, “The nature of theory in information systems,” MIS
Quart., vol. 30, no. 3, pp. 611–642, 2006.

[54] T. Dingsøyr and N. B. Moe, “Research challenges in large-scale
agile software development,” ACM SIGSOFT Softw. Eng. Notes,
vol. 38, no. 5, pp. 38–39, 2013.

[55] H. V. Vliet, Software Engineering: Principles and Practices. Hoboken,
NJ, USA: Wiley, 2007.

[56] R. Glass, V. Ramesh, and I. Vessey, “An analysis of research in
computing disciplines,” Commun. ACM, vol. 47, no. 6, pp. 89–94,
2004.

[57] D. Petkov, D. Edgar-Nevill , R. Madachy, and R. O’Connor,
“Informatiion systems, software engineering, and systems think-
ing: Challenges and opportunities,” in Strategic Information Sys-
tems: Concepts, Methodologies, Tools and Applications. Hershey, PA,
USA: Information Science Reference, 2010, pp. 315–332.

[58] P. Burque and R. E. Fairley, SWEBOK V3.0: Guide to the Software
Engineering Body of Knowledge. New York, NY, USA: IEEE, 2014.

[59] P. Ranganath, “Elevating teams from ‘Doing’ agile to ’Being’ and
‘Living’ agile,” in Proc. Agile Conf., 2011, pp .187–194.

[60] R. E. Kraut and L. A. Streeter, “Coordination in software devel-
opment,” Commun. ACM, vol. 38, no. 3, pp. 69–81, 1995.

[61] M. Hoegl, K. Weinkauf, and H. G. Gemuenden, “Interteam coor-
dination, project commitment, and teamwork in multiteam R&D:
A longitudinal study,” Organisation Sci., vol. 15, no. 1, pp. 38–55,
2004.

[62] T. Chow and D.-B. Cao, “A survey study of critical success
factors in agile software projects,” J. Syst. Softw., vol. 81, no. 6,
pp. 961–971, 2008.

[63] H. D. Benington, “Production of large computer programs,” Ann.
History Comput., vol. 5, no. 4, pp. 350–361, 1983.

[64] W. W. Royce, “Managing the development of large software sys-
tems: Concepts and techniques,” in Proc. 9th Int. Conf. Softw. Eng.,
1987, pp. 328–338.

[65] E. T€uz€un, B. Tekinerdogan, Y. Macit, and K. Ince, “Adopting inte-
grated application lifecycle management within a large-scale
software company: An action research,” J. Syst. Softw., vol. 149,
pp. 63–82, 2019.

[66] B. W. Oppenheim, E. M. Murman, and D. A. Secor, “Lean enablers
for systems engineering,” Syst. Eng., vol. 14, no. 1, pp. 29–55, 2011.

Henry Edison is an assistant professor with
Maersk Mc-Kinney Moller Institute, SDU, Den-
mark. His research interests include software
startups and innovation, agile and lean develop-
ment and human factors in software engineering.
His research examines current and future practi-
ces of software processes, and tailor them to suit
different contexts, from startups and new emerg-
ing to large and established organisations. He
has published in leading journals and conferen-
ces in his field including IEEE Transactions on
Software Engineering, JSS, ISTetc.

Xiaofeng Wang is an associate professor with
the Computer Science Faculty of UNIBZ, Italy.
Her main research interests include software
startups, agile and lean software development
and innovation, and human factors in software
engineering. She is actively publishing in SE ven-
ues, including IEEE Software, JSS, Empirical
Software Engineering, etc. She is also active in
serving various SE conferences and workshops
and has collaborated with large companies and
software startups on national and European
projects.

Kieran Conboy is a professor in Business Infor-
mation Systems and leads Lero research group at
NUI Galway. He previously worked for Accenture
Consulting and the University of New South Wales
in Australia. Kieran has published more than 100
articles in leading international journals and con-
ferences including ISR, EJIS, and JAIS. His
research examines contemporary technology
management and design including concepts such
as temporality, flow, open innovation and agility. He
is an editor of the EJIS and has chaired many
international conferences in his field.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

EDISON ETAL.: COMPARING METHODS FOR LARGE-SCALE AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC LITERATURE REVIEW 2731

https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

